Pub Date : 2024-09-13DOI: 10.1146/annurev-conmatphys-041124-120513
César O. Solano-Cabrera, Pavel Castro-Villarreal, Rosario E. Moctezuma, Fernando Donado, Jacinta C. Conrad, Ramón Castañeda-Priego
Colloidal dispersions exhibit rich equilibrium and nonequilibrium thermodynamic properties, self-assemble into diverse structures at different length scales, and display transport behavior under bulk conditions. In confinement or under geometrical restrictions, new phenomena emerge that have no counterpart when the colloids are embedded in an open, noncurved space. In this review, we focus on the effects of confinement and geometry on the self-assembly and transport of colloids and fluidized granular systems, which serve as model systems. Our goal is to summarize experiments, theoretical approximations and molecular simulations that provide physical insight on the role played by the geometry at the mesoscopic scale. We highlight particular challenges, and show preliminary results based on the covariant Smoluchowski equation, that present promising avenues to study colloidal dynamics in a non-Euclidean geometry.
{"title":"Self-Assembly and Transport Phenomena of Colloids: Confinement and Geometrical Effects","authors":"César O. Solano-Cabrera, Pavel Castro-Villarreal, Rosario E. Moctezuma, Fernando Donado, Jacinta C. Conrad, Ramón Castañeda-Priego","doi":"10.1146/annurev-conmatphys-041124-120513","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-041124-120513","url":null,"abstract":"Colloidal dispersions exhibit rich equilibrium and nonequilibrium thermodynamic properties, self-assemble into diverse structures at different length scales, and display transport behavior under bulk conditions. In confinement or under geometrical restrictions, new phenomena emerge that have no counterpart when the colloids are embedded in an open, noncurved space. In this review, we focus on the effects of confinement and geometry on the self-assembly and transport of colloids and fluidized granular systems, which serve as model systems. Our goal is to summarize experiments, theoretical approximations and molecular simulations that provide physical insight on the role played by the geometry at the mesoscopic scale. We highlight particular challenges, and show preliminary results based on the covariant Smoluchowski equation, that present promising avenues to study colloidal dynamics in a non-Euclidean geometry.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"80 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1146/annurev-conmatphys-040821-120442
Calvin A. Riiska, Chantal Nguyen, Orit Peleg, Jennifer M. Rieser
Understanding the physics of behavior in animals is a challenging and fascinating area of research that has gained increasing attention in recent years. In this review, we delve into the intricate temporal and spatial scales of animal behavior for both individuals and collectives. We explore the experimental and theoretical approaches used to study behavior, highlighting the importance of feedback loops, emergent behavior, and environmental factors in shaping the actions of creatures great and small. The emergence of novel technologies, such as high-speed imaging and tracking, has provided unparalleled insight into the captivating nuances of animal behavior, and we review how these insights have been used to validate physics-based models of animal behavior. We also consider the potential applications of this research in robotics and artificial intelligence, identify new areas for exploration, and envision the possibility of further breakthroughs that will illuminate the complex dynamics of animal behavior.
{"title":"The Physics of Animal Behavior: Form, Function, and Interactions","authors":"Calvin A. Riiska, Chantal Nguyen, Orit Peleg, Jennifer M. Rieser","doi":"10.1146/annurev-conmatphys-040821-120442","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-040821-120442","url":null,"abstract":"Understanding the physics of behavior in animals is a challenging and fascinating area of research that has gained increasing attention in recent years. In this review, we delve into the intricate temporal and spatial scales of animal behavior for both individuals and collectives. We explore the experimental and theoretical approaches used to study behavior, highlighting the importance of feedback loops, emergent behavior, and environmental factors in shaping the actions of creatures great and small. The emergence of novel technologies, such as high-speed imaging and tracking, has provided unparalleled insight into the captivating nuances of animal behavior, and we review how these insights have been used to validate physics-based models of animal behavior. We also consider the potential applications of this research in robotics and artificial intelligence, identify new areas for exploration, and envision the possibility of further breakthroughs that will illuminate the complex dynamics of animal behavior.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"24 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1146/annurev-conmatphys-032922-115341
C.A.R. Sá de Melo, Senne Van Loon
We review aspects of the evolution from Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) in two dimensions, which have now become relevant in systems with low densities, such as gated superconductors Li xZrNCl, magic-angle twisted trilayer graphene, FeSe, FeSe1− xS x, and ultracold Fermi superfluids. We emphasize the important role played by chemical potentials in determining crossovers or topological quantum phase transitions during the BCS–BEC evolution in one-band and two-band superfluids and superconductors. We highlight that crossovers from BCS to BEC occur for pairing in nonnodal s-wave channels, whereas topological quantum phase transitions, in which the order parameter symmetry does not change, arise for pairing in any nodal higher angular momentum channels, such as d-wave. We conclude by discussing a few open questions regarding the BCS-to-BEC evolution in 2D, including modulus fluctuations of the order parameter, tighter upper bounds on critical temperatures, and the exploration of lattice effects in two-band superconductors and superfluids.
我们回顾了二维巴丁-库珀-施里弗(BCS)向玻色-爱因斯坦凝聚(BEC)演化的各个方面,这些方面现在已经与低密度系统相关,例如门控超导体 Li xZrNCl、魔角扭曲三层石墨烯、FeSe、FeSe1- xS x 和超冷费米超流体。我们强调化学势在决定单带和双带超流体和超导体的 BCS-BEC 演化过程中的交叉或拓扑量子相变方面所起的重要作用。我们强调,从 BCS 到 BEC 的交叉发生在非结点 s 波通道的配对中,而拓扑量子相变(其中阶参量对称性没有改变)发生在任何结点高角动量通道(如 d 波)的配对中。最后,我们讨论了有关二维 BCS 到 BEC 演化的几个开放性问题,包括阶参数的模量波动、临界温度的更严格上限,以及对双带超导体和超流体中晶格效应的探索。
{"title":"Evolution from Bardeen–Cooper–Schrieffer to Bose–Einstein Condensation in Two Dimensions: Crossovers and Topological Quantum Phase Transitions","authors":"C.A.R. Sá de Melo, Senne Van Loon","doi":"10.1146/annurev-conmatphys-032922-115341","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-032922-115341","url":null,"abstract":"We review aspects of the evolution from Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) in two dimensions, which have now become relevant in systems with low densities, such as gated superconductors Li<jats:sub> x</jats:sub>ZrNCl, magic-angle twisted trilayer graphene, FeSe, FeSe<jats:sub>1− x</jats:sub>S<jats:sub> x</jats:sub>, and ultracold Fermi superfluids. We emphasize the important role played by chemical potentials in determining crossovers or topological quantum phase transitions during the BCS–BEC evolution in one-band and two-band superfluids and superconductors. We highlight that crossovers from BCS to BEC occur for pairing in nonnodal s-wave channels, whereas topological quantum phase transitions, in which the order parameter symmetry does not change, arise for pairing in any nodal higher angular momentum channels, such as d-wave. We conclude by discussing a few open questions regarding the BCS-to-BEC evolution in 2D, including modulus fluctuations of the order parameter, tighter upper bounds on critical temperatures, and the exploration of lattice effects in two-band superconductors and superfluids.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"38 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1146/annurev-conmatphys-040423-014045
Martin Greiter, Frank Wilczek
The quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter θ. θ = 0, π correspond to bosons and fermions, respectively; at intermediate values, we say that we have fractional statistics. In two dimensions, θ describes the phase acquired by the wave function as two anyons wind around one another counterclockwise. It generates a shift in the allowed values for the relative angular momentum. Composites of localized electric charge and magnetic flux associated with an abelian U(1) gauge group realize this behavior. More complex charge-flux constructions can involve nonabelian and product groups acting on a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual statistics. Interchanges of nonabelian anyons implement unitary transformations of the wave function within an emergent space of internal states. Anyons of all kinds are described by quantum field theories that include Chern–Simons terms. The crossings of one-dimensional anyons on a ring are unidirectional, such that a fractional phase θ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons. The quasiparticle excitations of fractional quantum Hall states have long been predicted to include anyons. Recently, the anyon behavior predicted for quasiparticles in the ν = 1/3 fractional quantum Hall state has been observed in both scattering and interferometric experiments. Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior. Such systems are being developed for possible use in quantum information processing.
{"title":"Fractional Statistics","authors":"Martin Greiter, Frank Wilczek","doi":"10.1146/annurev-conmatphys-040423-014045","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-040423-014045","url":null,"abstract":"The quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter θ. θ = 0, π correspond to bosons and fermions, respectively; at intermediate values, we say that we have fractional statistics. In two dimensions, θ describes the phase acquired by the wave function as two anyons wind around one another counterclockwise. It generates a shift in the allowed values for the relative angular momentum. Composites of localized electric charge and magnetic flux associated with an abelian U(1) gauge group realize this behavior. More complex charge-flux constructions can involve nonabelian and product groups acting on a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual statistics. Interchanges of nonabelian anyons implement unitary transformations of the wave function within an emergent space of internal states. Anyons of all kinds are described by quantum field theories that include Chern–Simons terms. The crossings of one-dimensional anyons on a ring are unidirectional, such that a fractional phase θ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons. The quasiparticle excitations of fractional quantum Hall states have long been predicted to include anyons. Recently, the anyon behavior predicted for quasiparticles in the ν = 1/3 fractional quantum Hall state has been observed in both scattering and interferometric experiments. Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior. Such systems are being developed for possible use in quantum information processing.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"44 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1146/annurev-conmatphys-040521-042014
L. Fritz, T. Scaffidi
The “flow” of electric currents and heat in standard metals is diffusive with electronic motion randomized by impurities. However, for ultraclean metals, electrons can flow like water with their flow being described by the equations of hydrodynamics. While theoretically postulated, this situation was highly elusive for decades. In the past decade, several experimental groups have found strong indications for this type of flow, especially in graphene-based devices. In this review, we give an overview of some of the recent key developments, on both the theoretical and experimental sides.
{"title":"Hydrodynamic Electronic Transport","authors":"L. Fritz, T. Scaffidi","doi":"10.1146/annurev-conmatphys-040521-042014","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-040521-042014","url":null,"abstract":"The “flow” of electric currents and heat in standard metals is diffusive with electronic motion randomized by impurities. However, for ultraclean metals, electrons can flow like water with their flow being described by the equations of hydrodynamics. While theoretically postulated, this situation was highly elusive for decades. In the past decade, several experimental groups have found strong indications for this type of flow, especially in graphene-based devices. In this review, we give an overview of some of the recent key developments, on both the theoretical and experimental sides.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"6 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1146/annurev-conmatphys-031720-032917
Frank Jülicher, Christoph A. Weber
Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Droplet Physics and Intracellular Phase Separation","authors":"Frank Jülicher, Christoph A. Weber","doi":"10.1146/annurev-conmatphys-031720-032917","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-031720-032917","url":null,"abstract":"Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"29 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1146/annurev-conmatphys-040821-115312
Mathieu Le Verge-Serandour, Karen Alim
Life evolved organisms to adapt dynamically to their environment and autonomously exhibit behaviors. Although complex behaviors in organisms are typically associated with the capability of neurons to process information, the unicellular organism Physarum polycephalum disabuses us by solving complex tasks despite being just a single although gigantic cell shaped into a mesmerizing tubular network. In Physarum, smart behaviors arise as network tubes grow or shrink due to the mechanochemical coupling of contractile tubes, fluid flows, and transport across the network. Here, from a physicist's perspective, we introduce the biology and active chemomechanics of this living matter network. We review Physarum’s global response in migration and dynamic state to its environment before revisiting its network architecture and flow and transport patterns. Finally, we summarize recent studies on storing and processing information to mount well-informed behaviors.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Physarum polycephalum: Smart Network Adaptation","authors":"Mathieu Le Verge-Serandour, Karen Alim","doi":"10.1146/annurev-conmatphys-040821-115312","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-040821-115312","url":null,"abstract":"Life evolved organisms to adapt dynamically to their environment and autonomously exhibit behaviors. Although complex behaviors in organisms are typically associated with the capability of neurons to process information, the unicellular organism Physarum polycephalum disabuses us by solving complex tasks despite being just a single although gigantic cell shaped into a mesmerizing tubular network. In Physarum, smart behaviors arise as network tubes grow or shrink due to the mechanochemical coupling of contractile tubes, fluid flows, and transport across the network. Here, from a physicist's perspective, we introduce the biology and active chemomechanics of this living matter network. We review Physarum’s global response in migration and dynamic state to its environment before revisiting its network architecture and flow and transport patterns. Finally, we summarize recent studies on storing and processing information to mount well-informed behaviors.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"27 1","pages":""},"PeriodicalIF":22.6,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138550635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1146/annurev-conmatphys-032822-041643
David Quéré
At the scale of drops, water either sticks to inclined solids or moves, yet slowly—without the mobility we expect of a liquid of low viscosity. We first recall that the contact line that bounds a drop is responsible for these special adhesion and enhanced friction properties. Then, we discuss how inducing nonwetting states (pearls and marbles) minimizes the role of this line, restores mobility, and even boosts the liquid when it is viscous.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"The Mobility of Drops, Pearls, and Marbles","authors":"David Quéré","doi":"10.1146/annurev-conmatphys-032822-041643","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-032822-041643","url":null,"abstract":"At the scale of drops, water either sticks to inclined solids or moves, yet slowly—without the mobility we expect of a liquid of low viscosity. We first recall that the contact line that bounds a drop is responsible for these special adhesion and enhanced friction properties. Then, we discuss how inducing nonwetting states (pearls and marbles) minimizes the role of this line, restores mobility, and even boosts the liquid when it is viscous.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" 0","pages":""},"PeriodicalIF":22.6,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138491591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1146/annurev-conmatphys-032922-093307
Bai Yang Wang, Kyuho Lee, Berit H. Goodge
The superconducting nickelates were first proposed as potential analogs to the cuprate unconventional superconductors in 1999, but it took twenty years before superconductivity was successfully stabilized in epitaxial thin films. Since then, a flurry of both experimental and theoretical efforts have sought to understand the similarities and differences between the two systems and how they manifest in the macroscopic superconducting and normal-state properties. Although the nickelates and cuprates indeed share many commonalities within their respective phase diagrams, several notable differences have also emerged, especially regarding their parent compounds, electronic hybridization, and fermiology. Here, we provide a survey of the rapidly developing landscape of layered nickelate superconductors, including recent experimental progress to probe not just the superconducting but also normal state and other ordered phases stabilized in these compounds.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Experimental Progress in Superconducting Nickelates","authors":"Bai Yang Wang, Kyuho Lee, Berit H. Goodge","doi":"10.1146/annurev-conmatphys-032922-093307","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-032922-093307","url":null,"abstract":"The superconducting nickelates were first proposed as potential analogs to the cuprate unconventional superconductors in 1999, but it took twenty years before superconductivity was successfully stabilized in epitaxial thin films. Since then, a flurry of both experimental and theoretical efforts have sought to understand the similarities and differences between the two systems and how they manifest in the macroscopic superconducting and normal-state properties. Although the nickelates and cuprates indeed share many commonalities within their respective phase diagrams, several notable differences have also emerged, especially regarding their parent compounds, electronic hybridization, and fermiology. Here, we provide a survey of the rapidly developing landscape of layered nickelate superconductors, including recent experimental progress to probe not just the superconducting but also normal state and other ordered phases stabilized in these compounds.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" 27","pages":""},"PeriodicalIF":22.6,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138492018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1146/annurev-conmatphys-032922-110710
Sarang Gopalakrishnan, Romain Vasseur
The Heisenberg spin chain is a canonical integrable model. As such, it features stable ballistically propagating quasiparticles, but spin transport is subballistic at any nonzero temperature: An initially localized spin fluctuation spreads in time t to a width t2/3. This exponent as well as the functional form of the dynamical spin correlation function suggest that spin transport is in the Kardar–Parisi–Zhang (KPZ) universality class. However, the full counting statistics of magnetization is manifestly incompatible with KPZ scaling. A simple two-mode hydrodynamic description, derivable from microscopic principles, captures both the KPZ scaling of the correlation function and the coarse features of the full counting statistics, but remains to be numerically validated. These results generalize to any integrable spin chain invariant under a continuous nonabelian symmetry and are surprisingly robust against moderately strong integrability-breaking perturbations that respect the nonabelian symmetry.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
海森堡自旋链是一个正则可积模型。因此,它具有稳定的弹道传播准粒子,但自旋输运在任何非零温度下都是亚弹道的:最初的局部自旋涨落在时间t上传播到宽度t2/3。该指数以及动态自旋相关函数的函数形式表明,自旋输运属于kardar - paris - zhang (KPZ)普适类。然而,磁化的全计数统计与KPZ标度明显不相容。一个简单的双模流体力学描述,可以从微观原理推导出来,同时捕获相关函数的KPZ缩放和全计数统计的粗糙特征,但仍有待数值验证。这些结果推广到任何连续非阿贝尔对称下的可积自旋链不变量,并且对于尊重非阿贝尔对称的中等强可积破缺微扰具有惊人的鲁棒性。预计《凝聚态物理年度评论》第15卷的最终在线出版日期为2024年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Superdiffusion from Nonabelian Symmetries in Nearly Integrable Systems","authors":"Sarang Gopalakrishnan, Romain Vasseur","doi":"10.1146/annurev-conmatphys-032922-110710","DOIUrl":"https://doi.org/10.1146/annurev-conmatphys-032922-110710","url":null,"abstract":"The Heisenberg spin chain is a canonical integrable model. As such, it features stable ballistically propagating quasiparticles, but spin transport is subballistic at any nonzero temperature: An initially localized spin fluctuation spreads in time t to a width t<jats:sup>2/3</jats:sup>. This exponent as well as the functional form of the dynamical spin correlation function suggest that spin transport is in the Kardar–Parisi–Zhang (KPZ) universality class. However, the full counting statistics of magnetization is manifestly incompatible with KPZ scaling. A simple two-mode hydrodynamic description, derivable from microscopic principles, captures both the KPZ scaling of the correlation function and the coarse features of the full counting statistics, but remains to be numerically validated. These results generalize to any integrable spin chain invariant under a continuous nonabelian symmetry and are surprisingly robust against moderately strong integrability-breaking perturbations that respect the nonabelian symmetry.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"26 8","pages":""},"PeriodicalIF":22.6,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}