Pub Date : 2025-01-09DOI: 10.1140/epje/s10189-024-00459-y
Johnathan Hoggarth, Kari Dalnoki-Veress
We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet. The droplets are held together via depletion interactions, and a single cohesive bond holds together nearest neighbours. Initially, the buoyant droplets are held in a flat horizontal chamber. The droplets float to the top of the chamber and are in contact with a flat glass interface. In the horizontal configuration, there is no component of the effective buoyant force acting in the plane of the chamber. The angle of the chamber is gradually increased, and the effective buoyant force acting on the string of droplets slowly increases. At a critical point, when the combination of gravity and buoyancy is equal to the cohesive force, the droplet string will detach from the immobile droplet. Our method allows for a simple direct measurement of cohesive forces on the tens of pico-Newton scale. To illustrate the validity of this technique, the droplet radii and concentration of depletant are varied, and their impact on the cohesive force is measured. This method offers a simple, accessible, and reproducible means of exploring cohesive interactions beyond the specific case of oil droplets and a depletion interaction.
(Top) Side and top-down view schematic of the experimental chamber. (Bottom) Stable and unstable dangling chain of droplets. The chain detaches from the stationary droplet once the effective buoyant force is greater than the cohesive force
{"title":"Simple method for the direct measurement of cohesive forces between microscopic particles","authors":"Johnathan Hoggarth, Kari Dalnoki-Veress","doi":"10.1140/epje/s10189-024-00459-y","DOIUrl":"10.1140/epje/s10189-024-00459-y","url":null,"abstract":"<p>We present a simple and inexpensive method for measuring weak cohesive interactions. This technique is applied to the specific case of oil droplets with a depletion interaction, dispersed in an aqueous solution. The experimental setup involves creating a short string of droplets while immobilizing a single droplet. The droplets are held together via depletion interactions, and a single cohesive bond holds together nearest neighbours. Initially, the buoyant droplets are held in a flat horizontal chamber. The droplets float to the top of the chamber and are in contact with a flat glass interface. In the horizontal configuration, there is no component of the effective buoyant force acting in the plane of the chamber. The angle of the chamber is gradually increased, and the effective buoyant force acting on the string of droplets slowly increases. At a critical point, when the combination of gravity and buoyancy is equal to the cohesive force, the droplet string will detach from the immobile droplet. Our method allows for a simple direct measurement of cohesive forces on the tens of pico-Newton scale. To illustrate the validity of this technique, the droplet radii and concentration of depletant are varied, and their impact on the cohesive force is measured. This method offers a simple, accessible, and reproducible means of exploring cohesive interactions beyond the specific case of oil droplets and a depletion interaction.</p><p>(Top) Side and top-down view schematic of the experimental chamber. (Bottom) Stable and unstable dangling chain of droplets. The chain detaches from the stationary droplet once the effective buoyant force is greater than the cohesive force</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1140/epje/s10189-024-00468-x
Martin Roman-Faure, Hélène Montes, François Lequeux, Antoine Chateauminois
The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between (T_g -10K) and (T_g), where (T_g) is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as (e^{-(Sigma /Y)}) temperature with (n=2 pm 0.2), where (Sigma ) is the macroscopic stress and Y is a decreasing function of compliance. Because at the beginning of creep, the stress is homogeneous, the macroscopic acceleration is thus similar to the local one, in agreement with the recent theory of Long et al. (Phys Rev Mat 2:105601, 2018) which predicts (n=2). For larger compliances, the decrease of Y is interpreted as a signature of the development of stress disorder during creep.
Left: The acceleration of creep kinetics in a weakly non-linear regime in the vicinity of the glass transition is described through an acceleration function F which depends on both the applied stress and the compliance J(t) as a result of the stress induced shift of the relaxation time of nanometric domains (from top to bottom: increasing applied creep stresses). Right : Description of an amorphous polymer glass as a disordered medium made up of nanometric domains with widely distributed relaxation times.
{"title":"Weak non-linearities of amorphous polymer under creep in the vicinity of the glass transition","authors":"Martin Roman-Faure, Hélène Montes, François Lequeux, Antoine Chateauminois","doi":"10.1140/epje/s10189-024-00468-x","DOIUrl":"10.1140/epje/s10189-024-00468-x","url":null,"abstract":"<p>The creep behavior of an amorphous poly(etherimide) polymer is investigated in the vicinity of its glass transition in a weakly non linear regime where the acceleration of the creep response is driven by local configurational rearrangements. From the time shifts of the creep compliance curves under stresses from 1 to 15 MPa and in the temperature range between <span>(T_g -10K)</span> and <span>(T_g)</span>, where <span>(T_g)</span> is the glass transition temperature, we determine a macroscopic acceleration factor. The macroscopic acceleration is shown to vary as <span>(e^{-(Sigma /Y)})</span> temperature with <span>(n=2 pm 0.2)</span>, where <span>(Sigma )</span> is the macroscopic stress and <i>Y</i> is a decreasing function of compliance. Because at the beginning of creep, the stress is homogeneous, the macroscopic acceleration is thus similar to the local one, in agreement with the recent theory of Long et al. (Phys Rev Mat 2:105601, 2018) which predicts <span>(n=2)</span>. For larger compliances, the decrease of <i>Y</i> is interpreted as a signature of the development of stress disorder during creep.</p><p>Left: The acceleration of creep kinetics in a weakly non-linear regime in the vicinity of the glass transition is described through an acceleration function F which depends on both the applied stress and the compliance J(t) as a result of the stress induced shift of the relaxation time of nanometric domains (from top to bottom: increasing applied creep stresses). Right : Description of an amorphous polymer glass as a disordered medium made up of nanometric domains with widely distributed relaxation times.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1140/epje/s10189-024-00467-y
K. Trachenko, P. G. Tello, S. A. Kauffman, S. Succi
Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.
{"title":"Extrinsic and intrinsic effects setting viscosity in complex fluids and life processes: the role of fundamental physical constants","authors":"K. Trachenko, P. G. Tello, S. A. Kauffman, S. Succi","doi":"10.1140/epje/s10189-024-00467-y","DOIUrl":"10.1140/epje/s10189-024-00467-y","url":null,"abstract":"<p>Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for this in terms of dynamics of contact points between cells.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00467-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1140/epje/s10189-024-00465-0
Tobias Plasczyk, Paul A. Monderkamp, Hartmut Löwen, René Wittmann
Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm, such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion, we calculate the mean-squared displacement and discuss its dependence on the density and persistence time of the bath ABPs by means of an analytic model.
Illustration of an intelligent hitchhiking particle (IHP) in a bath of active Brownian particles (ABPs). The IHP fulfills a navigational task by holding on to an ABP only if its orientation points upwards, enabling persistent motion.
{"title":"A hitchhiker’s guide to active motion","authors":"Tobias Plasczyk, Paul A. Monderkamp, Hartmut Löwen, René Wittmann","doi":"10.1140/epje/s10189-024-00465-0","DOIUrl":"10.1140/epje/s10189-024-00465-0","url":null,"abstract":"<p>Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of <i>hitchhiking</i> in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles. Using a reinforcement learning algorithm, such an agent, which we refer to as intelligent hitchhiking particle (IHP), is enabled to persistently navigate in the desired direction. This relatively simple IHP can also anticipate and react to characteristic motion patterns of their hosts, which we exemplify for a bath of chiral ABPs (cABPs). To demonstrate that the persistent motion of the IHP will outperform that of the bath particles in view of long-time ballistic motion, we calculate the mean-squared displacement and discuss its dependence on the density and persistence time of the bath ABPs by means of an analytic model.</p><p>Illustration of an intelligent hitchhiking particle (IHP) in a bath of active Brownian particles (ABPs). The IHP fulfills a navigational task by holding on to an ABP only if its orientation points upwards, enabling persistent motion.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-024-00465-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1140/epje/s10189-024-00462-3
Wenhuan Ai, Guoao Li, Jianhua Zhang, Xiaoshuang Zhu, Dawei Liu
With the increase in the number of urban vehicles, various traffic problems have gradually emerged. Studying the causes of traffic congestion and proposing effective mitigation strategies have important practical significance. This paper proposes a macroscopic traffic flow model that considers the delayed speed difference. This paper applies nonlinear bifurcation to describe and predict nonlinear traffic phenomena on highways from the perspective of global stability of the traffic system. By using the traveling wave transformation, the proposed car-following model is converted into a macroscopic traffic flow model. Next, this paper employs the linear stability analysis to find the bifurcation points of the stability transition in the traffic system, exploring the qualitative characteristics of the inhomogeneous continuous traffic flow model. Theoretical derivations demonstrate the existence of bifurcation points within the model. Additionally, this paper plots the density-time space diagrams and phase plane diagrams of the system to visually present the sudden changes in traffic flow as variable parameters pass through these bifurcation points. Finally, this paper designs a feedback controller to regulate the Hopf bifurcation, aiming to delay or eliminate the occurrence of Hopf bifurcations in the stochastic system.
{"title":"Bifurcation analysis and control of the full velocity difference model with delayed velocity difference","authors":"Wenhuan Ai, Guoao Li, Jianhua Zhang, Xiaoshuang Zhu, Dawei Liu","doi":"10.1140/epje/s10189-024-00462-3","DOIUrl":"10.1140/epje/s10189-024-00462-3","url":null,"abstract":"<div><p>With the increase in the number of urban vehicles, various traffic problems have gradually emerged. Studying the causes of traffic congestion and proposing effective mitigation strategies have important practical significance. This paper proposes a macroscopic traffic flow model that considers the delayed speed difference. This paper applies nonlinear bifurcation to describe and predict nonlinear traffic phenomena on highways from the perspective of global stability of the traffic system. By using the traveling wave transformation, the proposed car-following model is converted into a macroscopic traffic flow model. Next, this paper employs the linear stability analysis to find the bifurcation points of the stability transition in the traffic system, exploring the qualitative characteristics of the inhomogeneous continuous traffic flow model. Theoretical derivations demonstrate the existence of bifurcation points within the model. Additionally, this paper plots the density-time space diagrams and phase plane diagrams of the system to visually present the sudden changes in traffic flow as variable parameters pass through these bifurcation points. Finally, this paper designs a feedback controller to regulate the Hopf bifurcation, aiming to delay or eliminate the occurrence of Hopf bifurcations in the stochastic system.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 11","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although immiscible displacement in porous media has been extensively studied, a more comprehensive analysis of the underlying dynamic behaviors is still necessary. In this work, we conducted experimental and theoretical analyses on the dynamic interplay among channels during immiscible displacement under varying flow rates. In a rock-structured microfluidic chip, we observed typical displacement patterns, including viscous fingering and capillary fingering, and analyzed their frontiers and efficiencies. Interestingly, we discovered a novel 'V'-shaped recovery rate pattern, which differs from the monotonic curve considered in previous research. The recovery rate reaches its lowest point at an injection rate of 1 μL/min (42%), increasing to 55 and 65% at rates of 16 and 0.1 μL/min, respectively. This increase may attribute to all-directional displacement at lower rates and multi-fingering displacement at higher rates, contrasting with primary fingering displacement observed at intermediate rates. Furthermore, we developed a dual-tube model to investigate the dynamic mechanisms between adjacent channels during the displacement process. At high injection rates, an increase in low-viscosity fluid rapidly reduces overall average viscosity of the channels, accelerating displacement while hindering the displacement process in neighboring channels. Conversely, at low injection rates, increased capillary forces at pore-throat junctions delay breakthrough in one channel, promoting simultaneous displacement in parallel channels and ensuring stability. These findings significantly enhance our understanding of the interplay between viscous and capillary forces in porous media during displacement processes.