Pub Date : 2024-09-03DOI: 10.1140/epjd/s10053-024-00905-8
Y. Akbari-Kourbolagh, E. Rezazadeh-Dizaji
We use the Schur concavity of the von Neumann entropy and introduce a majorization-based entanglement criterion for the states of systems consisting of identical fermions. This criterion is in the form of an inequality between the von Neumann entropies of the total density matrix and the single-particle reduced density matrix which have to be satisfied by the separable states of such systems, and therefore, its violation indicates the entanglement. Our criterion is an improved version of the one introduced by Zander et al. (in Eur. Phys. J. D 66: 14, 2012). To illustrate its utility, we use the criterion to various illustrative instances of the families of mixed states and find that when the single-particle Hilbert spaces are of dimension four, the criterion indicates all the entangled states within the families under consideration.
摘要 我们利用冯-诺依曼熵的舒尔凹性,为由相同费米子组成的系统的状态引入了一个基于大化的纠缠准则。该判据的形式是总密度矩阵的冯-诺依曼熵与单粒子还原密度矩阵的冯-诺依曼熵之间的不等式,此类系统的可分离态必须满足该不等式,因此,违反该不等式表明存在纠缠。我们的标准是赞德等人(Eur. Phys. J. D. 66: 14, 2012)提出的标准的改进版。为了说明它的效用,我们将该准则用于混合态族的各种说明性实例,并发现当单粒子希尔伯特空间的维数为四时,该准则可指示所考虑的族中的所有纠缠态。
{"title":"Majorization-based entanglement criterion for fermion systems using the von Neumann entropy","authors":"Y. Akbari-Kourbolagh, E. Rezazadeh-Dizaji","doi":"10.1140/epjd/s10053-024-00905-8","DOIUrl":"10.1140/epjd/s10053-024-00905-8","url":null,"abstract":"<p>We use the Schur concavity of the von Neumann entropy and introduce a majorization-based entanglement criterion for the states of systems consisting of identical fermions. This criterion is in the form of an inequality between the von Neumann entropies of the total density matrix and the single-particle reduced density matrix which have to be satisfied by the separable states of such systems, and therefore, its violation indicates the entanglement. Our criterion is an improved version of the one introduced by Zander et al. (in Eur. Phys. J. D <b>66</b>: 14, 2012). To illustrate its utility, we use the criterion to various illustrative instances of the families of mixed states and find that when the single-particle Hilbert spaces are of dimension four, the criterion indicates all the entangled states within the families under consideration.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1140/epjd/s10053-024-00841-7
Xiao-Dong Bai, Hao Xu, Dongxiao Zhang
Discovering hidden physical mechanisms of a system, such as underlying partial differential equations (PDEs), is an intriguing subject that has not yet been fully explored. In particular, how to go beyond the traditional method to obtain the PDEs of complex systems is currently under active debate. In this work, we propose a deep-learning approach to discover the underlying Gross-Pitaevskii equations (GPEs) of one-dimensional Bose–Einstein condensates (BECs). The results show that such method is markedly superior to the traditional method due to advantages of the deep neural network. The former possesses the ability to obtain a parsimonious model with high accuracy and insensitivity to data noise, and can successfully discover the underlying GPEs that BECs should obey directly from the data even in the absence of a knowledge structure. More importantly, we find that such method is able to work well even for data with (15%) noise. Although the cases studied are proof-of-concept, the method provides a promising technique for unveiling hidden novel physical mechanisms in quantum systems from observations.
{"title":"Discovering hidden physical mechanisms in Bose–Einstein condensates via deep-learning","authors":"Xiao-Dong Bai, Hao Xu, Dongxiao Zhang","doi":"10.1140/epjd/s10053-024-00841-7","DOIUrl":"10.1140/epjd/s10053-024-00841-7","url":null,"abstract":"<p>Discovering hidden physical mechanisms of a system, such as underlying partial differential equations (PDEs), is an intriguing subject that has not yet been fully explored. In particular, how to go beyond the traditional method to obtain the PDEs of complex systems is currently under active debate. In this work, we propose a deep-learning approach to discover the underlying Gross-Pitaevskii equations (GPEs) of one-dimensional Bose–Einstein condensates (BECs). The results show that such method is markedly superior to the traditional method due to advantages of the deep neural network. The former possesses the ability to obtain a parsimonious model with high accuracy and insensitivity to data noise, and can successfully discover the underlying GPEs that BECs should obey directly from the data even in the absence of a knowledge structure. More importantly, we find that such method is able to work well even for data with <span>(15%)</span> noise. Although the cases studied are proof-of-concept, the method provides a promising technique for unveiling hidden novel physical mechanisms in quantum systems from observations.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1140/epjd/s10053-024-00906-7
Mohamed Iheb Hammami, Rim Haji, Oussama Taleb Jlidi, Adnen Melliti
This study focuses on optical optimizing triple-junction tandem solar cell using a novel combination of absorber materials and SnO2 vertically aligned nanowire array buffer layers to enhance power conversion efficiency. The absorbers in the bottom, middle and top cells are CZTSe, Cs2SnI6 and CuAlxIn1−xTe2, respectively. The bandgaps of CZTSe and Cs2SnI6 are 1.05 and 1.62 eV, respectively. On the other hand, that of CuAlxIn1−xTe2 depends on x and varies from 1.71 to 2.2 eV. The top cell is coated by an anti-reflective layer. Rigorous coupled wave analysis simulations were used to optimize geometrical parameters of the tandem cell. Results show that the efficiency of the optimized tandem cell reaches 42.15% for x = 0.3 in CuAlxIn1−xTe2. This work helps advance the design of high-performance solar cells for sustainable energy applications.
{"title":"Optical simulation of triple-junction tandem solar cell based on SnO2 core nanowire array embedded in CZTSe, Cs2SnI6 and CuAlxIn1−xTe2 layers in bottom, middle and top cells, respectively","authors":"Mohamed Iheb Hammami, Rim Haji, Oussama Taleb Jlidi, Adnen Melliti","doi":"10.1140/epjd/s10053-024-00906-7","DOIUrl":"10.1140/epjd/s10053-024-00906-7","url":null,"abstract":"<div><p>This study focuses on optical optimizing triple-junction tandem solar cell using a novel combination of absorber materials and SnO<sub>2</sub> vertically aligned nanowire array buffer layers to enhance power conversion efficiency. The absorbers in the bottom, middle and top cells are CZTSe, Cs<sub>2</sub>SnI<sub>6</sub> and CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub>, respectively. The bandgaps of CZTSe and Cs<sub>2</sub>SnI<sub>6</sub> are 1.05 and 1.62 eV, respectively. On the other hand, that of CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub> depends on <i>x</i> and varies from 1.71 to 2.2 eV. The top cell is coated by an anti-reflective layer. Rigorous coupled wave analysis simulations were used to optimize geometrical parameters of the tandem cell. Results show that the efficiency of the optimized tandem cell reaches 42.15% for <i>x</i> = 0.3 in CuAl<sub><i>x</i></sub>In<sub>1−<i>x</i></sub>Te<sub>2</sub>. This work helps advance the design of high-performance solar cells for sustainable energy applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-31DOI: 10.1140/epjd/s10053-024-00902-x
Shuhuan Zhang, Ying Yang, Jiyu Dong
In this paper, a kind of D-type photonic crystal fiber (PCF) sensor with an ultra-wide detection range based on micro-opening gold film coating is proposed. This sensor allows for the sensing detection of the refractive index (RI) of the analyte ranging from 1.30 to 1.42. However, the sensor coated with a micro-opening gold film only achieves an average wavelength sensitivity of 1489 nm/RIU in the x-polarization direction. To improve the performance of the sensor, an attempt was made to replace the micro-opening gold film with MoO2 nanofilm. After simulation calculation, it was found that the RI detection range of the sensor using MoO2 nanofilm became 1.33–1.39. Excitingly, the average wavelength sensitivity in the x-polarized direction reaches 17, 178 nm/RIU, which is 11.5 times better than the original sensor. This implies that the sensor is more sensitive to changes in the RI and can provide more accurate sensing and detection results. It has been demonstrated that the performance of a D-type PCF sensor can be significantly improved by using MoO2 nanofilm. This improvement helps to expand the application domain of sensors and enhance the accuracy of sensing detection. We believe that this research result has important implications for the development of fiber sensor technologies.
Graphical Abstract
Ultra-wide refractive index detection range fiber optic sensor
本文提出了一种基于微开口金膜涂层、具有超宽检测范围的 D 型光子晶体光纤(PCF)传感器。这种传感器可对 1.30 至 1.42 范围内的分析物折射率(RI)进行传感检测。然而,镀有微开口金膜的传感器在 x 偏振方向上的平均波长灵敏度仅为 1489 nm/RIU。为了提高传感器的性能,我们尝试用二氧化钼纳米薄膜取代微开口金膜。经过模拟计算,发现使用 MoO2 纳米薄膜的传感器的 RI 检测范围为 1.33-1.39。令人兴奋的是,X 偏振方向的平均波长灵敏度达到 17 178 nm/RIU,是原来传感器的 11.5 倍。这意味着传感器对 RI 的变化更加敏感,可以提供更准确的传感和检测结果。实验证明,使用二氧化锰纳米薄膜可以显著提高 D 型 PCF 传感器的性能。这一改进有助于拓展传感器的应用领域,提高传感检测的准确性。我们相信这一研究成果对光纤传感器技术的发展具有重要意义。
{"title":"Ultra-wide measurement range D-shaped photonic crystal fiber sensor based on surface plasmon resonance","authors":"Shuhuan Zhang, Ying Yang, Jiyu Dong","doi":"10.1140/epjd/s10053-024-00902-x","DOIUrl":"10.1140/epjd/s10053-024-00902-x","url":null,"abstract":"<div><p>In this paper, a kind of D-type photonic crystal fiber (PCF) sensor with an ultra-wide detection range based on micro-opening gold film coating is proposed. This sensor allows for the sensing detection of the refractive index (RI) of the analyte ranging from 1.30 to 1.42. However, the sensor coated with a micro-opening gold film only achieves an average wavelength sensitivity of 1489 nm/RIU in the x-polarization direction. To improve the performance of the sensor, an attempt was made to replace the micro-opening gold film with MoO<sub>2</sub> nanofilm. After simulation calculation, it was found that the RI detection range of the sensor using MoO<sub>2</sub> nanofilm became 1.33–1.39. Excitingly, the average wavelength sensitivity in the x-polarized direction reaches 17, 178 nm/RIU, which is 11.5 times better than the original sensor. This implies that the sensor is more sensitive to changes in the RI and can provide more accurate sensing and detection results. It has been demonstrated that the performance of a D-type PCF sensor can be significantly improved by using MoO<sub>2</sub> nanofilm. This improvement helps to expand the application domain of sensors and enhance the accuracy of sensing detection. We believe that this research result has important implications for the development of fiber sensor technologies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Ultra-wide refractive index detection range fiber optic sensor</p></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1140/epjd/s10053-024-00871-1
Kaito Dohi, Masanori Tachikawa, Yukiumi Kita
We theoretically analyzed positron affinities (PAs) of acetaldehyde (CH3CHO) and its deuterated (CD3CDO) molecules at vibrational excited states with multi-component molecular orbital and vibrational quantum Monte Carlo methods. In the fundamental tone states, the PA value at the C=O stretching vibrational mode of acetaldehyde becomes increased by 9.8 meV (+ 12%) from the vibrational ground state of 84.5 meV, while that at the C-H (aldehyde group) stretching vibrational mode decreased by 2.8 meV ((-)3%). We also confirmed that each vibrational state has a different H/D isotope shift in PA values. Such non-uniformity in quantum vibrational influence on PA values and its H/D isotope shifts dominantly arise from the change in dipole moment by vibrational excitations.
摘要 我们采用多分量分子轨道和振动量子蒙特卡洛方法从理论上分析了乙醛(CH3CHO)及其氚化物(CD3CDO)分子在振动激发态的正电子亲和力(PA)。在基调态,乙醛的 C=O 伸展振动模式的 PA 值比振动基态的 84.5 meV 上升了 9.8 meV(+ 12%),而 C-H(醛基)伸展振动模式的 PA 值下降了 2.8 meV(-/3%)。我们还证实,每个振动态的 PA 值都有不同的 H/D 同位素偏移。量子振动对 PA 值及其 H/D 同位素位移影响的这种不均匀性主要源于振动激发的偶极矩变化。
{"title":"Theoretical analysis of H/D isotope effect on the binding of a positron to acetaldehyde molecule","authors":"Kaito Dohi, Masanori Tachikawa, Yukiumi Kita","doi":"10.1140/epjd/s10053-024-00871-1","DOIUrl":"10.1140/epjd/s10053-024-00871-1","url":null,"abstract":"<p>We theoretically analyzed positron affinities (PAs) of acetaldehyde (CH<sub>3</sub>CHO) and its deuterated (CD<sub>3</sub>CDO) molecules at vibrational excited states with multi-component molecular orbital and vibrational quantum Monte Carlo methods. In the fundamental tone states, the PA value at the C=O stretching vibrational mode of acetaldehyde becomes increased by 9.8 meV (+ 12%) from the vibrational ground state of 84.5 meV, while that at the C-H (aldehyde group) stretching vibrational mode decreased by 2.8 meV (<span>(-)</span>3%). We also confirmed that each vibrational state has a different H/D isotope shift in PA values. Such non-uniformity in quantum vibrational influence on PA values and its H/D isotope shifts dominantly arise from the change in dipole moment by vibrational excitations.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1140/epjd/s10053-024-00867-x
Jian Shi, Jun Li, Cuicui Li, Yuqiu Zhang, Jiangnan Lv, Yan Zhan, Xianping Wang, Yibin Huang, Jian Wu
Optical differentiation is an exceptional real-time edge detection technology that enables extracting the image features, yet current optical differentiators are still lacking a resolution tunability. Based on the Bloch surface waves excited in a prism/one-dimensional photonic crystal structure, a wavelength-tuned optical differentiator with a high sensitivity ((partial {r}_{s}/partial lambda =3.5times {10}^{3})) is proposed since any minute variation of the wavelength will easily give rise to a dramatic change in the Goos–Hänchen shifts of two reflected orthogonal components. Via the polarization transformation and extinction, the reflected output field can be approximately expressed as a first-order differential of the input field, and thus, it can operate the edge detection along one orientation. Our scheme can extend to two-dimensional edge detection by rotating the object and may find potential applications in cell and molecular imaging.
{"title":"Tunable photonic differentiator via Bloch surface waves","authors":"Jian Shi, Jun Li, Cuicui Li, Yuqiu Zhang, Jiangnan Lv, Yan Zhan, Xianping Wang, Yibin Huang, Jian Wu","doi":"10.1140/epjd/s10053-024-00867-x","DOIUrl":"10.1140/epjd/s10053-024-00867-x","url":null,"abstract":"<div><p>Optical differentiation is an exceptional real-time edge detection technology that enables extracting the image features, yet current optical differentiators are still lacking a resolution tunability. Based on the Bloch surface waves excited in a prism/one-dimensional photonic crystal structure, a wavelength-tuned optical differentiator with a high sensitivity (<span>(partial {r}_{s}/partial lambda =3.5times {10}^{3})</span>) is proposed since any minute variation of the wavelength will easily give rise to a dramatic change in the Goos–Hänchen shifts of two reflected orthogonal components. Via the polarization transformation and extinction, the reflected output field can be approximately expressed as a first-order differential of the input field, and thus, it can operate the edge detection along one orientation. Our scheme can extend to two-dimensional edge detection by rotating the object and may find potential applications in cell and molecular imaging.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1140/epjd/s10053-024-00899-3
Rahul Pandey, Lok Yiu Wu, Lucy Morris, Paul Regan, Brianna R. Heazlewood
In order to establish important reaction properties, such as rate coefficients, it is often necessary to know the number of reactants that are present in an interaction region. The absolute number densities of pulsed supersonic molecular (NH(_3)) and atomic (H) beams are reported using a laser-based detection method, under a range of experimental conditions including photolysis, Zeeman deceleration, and magnetic focusing. Time-averaged densities of (3.6 ± 2.7) (times ) 10(^4) cm(^{-3}) are reported for successfully Zeeman-decelerated and magnetically focused H atoms, generated by the photodissociation of precursor NH(_3) molecules. Without the magnetic guide components in the beamline, the density of the target radicals of interest is somewhat lower, at (2.5 ± 1.8) (times ) 10(^4) cm(^{-3}). The average density of the undecelerated H atom beam is approximately an order of magnitude higher (2.9 ± 1.9) (times ) 10(^5) cm(^{-3}), with the average density of the molecular ammonia beam over two orders of magnitude higher again (5.1 ± 2.9) (times ) 10(^7) cm(^{-3}). The average number densities measured for the two different species of interest in this work span more than three orders of magnitude. These findings highlight the need for accurate and precise experimental measurements of number densities—for each species of interest, under the appropriate experimental conditions—before doing absolute rate coefficient calculations.
摘要为了确定重要的反应特性,如速率系数,通常需要知道存在于相互作用区域的反应物的数量。在一系列实验条件(包括光解、泽曼减速和磁聚焦)下,采用基于激光的探测方法,报告了脉冲超音速分子(NH)和原子(H)束的绝对数量密度。报告了成功的泽曼减速和磁聚焦H原子的时间平均密度为(3.6 ± 2.7) (times ) 10(^4) cm(^{-3}) ,这些H原子是由前体NH(_3)分子的光解离产生的。如果光束线中没有导磁元件,目标自由基的密度会更低一些,为(2.5 ± 1.8) 10(^4) cm(^{-3})。未减速的 H 原子光束的平均密度大约高出一个数量级(2.9 ± 1.9 ) 10 (^5) cm (^{-3} ),分子氨光束的平均密度又高出两个数量级(5.1 ± 2.9 ) 10 (^7) cm (^{-3} )。在这项工作中,针对两种不同物种测得的平均数量密度跨越了三个数量级。这些发现突出表明,在进行绝对速率系数计算之前,需要在适当的实验条件下对每种相关物质的数量密度进行准确和精确的实验测量。
{"title":"The influence of experimental conditions on absolute beam density measurements for NH(_3) and H","authors":"Rahul Pandey, Lok Yiu Wu, Lucy Morris, Paul Regan, Brianna R. Heazlewood","doi":"10.1140/epjd/s10053-024-00899-3","DOIUrl":"10.1140/epjd/s10053-024-00899-3","url":null,"abstract":"<p>In order to establish important reaction properties, such as rate coefficients, it is often necessary to know the number of reactants that are present in an interaction region. The absolute number densities of pulsed supersonic molecular (NH<span>(_3)</span>) and atomic (H) beams are reported using a laser-based detection method, under a range of experimental conditions including photolysis, Zeeman deceleration, and magnetic focusing. Time-averaged densities of (3.6 ± 2.7) <span>(times )</span> 10<span>(^4)</span> cm<span>(^{-3})</span> are reported for successfully Zeeman-decelerated and magnetically focused H atoms, generated by the photodissociation of precursor NH<span>(_3)</span> molecules. Without the magnetic guide components in the beamline, the density of the target radicals of interest is somewhat lower, at (2.5 ± 1.8) <span>(times )</span> 10<span>(^4)</span> cm<span>(^{-3})</span>. The average density of the undecelerated H atom beam is approximately an order of magnitude higher (2.9 ± 1.9) <span>(times )</span> 10<span>(^5)</span> cm<span>(^{-3})</span>, with the average density of the molecular ammonia beam over two orders of magnitude higher again (5.1 ± 2.9) <span>(times )</span> 10<span>(^7)</span> cm<span>(^{-3})</span>. The average number densities measured for the two different species of interest in this work span more than three orders of magnitude. These findings highlight the need for accurate and precise experimental measurements of number densities—for each species of interest, under the appropriate experimental conditions—before doing absolute rate coefficient calculations.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00899-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-18DOI: 10.1140/epjd/s10053-024-00896-6
Qing-hong Liao, Chen-ting Deng, Hai-yan Qiu
We theoretically explore the absorption spectra and Kerr effect of a phonon-spin-magnon hybrid system, in which the nitrogen-vacancy (NV) center is coupled with a yttrium iron garnet (YIG) crystal and a mechanical resonator simultaneously. The results indicate that vacuum Rabi splitting can occur in the absorption spectrum by modulating the coupling strength between the YIG sphere and the NV center. We show the vacuum Rabi splitting and the transparency based on mechanically induced coherent population oscillation (MICPO) to be adjusted by the decay rate of the YIG sphere and the mechanical resonator, respectively. Moreover, it is indicated the absorption spectra can be flexibly tuned by changing the frequency tuning of the spin-pump field. Furthermore, the nonlinear Kerr effect is controllable via varying the Rabi frequency. The study could provide a way for general applications in quantum computing devices and quantum information processing.
{"title":"Probe absorption characteristics and Kerr effect of a hybrid phonon-spin-magnon system","authors":"Qing-hong Liao, Chen-ting Deng, Hai-yan Qiu","doi":"10.1140/epjd/s10053-024-00896-6","DOIUrl":"10.1140/epjd/s10053-024-00896-6","url":null,"abstract":"<div><p>We theoretically explore the absorption spectra and Kerr effect of a phonon-spin-magnon hybrid system, in which the nitrogen-vacancy (NV) center is coupled with a yttrium iron garnet (YIG) crystal and a mechanical resonator simultaneously. The results indicate that vacuum Rabi splitting can occur in the absorption spectrum by modulating the coupling strength between the YIG sphere and the NV center. We show the vacuum Rabi splitting and the transparency based on mechanically induced coherent population oscillation (MICPO) to be adjusted by the decay rate of the YIG sphere and the mechanical resonator, respectively. Moreover, it is indicated the absorption spectra can be flexibly tuned by changing the frequency tuning of the spin-pump field. Furthermore, the nonlinear Kerr effect is controllable via varying the Rabi frequency. The study could provide a way for general applications in quantum computing devices and quantum information processing.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1140/epjd/s10053-024-00900-z
A. T. Bondy, J. C. del Valle, S. Saha, K. R. Hamilton, D. Bharti, A. Harth, K. Bartschat
Following up on a recent paper (Bharti et al. in Phys Rev A 109:023110, 2024), we compare the predictions from several R-matrix with time-dependence calculations for a modified three-sideband version of the “reconstruction of attosecond beating by interference of two-photon transitions” (RABBITT) configuration applied to helium. Except for the special case of the threshold sideband, which appears to be very sensitive to the details of coupling to the bound Rydberg states, increasing the number of coupled states in the close-coupling expansion used to describe the ejected-electron–residual-ion interaction hardly changes the results. Consequently, the remaining discrepancies between the experimental data and the theoretical predictions are likely due to uncertainties in the experimental parameters, particularly the detailed knowledge of the laser pulse.
摘要继最近的一篇论文(Bharti 等人,Phys Rev A 109:023110, 2024)之后,我们比较了几种 R 矩阵的预测结果,以及应用于氦的 "双光子跃迁干涉重建阿秒跳动"(RABBITT)配置的修正三边带版本的时间相关性计算结果。除了阈值边带的特殊情况外(阈值边带似乎对与束缚雷德贝格态耦合的细节非常敏感),在用于描述射出电子-残余离子相互作用的紧密耦合扩展中,增加耦合态的数量几乎不会改变结果。因此,实验数据与理论预测之间的其余差异很可能是由于实验参数的不确定性造成的,特别是对激光脉冲的详细了解。
{"title":"R-matrix with time-dependence calculations for three-sideband RABBITT in helium","authors":"A. T. Bondy, J. C. del Valle, S. Saha, K. R. Hamilton, D. Bharti, A. Harth, K. Bartschat","doi":"10.1140/epjd/s10053-024-00900-z","DOIUrl":"10.1140/epjd/s10053-024-00900-z","url":null,"abstract":"<p>Following up on a recent paper (Bharti et al. in Phys Rev A 109:023110, 2024), we compare the predictions from several <i>R</i>-matrix with time-dependence calculations for a modified three-sideband version of the “reconstruction of attosecond beating by interference of two-photon transitions” (RABBITT) configuration applied to helium. Except for the special case of the threshold sideband, which appears to be very sensitive to the details of coupling to the bound Rydberg states, increasing the number of coupled states in the close-coupling expansion used to describe the ejected-electron–residual-ion interaction hardly changes the results. Consequently, the remaining discrepancies between the experimental data and the theoretical predictions are likely due to uncertainties in the experimental parameters, particularly the detailed knowledge of the laser pulse.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1140/epjd/s10053-024-00897-5
Jérôme Deprince, Helena Carvajal Gallego, Sirine Ben Nasr, Lucas Maison, Jean-Christophe Pain, Patrick Palmeri, Pascal Quinet
This study is an overview of the atomic data and opacity computations performed by the Atomic Physics and Astrophysics Unit of Mons University in the context of kilonova emission following neutron star mergers, in both the photospheric and nebular phases. In this work, as a sample case, we focus on a specific lanthanide ion, namely Er III. As far as the LTE photospheric phase of the kilonova ejecta is concerned, we present our calculations using both a theoretical method (the pseudo-relativistic Hartree-Fock method, HFR) and a statistical approach (the Resolved Transition Array approach, RTA) to obtain the atomic data required to estimate the Er III expansion opacity for typical conditions expected in kilonova ejecta one day after the merger. In order to draw the limitations of both of our strategies, the results obtained using the latter are compared, and a calibration procedure of the HFR atomic data in this context is also discussed. Concerning the kilonova ejecta nebular phase, atomic parameters that characterize forbidden lines in Er III are calculated using HFR as well as another computational approach, namely the Multiconfiguration Dirac–Hartree–Fock (MCDHF) method. The potential detection of such lines in late-phase kilonova spectra is then discussed.
摘要 本研究综述了蒙斯大学原子物理学和天体物理学研究组在中子星合并后的千新星发射背景下,在光球和星云阶段所进行的原子数据和不透明度计算。在这项研究中,我们以一种特定的镧系离子(即 Er III)为样本。就千新星喷出物的LTE光球阶段而言,我们使用理论方法(伪相对论哈特里-福克方法,HFR)和统计方法(分辨转换阵列方法,RTA)进行了计算,以获得所需的原子数据,从而估算出合并后一天的千新星喷出物在典型条件下的Er III膨胀不透明度。为了说明我们这两种方法的局限性,对使用后者得到的结果进行了比较,并讨论了在这种情况下对高频原子数据的校准程序。关于千新星喷出星云阶段,使用氢FR和另一种计算方法,即多配置狄拉克-哈特里-福克(MCDHF)方法,计算了表征 Er III 中禁止线的原子参数。然后讨论了在晚期千新星光谱中探测到这些线的可能性。
{"title":"Radiative and opacity data obtained from large-scale atomic structure calculations and from statistical simulations for the spectral analysis of kilonovae in their photospheric and nebular phases: the sample case of Er III","authors":"Jérôme Deprince, Helena Carvajal Gallego, Sirine Ben Nasr, Lucas Maison, Jean-Christophe Pain, Patrick Palmeri, Pascal Quinet","doi":"10.1140/epjd/s10053-024-00897-5","DOIUrl":"10.1140/epjd/s10053-024-00897-5","url":null,"abstract":"<p>This study is an overview of the atomic data and opacity computations performed by the Atomic Physics and Astrophysics Unit of Mons University in the context of kilonova emission following neutron star mergers, in both the photospheric and nebular phases. In this work, as a sample case, we focus on a specific lanthanide ion, namely Er III. As far as the LTE photospheric phase of the kilonova ejecta is concerned, we present our calculations using both a theoretical method (the pseudo-relativistic Hartree-Fock method, <span>HFR</span>) and a statistical approach (the Resolved Transition Array approach, RTA) to obtain the atomic data required to estimate the Er III expansion opacity for typical conditions expected in kilonova ejecta one day after the merger. In order to draw the limitations of both of our strategies, the results obtained using the latter are compared, and a calibration procedure of the <span>HFR</span> atomic data in this context is also discussed. Concerning the kilonova ejecta nebular phase, atomic parameters that characterize forbidden lines in Er III are calculated using <span>HFR</span> as well as another computational approach, namely the Multiconfiguration Dirac–Hartree–Fock (<span>MCDHF</span>) method. The potential detection of such lines in late-phase kilonova spectra is then discussed.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}