Pub Date : 2022-10-06DOI: 10.1146/annurev-cellbio-120420-020656
Rachel A Howard-Till, Usha Pallabi Kar, Amy S Fabritius, Mark Winey
Ciliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate Stentor, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.
{"title":"Recent Advances in Ciliate Biology.","authors":"Rachel A Howard-Till, Usha Pallabi Kar, Amy S Fabritius, Mark Winey","doi":"10.1146/annurev-cellbio-120420-020656","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120420-020656","url":null,"abstract":"<p><p>Ciliates are a diverse group of unicellular eukaryotes that vary widely in size, shape, body plan, and ecological niche. Here, we review recent research advances achieved with ciliate models. Studies on patterning and regeneration have been revived in the giant ciliate <i>Stentor</i>, facilitated by modern omics methods. Cryo-electron microscopy and tomography have revolutionized the structural study of complex macromolecules such as telomerase, ribozymes, and axonemes. DNA elimination, gene scrambling, and mating type determination have been deciphered, revealing interesting adaptations of processes that have parallels in other kingdoms of life. Studies of common eukaryotic processes, such as intracellular trafficking, meiosis, and histone modification, reveal conservation as well as unique adaptations in these organisms that are evolutionarily distant from other models. Continual improvement of genetic and molecular tools makes ciliates accessible models for all levels of education and research. Such advances open new avenues of research and highlight the importance of ciliate research.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"75-102"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10266400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-06-29DOI: 10.1146/annurev-cellbio-120219-034238
Nikolai Klena, Gaia Pigino
Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.
{"title":"Structural Biology of Cilia and Intraflagellar Transport.","authors":"Nikolai Klena, Gaia Pigino","doi":"10.1146/annurev-cellbio-120219-034238","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120219-034238","url":null,"abstract":"<p><p>Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"103-123"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40409506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-05-13DOI: 10.1146/annurev-cellbio-120420-100215
Tony Y-C Tsai, Rikki M Garner, Sean G Megason
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
{"title":"Adhesion-Based Self-Organization in Tissue Patterning.","authors":"Tony Y-C Tsai, Rikki M Garner, Sean G Megason","doi":"10.1146/annurev-cellbio-120420-100215","DOIUrl":"10.1146/annurev-cellbio-120420-100215","url":null,"abstract":"<p><p>Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"349-374"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547846/pdf/nihms-1829398.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10701842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-07-29DOI: 10.1146/annurev-cellbio-120420-104341
Jenna R Christensen, Samara L Reck-Peterson
Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.
{"title":"Hitchhiking Across Kingdoms: Cotransport of Cargos in Fungal, Animal, and Plant Cells.","authors":"Jenna R Christensen, Samara L Reck-Peterson","doi":"10.1146/annurev-cellbio-120420-104341","DOIUrl":"10.1146/annurev-cellbio-120420-104341","url":null,"abstract":"<p><p>Eukaryotic cells across the tree of life organize their subcellular components via intracellular transport mechanisms. In canonical transport, myosin, kinesin, and dynein motor proteins interact with cargos via adaptor proteins and move along filamentous actin or microtubule tracks. In contrast to this canonical mode, hitchhiking is a newly discovered mode of intracellular transport in which a cargo attaches itself to an already-motile cargo rather than directly associating with a motor protein itself. Many cargos including messenger RNAs, protein complexes, and organelles hitchhike on membrane-bound cargos. Hitchhiking-like behaviors have been shown to impact cellular processes including local protein translation, long-distance signaling, and organelle network reorganization. Here, we review instances of cargo hitchhiking in fungal, animal, and plant cells and discuss the potential cellular and evolutionary importance of hitchhiking in these different contexts.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"155-178"},"PeriodicalIF":11.4,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-06-29DOI: 10.1146/annurev-cellbio-120320-035146
Rashmiparvathi Keshara, Yung Hae Kim, Anne Grapin-Botton
Organoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.
{"title":"Organoid Imaging: Seeing Development and Function.","authors":"Rashmiparvathi Keshara, Yung Hae Kim, Anne Grapin-Botton","doi":"10.1146/annurev-cellbio-120320-035146","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120320-035146","url":null,"abstract":"<p><p>Organoids are miniaturized and simplified versions of an organ produced in vitro from stem or progenitor cells. They are used as a model system consisting of multiple cell types forming an architecture relevant to the organ and carrying out the function of the organ. They are a useful tool to study development, homeostasis, regeneration, and disease. The imaging of organoids has become a pivotal method to visualize and understand their self-organization, symmetry breaking, growth, differentiation, and function. In this review, we discuss imaging methods, how to analyze these images, and challenges in organoid research.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"447-466"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40409505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-07-18DOI: 10.1146/annurev-cellbio-120420-112849
Michael Mihlan, Shima Safaiyan, Manuel Stecher, Neil Paterson, Tim Lämmermann
Successful immune responses depend on the spatiotemporal coordination of immune cell migration, interactions, and effector functions in lymphoid and parenchymal tissues. Real-time intravital microscopy has revolutionized our understanding of the dynamic behavior of many immune cell types in the living tissues of several species. Observing immune cells in their native environment has revealed many unanticipated facets of their biology, which were not expected from experiments outside a living organism. Here we highlight both classic and more recent examples of surprising discoveries that critically relied on the use of live in vivo imaging. In particular, we focus on five major cell types of the innate immune response (macrophages, microglia, neutrophils, dendritic cells, and mast cells), and how studying their dynamics in mouse tissues has helped us advance our current knowledge of immune cell-mediated tissue homeostasis, host defense, and inflammation.
{"title":"Surprises from Intravital Imaging of the Innate Immune Response.","authors":"Michael Mihlan, Shima Safaiyan, Manuel Stecher, Neil Paterson, Tim Lämmermann","doi":"10.1146/annurev-cellbio-120420-112849","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120420-112849","url":null,"abstract":"<p><p>Successful immune responses depend on the spatiotemporal coordination of immune cell migration, interactions, and effector functions in lymphoid and parenchymal tissues. Real-time intravital microscopy has revolutionized our understanding of the dynamic behavior of many immune cell types in the living tissues of several species. Observing immune cells in their native environment has revealed many unanticipated facets of their biology, which were not expected from experiments outside a living organism. Here we highlight both classic and more recent examples of surprising discoveries that critically relied on the use of live in vivo imaging. In particular, we focus on five major cell types of the innate immune response (macrophages, microglia, neutrophils, dendritic cells, and mast cells), and how studying their dynamics in mouse tissues has helped us advance our current knowledge of immune cell-mediated tissue homeostasis, host defense, and inflammation.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"467-489"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40615002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.1146/annurev-cb-38-072922-100001
Ruth Lehmann
{"title":"ARCDB Goes Open in 2023!","authors":"Ruth Lehmann","doi":"10.1146/annurev-cb-38-072922-100001","DOIUrl":"https://doi.org/10.1146/annurev-cb-38-072922-100001","url":null,"abstract":"","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"v-vi"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33491342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-05-24DOI: 10.1146/annurev-cellbio-120420-125117
Li Yang, Jeremy E Wilusz, Ling-Ling Chen
Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.
{"title":"Biogenesis and Regulatory Roles of Circular RNAs.","authors":"Li Yang, Jeremy E Wilusz, Ling-Ling Chen","doi":"10.1146/annurev-cellbio-120420-125117","DOIUrl":"10.1146/annurev-cellbio-120420-125117","url":null,"abstract":"<p><p>Covalently closed, single-stranded circular RNAs can be produced from viral RNA genomes as well as from the processing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent transcriptomic studies have surprisingly uncovered that many protein-coding genes can be subjected to backsplicing, leading to widespread expression of a specific type of circular RNAs (circRNAs) in eukaryotic cells. Here, we discuss experimental strategies used to discover and characterize diverse circRNAs at both the genome and individual gene scales. We further highlight the current understanding of how circRNAs are generated and how the mature transcripts function. Some circRNAs act as noncoding RNAs to impact gene regulation by serving as decoys or competitors for microRNAs and proteins. Others form extensive networks of ribonucleoprotein complexes or encode functional peptides that are translated in response to certain cellular stresses. Overall, circRNAs have emerged as an important class of RNAmolecules in gene expression regulation that impact many physiological processes, including early development, immune responses, neurogenesis, and tumorigenesis.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"263-289"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119891/pdf/nihms-1888828.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9335458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.1146/annurev-cellbio-120420-114855
Lucy Erin O'Brien
Although tissue homeostasis-the steady state-implies stability, our organs are in a state of continual, large-scale cellular flux. This flux underpins an organ's ability to homeostatically renew, to non-homeostatically resize upon altered functional demand, and to return to homeostasis after resizing or injury-in other words, to be dynamic. Here, I examine the basic unit of organ-scale cell dynamics: the cellular life cycle of birth, differentiation, and death. Focusing on epithelial organs, I discuss how spatial patterns and temporal kinetics of life cycle stages depend upon lineage organization and tissue architecture. I review how signaling between stages coordinates life cycle dynamics to enforce homeostasis, and I highlight how particular stages are transiently unbalanced to drive organ resizing or repair. Finally, I offer that considering organs as a collective of not cells but rather cell life cycles provides a powerful vantage for deciphering homeostatic and non-homeostatic tissue states.
{"title":"Tissue Homeostasis and Non-Homeostasis: From Cell Life Cycles to Organ States.","authors":"Lucy Erin O'Brien","doi":"10.1146/annurev-cellbio-120420-114855","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120420-114855","url":null,"abstract":"<p><p>Although tissue homeostasis-the steady state-implies stability, our organs are in a state of continual, large-scale cellular flux. This flux underpins an organ's ability to homeostatically renew, to non-homeostatically resize upon altered functional demand, and to return to homeostasis after resizing or injury-in other words, to be dynamic. Here, I examine the basic unit of organ-scale cell dynamics: the cellular life cycle of birth, differentiation, and death. Focusing on epithelial organs, I discuss how spatial patterns and temporal kinetics of life cycle stages depend upon lineage organization and tissue architecture. I review how signaling between stages coordinates life cycle dynamics to enforce homeostasis, and I highlight how particular stages are transiently unbalanced to drive organ resizing or repair. Finally, I offer that considering organs as a collective of not cells but rather cell life cycles provides a powerful vantage for deciphering homeostatic and non-homeostatic tissue states.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"38 ","pages":"395-418"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10182861/pdf/nihms-1889640.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9448115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06Epub Date: 2022-06-27DOI: 10.1146/annurev-cellbio-120420-114559
Sophie M Travis, Brian P Mahon, Sabine Petry
The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.
{"title":"How Microtubules Build the Spindle Branch by Branch.","authors":"Sophie M Travis, Brian P Mahon, Sabine Petry","doi":"10.1146/annurev-cellbio-120420-114559","DOIUrl":"https://doi.org/10.1146/annurev-cellbio-120420-114559","url":null,"abstract":"<p><p>The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"1-23"},"PeriodicalIF":11.3,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619725/pdf/nihms-1842828.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40401416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}