首页 > 最新文献

Annual review of cell and developmental biology最新文献

英文 中文
Tissue Biology: In Search of a New Paradigm. 组织生物学:寻找新的范式。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 Epub Date: 2023-08-22 DOI: 10.1146/annurev-cellbio-120420-113830
Miri Adler, Arun R Chavan, Ruslan Medzhitov

Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.

动物组织由多种细胞类型组成,这些细胞类型的特征越来越明显,但我们对控制组织组织的核心原理的理解仍然不完整。这在一定程度上是因为许多可观察到的组织特征,如细胞组成和空间模式,都是涌现的特性,因此,它们不能仅通过单个细胞的知识来解释。在这里,我们提出了一个复杂系统理论的视角来解决我们对组织生物学理解中的这一根本差距。我们引入了细胞类别的概念,它基于细胞关系而不是细胞身份。基于这些概念,我们讨论了组织模块化的共同原则,介绍了组成、结构和功能组织模块。细胞多样性和细胞关系为研究健康和疾病中组织组织组织的基本原理提供了新的视角。
{"title":"Tissue Biology: In Search of a New Paradigm.","authors":"Miri Adler, Arun R Chavan, Ruslan Medzhitov","doi":"10.1146/annurev-cellbio-120420-113830","DOIUrl":"10.1146/annurev-cellbio-120420-113830","url":null,"abstract":"<p><p>Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"67-89"},"PeriodicalIF":11.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10053735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Regeneration and Fibrosis in the Endometrium. 子宫内膜再生和纤维化的机制。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 DOI: 10.1146/annurev-cellbio-011723-021442
Claire J Ang, Taylor D Skokan, Kara L McKinley

The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.

子宫内膜(子宫内膜)在整个生命周期内反复再生,这是其正常生理学的一部分。在分娩(分娩)和某些物种的月经期间,子宫内膜的大部分都会脱落,但组织会迅速重建,不会留下疤痕,这使其成为哺乳动物强大的再生模式。尽管如此,在一些攻击之后,包括医疗程序和感染,子宫内膜无法再生,反而形成了可能干扰正常子宫内膜功能并导致不孕的疤痕。因此,子宫内膜提供了一个特殊的平台来回答再生医学的一个核心问题:为什么有些系统会再生,而另一些系统会留下疤痕?在这里,我们回顾了我们目前对人类、非人灵长类动物和啮齿类动物不同子宫内膜破坏事件的理解,以及再生成功和失败的相关机制。阐明这些不同修复过程的决定因素,有望深入了解哺乳动物再生的基本机制,对生殖健康产生重大影响。
{"title":"Mechanisms of Regeneration and Fibrosis in the Endometrium.","authors":"Claire J Ang, Taylor D Skokan, Kara L McKinley","doi":"10.1146/annurev-cellbio-011723-021442","DOIUrl":"10.1146/annurev-cellbio-011723-021442","url":null,"abstract":"<p><p>The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"39 ","pages":"197-221"},"PeriodicalIF":11.4,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue Morphogenesis Through Dynamic Cell and Matrix Interactions. 通过动态细胞和基质相互作用实现组织形态发生。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 Epub Date: 2023-06-14 DOI: 10.1146/annurev-cellbio-020223-031019
Di Wu, Kenneth M Yamada, Shaohe Wang

Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.

多细胞生物通过细胞和细胞外基质产生不同形状和功能的组织。它们的粘附分子介导细胞-细胞和细胞-基质的相互作用,不仅在维持组织完整性方面发挥关键作用,而且是组织形态发生的关键调节因子。细胞不断探测环境以做出决定:它们通过可扩散的配体或基于粘附的信号传导整合来自环境的化学和机械信息,以决定是否释放特定的信号分子或酶,分裂或分化,离开或留下,甚至是生或死。这些决定反过来又改变了它们的环境,包括细胞外基质的化学性质和机械性质。组织形态是细胞和基质通过其历史生化和生物物理景观重塑的物理表现。我们回顾了我们对组织形态发生中基质和粘附分子的理解,重点是驱动形态发生的关键物理相互作用。
{"title":"Tissue Morphogenesis Through Dynamic Cell and Matrix Interactions.","authors":"Di Wu, Kenneth M Yamada, Shaohe Wang","doi":"10.1146/annurev-cellbio-020223-031019","DOIUrl":"10.1146/annurev-cellbio-020223-031019","url":null,"abstract":"<p><p>Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"123-144"},"PeriodicalIF":11.4,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9633583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Unreasonable Effectiveness of Reaction Diffusion in Vertebrate Skin Color Patterning. 脊椎动物皮肤颜色模式中反应扩散的不合理有效性。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 DOI: 10.1146/annurev-cellbio-120319-024414
Michel C Milinkovitch, Ebrahim Jahanbakhsh, Szabolcs Zakany

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (a) recapitulate the diversity of actual skin patterns, (b) capture the underlying dynamics of cellular interactions, (c) interact with tissue size and shape, (d) can lead to ordered sequential patterning, (e) generate cellular automaton dynamics in lizards and snakes, (f) predict actual patterns beyond their statistical features, and (g) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.

1952年,Alan Turing发表了反应扩散(RD)数学框架,为形态发生作为一种从物理化学第一原理中产生的自组织过程奠定了基础。令人遗憾的是,这种方法在发育生物学领域受到了广泛的怀疑。首先,我们总结了图灵的思想路线,以减轻人们对RD是人工数学结构的误解。其次,我们讨论了为什么现象学RD模型在中/宏观尺度上对理解肤色模式特别有效,而不需要在较低尺度上对大量变量进行参数化。更具体地说,我们讨论了RD模型如何(a)概括实际皮肤模式的多样性,(b)捕捉细胞相互作用的潜在动力学,(c)与组织大小和形状相互作用,(d)可以导致有序的顺序模式,(e)在蜥蜴和蛇中生成细胞自动机动力学,(f)预测超出其统计特征的实际模式,和(g)对于模型变化是鲁棒的。第三,我们讨论了线性稳定性分析的效用,并进行了数值模拟,以证明确定性RD是如何从潜在的混沌微观主体中产生的。
{"title":"The Unreasonable Effectiveness of Reaction Diffusion in Vertebrate Skin Color Patterning.","authors":"Michel C Milinkovitch, Ebrahim Jahanbakhsh, Szabolcs Zakany","doi":"10.1146/annurev-cellbio-120319-024414","DOIUrl":"10.1146/annurev-cellbio-120319-024414","url":null,"abstract":"<p><p>In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models (<i>a</i>) recapitulate the diversity of actual skin patterns, (<i>b</i>) capture the underlying dynamics of cellular interactions, (<i>c</i>) interact with tissue size and shape, (<i>d</i>) can lead to ordered sequential patterning, (<i>e</i>) generate cellular automaton dynamics in lizards and snakes, (<i>f</i>) predict actual patterns beyond their statistical features, and (<i>g</i>) are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"39 ","pages":"145-174"},"PeriodicalIF":11.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When We Publish: Accuracy and Quality Control in the Time of Open Access. 当我们发布:开放获取时代的准确性和质量控制。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 DOI: 10.1146/annurev-cb-39-091823-100001
Ruth Lehmann
{"title":"When We Publish: Accuracy and Quality Control in the Time of Open Access.","authors":"Ruth Lehmann","doi":"10.1146/annurev-cb-39-091823-100001","DOIUrl":"10.1146/annurev-cb-39-091823-100001","url":null,"abstract":"","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"39 ","pages":"v-ix"},"PeriodicalIF":11.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41231868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filopodia In Vitro and In Vivo. Filopodia体外和体内。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 Epub Date: 2023-07-05 DOI: 10.1146/annurev-cellbio-020223-025210
Thomas C A Blake, Jennifer L Gallop

Filopodia are dynamic cell surface protrusions used for cell motility, pathogen infection, and tissue development. The molecular mechanisms determining how and where filopodia grow and retract need to integrate mechanical forces and membrane curvature with extracellular signaling and the broader state of the cytoskeleton. The involved actin regulatory machinery nucleates, elongates, and bundles actin filaments separately from the underlying actin cortex. The refined membrane and actin geometry of filopodia, importance of tissue context, high spatiotemporal resolution required, and high degree of redundancy all limit current models. New technologies are improving opportunities for functional insight, with reconstitution of filopodia in vitro from purified components, endogenous genetic modification, inducible perturbation systems, and the study of filopodia in multicellular environments. In this review, we explore recent advances in conceptual models of how filopodia form, the molecules involved in this process, and our latest understanding of filopodia in vitro and in vivo.

Filopodia是用于细胞运动、病原体感染和组织发育的动态细胞表面突起。决定丝状足类生长和缩回的方式和位置的分子机制需要将机械力和膜弯曲与细胞外信号传导和细胞骨架的更广泛状态相结合。所涉及的肌动蛋白调节机制使肌动蛋白丝与下面的肌动蛋白皮层分开成核、伸长和成束。丝足的精细膜和肌动蛋白几何结构、组织背景的重要性、所需的高时空分辨率和高度冗余都限制了电流模型。新技术正在增加功能洞察的机会,从纯化的成分中体外重建丝状足类,内源性基因修饰,诱导型扰动系统,以及在多细胞环境中研究丝状足类。在这篇综述中,我们探讨了丝状伪足如何形成的概念模型、参与这一过程的分子的最新进展,以及我们对丝状伪足在体外和体内的最新理解。
{"title":"Filopodia In Vitro and In Vivo.","authors":"Thomas C A Blake,&nbsp;Jennifer L Gallop","doi":"10.1146/annurev-cellbio-020223-025210","DOIUrl":"10.1146/annurev-cellbio-020223-025210","url":null,"abstract":"<p><p>Filopodia are dynamic cell surface protrusions used for cell motility, pathogen infection, and tissue development. The molecular mechanisms determining how and where filopodia grow and retract need to integrate mechanical forces and membrane curvature with extracellular signaling and the broader state of the cytoskeleton. The involved actin regulatory machinery nucleates, elongates, and bundles actin filaments separately from the underlying actin cortex. The refined membrane and actin geometry of filopodia, importance of tissue context, high spatiotemporal resolution required, and high degree of redundancy all limit current models. New technologies are improving opportunities for functional insight, with reconstitution of filopodia in vitro from purified components, endogenous genetic modification, inducible perturbation systems, and the study of filopodia in multicellular environments. In this review, we explore recent advances in conceptual models of how filopodia form, the molecules involved in this process, and our latest understanding of filopodia in vitro and in vivo.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"307-329"},"PeriodicalIF":11.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Logic of Transgenerational Inheritance: Timescales of Adaptation. 代际继承的逻辑:适应的时间尺度。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 Epub Date: 2023-06-20 DOI: 10.1146/annurev-cellbio-020923-114620
Titas Sengupta, Rachel Kaletsky, Coleen T Murphy

Myriad mechanisms have evolved to adapt to changing environments. Environmental stimuli alter organisms' physiology to create memories of previous environments. Whether these environmental memories can cross the generational barrier has interested scientists for centuries. The logic of passing on information from generation to generation is not well understood. When is it useful to remember ancestral conditions, and when might it be deleterious to continue to respond to a context that may no longer exist? The key might be found in understanding the environmental conditions that trigger long-lasting adaptive responses. We discuss the logic that biological systems may use to remember environmental conditions. Responses spanning different generational timescales employ different molecular machineries and may result from differences in the duration or intensity of the exposure. Understanding the molecular components of multigenerational inheritance and the logic underlying beneficial and maladaptive adaptations is fundamental to understanding how organisms acquire and transmit environmental memories across generations.

无数的机制已经进化以适应不断变化的环境。环境刺激会改变生物体的生理机能,从而产生对先前环境的记忆。几个世纪以来,科学家们一直对这些环境记忆是否能跨越代际障碍感兴趣。信息代代相传的逻辑没有得到很好的理解。什么时候记住祖先的条件有用,什么时候继续对可能不复存在的环境做出反应可能有害?关键可能在于了解触发长期适应性反应的环境条件。我们讨论了生物系统可能用来记忆环境条件的逻辑。跨越不同世代时间尺度的反应采用不同的分子机制,可能是由于暴露时间或强度的差异造成的。了解多代遗传的分子组成以及有益和不适应适应适应的逻辑,对于理解生物体如何跨代获得和传递环境记忆至关重要。
{"title":"The Logic of Transgenerational Inheritance: Timescales of Adaptation.","authors":"Titas Sengupta,&nbsp;Rachel Kaletsky,&nbsp;Coleen T Murphy","doi":"10.1146/annurev-cellbio-020923-114620","DOIUrl":"10.1146/annurev-cellbio-020923-114620","url":null,"abstract":"<p><p>Myriad mechanisms have evolved to adapt to changing environments. Environmental stimuli alter organisms' physiology to create memories of previous environments. Whether these environmental memories can cross the generational barrier has interested scientists for centuries. The logic of passing on information from generation to generation is not well understood. When is it useful to remember ancestral conditions, and when might it be deleterious to continue to respond to a context that may no longer exist? The key might be found in understanding the environmental conditions that trigger long-lasting adaptive responses. We discuss the logic that biological systems may use to remember environmental conditions. Responses spanning different generational timescales employ different molecular machineries and may result from differences in the duration or intensity of the exposure. Understanding the molecular components of multigenerational inheritance and the logic underlying beneficial and maladaptive adaptations is fundamental to understanding how organisms acquire and transmit environmental memories across generations.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"45-65"},"PeriodicalIF":11.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9668705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent Advances in Ciliate Biology. 纤毛虫生物学的最新进展。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2022-10-06 DOI: 10.1146/annurev-cellbio-120420-020656
Rachel A Howard-Till, Usha Pallabi Kar, Amy S Fabritius, Mark Winey

Ciliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate Stentor, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.

纤毛虫是一种多样的单细胞真核生物,它们在大小、形状、身体计划和生态位方面差异很大。在这里,我们回顾了最近在纤毛虫模型方面取得的研究进展。在现代组学方法的促进下,对巨型纤毛虫Stentor的模式和再生的研究已经恢复。低温电子显微镜和断层扫描已经彻底改变了复杂大分子的结构研究,如端粒酶、核酶和轴突酶。DNA消除、基因混乱和交配类型的决定已经被破译,揭示了在其他生命领域有相似之处的有趣的适应过程。对常见真核生物过程的研究,如细胞内运输、减数分裂和组蛋白修饰,揭示了这些生物在进化上与其他模式遥远的保护和独特的适应性。遗传和分子工具的不断改进使得各级教育和研究都可以使用纤毛虫模型。这些进展开辟了新的研究途径,并突出了纤毛虫研究的重要性。
{"title":"Recent Advances in Ciliate Biology.","authors":"Rachel A Howard-Till,&nbsp;Usha Pallabi Kar,&nbsp;Amy S Fabritius,&nbsp;Mark Winey","doi":"10.1146/annurev-cellbio-120420-020656","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120420-020656","url":null,"abstract":"<p><p>Ciliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate <i>Stentor</i>, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"75-102"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10266400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Adhesion-Based Self-Organization in Tissue Patterning. 组织图案化中基于粘附的自组织。
IF 11.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2022-10-06 Epub Date: 2022-05-13 DOI: 10.1146/annurev-cellbio-120420-100215
Tony Y-C Tsai, Rikki M Garner, Sean G Megason

Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.

自从差异粘附假说提出以来,科学家们一直着迷于细胞粘附如何介导细胞自组织在发育过程中形成空间模式。寻找具有同源性结合特异性的分子工具包产生了多种粘附分子。最近对皮层张力在粘附结合中的主导作用的理解将差异粘附研究的重点转向了粘附蛋白调节肌动蛋白收缩性的信号功能。微分界面张力的更广泛框架包括粘附分子和非粘附分子,在细胞分选过程中共享调节界面张力以产生不同组织模式的共同功能。稳健的基于粘附的图案化需要形态发生信号、细胞命运决定和粘附变化之间的密切协调。桥接理论和实验方法的当前进展为理解跨多个时间和长度尺度的基于粘附的组织图案化过程中的分子、细胞和组织动力学提供了令人兴奋的机会。
{"title":"Adhesion-Based Self-Organization in Tissue Patterning.","authors":"Tony Y-C Tsai,&nbsp;Rikki M Garner,&nbsp;Sean G Megason","doi":"10.1146/annurev-cellbio-120420-100215","DOIUrl":"10.1146/annurev-cellbio-120420-100215","url":null,"abstract":"<p><p>Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"349-374"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547846/pdf/nihms-1829398.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10701842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells. 跨王国搭便车:真菌、动物和植物细胞中 Cargos 的共转运。
IF 11.4 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2022-10-06 Epub Date: 2022-07-29 DOI: 10.1146/annurev-cellbio-120420-104341
Jenna R Christensen, Samara L Reck-Peterson

Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.

生命树上的真核细胞通过胞内运输机制组织其亚细胞成分。在典型运输中,肌球蛋白、驱动蛋白和动力蛋白通过适配蛋白与载体相互作用,并沿着丝状肌动蛋白或微管轨道移动。与这种典型模式不同,搭便车是一种新发现的细胞内运输模式,在这种模式下,货物会附着在已经运动的货物上,而不是直接与运动蛋白本身结合。包括信使核糖核酸、蛋白质复合物和细胞器在内的许多货物都会搭膜上货物的便车。事实证明,类似搭便车的行为会影响细胞过程,包括本地蛋白质翻译、远距离信号传递和细胞器网络重组。在这里,我们回顾了真菌、动物和植物细胞中货物搭便车的实例,并讨论了在这些不同情况下搭便车对细胞和进化的潜在重要性。
{"title":"Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells.","authors":"Jenna R Christensen, Samara L Reck-Peterson","doi":"10.1146/annurev-cellbio-120420-104341","DOIUrl":"10.1146/annurev-cellbio-120420-104341","url":null,"abstract":"<p><p>Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"155-178"},"PeriodicalIF":11.4,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual review of cell and developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1