This contribution describes two episodes from the history of the Lennard-Jones (LJ) potential. The first, located in the 1920s and 1930s, is about a computational approach that aimed at pragmatics rather than truth and that remained remarkably robust when quantum theory arrived. The second episode covers the birth of the LJ substance in 1964. Due to increasing interest in computer methods, simulated model substances became objects on their own, the prime targets of investigation. The history of the LJ potential and substance exemplifies the dynamic relationship between prediction, theory, mathematization, and computer instrumentation.
{"title":"On the History of the Lennard-Jones Potential","authors":"Johannes Lenhard, Simon Stephan, Hans Hasse","doi":"10.1002/andp.202400115","DOIUrl":"10.1002/andp.202400115","url":null,"abstract":"<p>This contribution describes two episodes from the history of the Lennard-Jones (LJ) potential. The first, located in the 1920s and 1930s, is about a computational approach that aimed at pragmatics rather than truth and that remained remarkably robust when quantum theory arrived. The second episode covers the birth of the LJ substance in 1964. Due to increasing interest in computer methods, simulated model substances became objects on their own, the prime targets of investigation. The history of the LJ potential and substance exemplifies the dynamic relationship between prediction, theory, mathematization, and computer instrumentation.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 6","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: Ann. Phys. 5/2024","authors":"","doi":"10.1002/andp.202470012","DOIUrl":"https://doi.org/10.1002/andp.202470012","url":null,"abstract":"","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 5","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202470012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diffusion Model for Relativistic Heavy-Ion Collisions
Relativistic heavy-ion collisions are a versatile tool to study the partial approach of a quantum many-body system towards statistical equilibrium. In article number 2300307, Johannes Hölck and Georg Wolschin present an explicit and rigorous derivation of the stochastic Fokker–Planck equation for the momentum distribution function of produced charged hadrons in longitudinal and transverse rapidities, thus placing the relativistic diffusion model on a firm statistical foundation. The model is used to analyse Pb–Pb collisions at energies reached at the Large Hadron Collider LHC. Detailed comparisons with data from the ATLAS and ALICE collaborations in transverse-momentum and pseudorapidity space are given.