首页 > 最新文献

Theoretical and Computational Fluid Dynamics最新文献

英文 中文
A systematic DNS approach to isolate wall-curvature effects in spatially developing boundary layers 在空间发展的边界层中分离壁曲率效应的系统DNS方法
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-12-09 DOI: 10.1007/s00162-024-00729-7
Jason Appelbaum, Markus Kloker, Christoph Wenzel

A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a (2{times }2) matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.

介绍了一种计算边界层壁面曲率效应的方法。壁面曲率直接导致流线曲率,它与边界层流动的多种变化有关。必要时,局部径向压力梯度出现以平衡平均流量转向。此外,在非恒定壁面曲率或特定自由流条件下,可以出现流向(壁面切向)压力梯度;零压力梯度是一个特例。在层流凹流中,Görtler不稳定性和相关的Taylor-Görtler涡旋破坏了流动的稳定性,促进了层流-湍流的过渡,而在完全湍流状态下,离心不稳定性机制形成的非定常相干结构极大地重新分配了湍流剪应力。评估边界层上的离心效应的一个困难是,它们经常与其他现象同时出现,如沿流的压力梯度,使得它们的单独评估常常模糊不清。因此,对于过渡边界层和湍流边界层的数值研究,理解这种耦合效应对一般构型的相互作用性质是有益的。提出了这样做的方法,并使用亚音速可压缩湍流边界层的情况进行了验证。四次直接数值模拟计算,形成了一个(2{times }2)湍流边界层状态矩阵;即有和没有凹壁曲率,各有一个零和一个非零的流向压力梯度实现。讨论了确定适当边界条件的设置和相关程序,并通过对平均流场的分析对该方法进行了评价。由于流向压力梯度或壁面曲率导致的壁面剪切应力和边界层厚度等平均流动特性的差异显示出明显的相互独立。
{"title":"A systematic DNS approach to isolate wall-curvature effects in spatially developing boundary layers","authors":"Jason Appelbaum,&nbsp;Markus Kloker,&nbsp;Christoph Wenzel","doi":"10.1007/s00162-024-00729-7","DOIUrl":"10.1007/s00162-024-00729-7","url":null,"abstract":"<div><p>A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a <span>(2{times }2)</span> matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.\u0000</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00729-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loosely coupled under-resolved LES/RANS simulation augmented by sparse near-wall measurement 稀疏近壁测量增强的松散耦合低分辨率LES/RANS模拟
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-12-08 DOI: 10.1007/s00162-024-00725-x
Pasha Piroozmand, Oliver Brenner, Patrick Jenny

We investigate scenarios, where only sparse wall shear stress measurements are available, while accurate wall shear stress and velocity profiles are sought. Applying discrete adjoint-based data assimilation, with only near-wall measurements, accurate wall shear stress profiles are achieved at the expense of unrealistic velocity profiles. We therefore add and employ internal reference data generated by performing a relatively cheap hybrid simulation. We modified the dual-mesh hybrid LES/RANS framework recently proposed by Xiao and Jenny (J Comput Phys 231(4):1848–1865, 2012, https://doi.org/10.1016/j.jcp.2011.11.009) by loosely coupling under-resolved LES in the interior with steady RANS near the walls. The framework was developed in OpenFOAM and tested for flow over periodic hills with Re = 10,595. Results show that the devised framework outperforms conventional dual-mesh hybrid LES/RANS and standalone sparse wall-data assimilated RANS models. Graphical abstract Horizontal mean velocity component (U_{1}) (top plot) and wall shear stress (friction coefficient (C_{f})) profiles at the lower wall (bottom plot) obtained with S-RANS and assimilation of sparse wall shear stress data

我们研究的情况下,只有稀疏的墙剪应力测量可用,而准确的墙剪应力和速度分布是寻求。应用基于离散伴随的数据同化,仅通过近壁测量,就可以获得精确的壁面剪应力曲线,但代价是无法获得不切实际的速度曲线。因此,我们添加并使用通过执行相对便宜的混合模拟生成的内部参考数据。我们改进了Xiao和Jenny最近提出的双网格混合LES/RANS框架(J computer Phys 231(4): 1848-1865, 2012, https://doi.org/10.1016/j.jcp.2011.11.009),通过松散耦合内部的低分辨率LES和靠近墙壁的稳定RANS。该框架是在OpenFOAM中开发的,并在Re = 10,595的周期性山丘上进行了流动测试。结果表明,所设计的框架优于传统的双网格混合LES/RANS和独立稀疏墙数据同化的RANS模型。利用S-RANS和稀疏壁面剪应力数据同化得到的水平平均速度分量(U_{1})(上图)和下壁面剪应力(摩擦系数(C_{f}))剖面图(下图)
{"title":"Loosely coupled under-resolved LES/RANS simulation augmented by sparse near-wall measurement","authors":"Pasha Piroozmand,&nbsp;Oliver Brenner,&nbsp;Patrick Jenny","doi":"10.1007/s00162-024-00725-x","DOIUrl":"10.1007/s00162-024-00725-x","url":null,"abstract":"<p>We investigate scenarios, where only sparse wall shear stress measurements are available, while accurate wall shear stress and velocity profiles are sought. Applying discrete adjoint-based data assimilation, with only near-wall measurements, accurate wall shear stress profiles are achieved at the expense of unrealistic velocity profiles. We therefore add and employ internal reference data generated by performing a relatively cheap hybrid simulation. We modified the dual-mesh hybrid LES/RANS framework recently proposed by Xiao and Jenny (J Comput Phys 231(4):1848–1865, 2012, https://doi.org/10.1016/j.jcp.2011.11.009) by loosely coupling under-resolved LES in the interior with steady RANS near the walls. The framework was developed in OpenFOAM and tested for flow over periodic hills with Re = 10,595. Results show that the devised framework outperforms conventional dual-mesh hybrid LES/RANS and standalone sparse wall-data assimilated RANS models. <b>Graphical abstract</b> Horizontal mean velocity component <span>(U_{1})</span> (top plot) and wall shear stress (friction coefficient <span>(C_{f})</span>) profiles at the lower wall (bottom plot) obtained with S-RANS and assimilation of sparse wall shear stress data</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00725-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact parallelized dynamic mode decomposition with Hankel matrix for large-scale flow data 基于Hankel矩阵的大规模流动数据精确并行动态模态分解
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-12-07 DOI: 10.1007/s00162-024-00730-0
Hiroyuki Asada, Soshi Kawai

An exact parallel algorithm of dynamic mode decomposition (DMD) with Hankel matrices for large-scale flow data is proposed. The proposed algorithm enables the DMD and the Hankel DMD for large-scale data obtained by high-fidelity flow simulations, such as large-eddy simulations or direct numerical simulations using more than a billion grid points, on parallel computations without any approximations. The proposed algorithm completes the computations of the DMD by utilizing block matrices of (X^TXin mathbb {R}^{ktimes k}) (where (Xin mathbb {R}^{ntimes k}) is a large data matrix obtained by high-fidelity simulations, the number of snapshot data is (n > rsim 10^9), and the number of snapshots is (klesssim O(10^3))) without any approximations: for example, the singular value decomposition of X is replaced by the eigenvalue decomposition of (X^TX). Then, the computation of (X^TX) is parallelized by utilizing the domain decomposition often used in flow simulations, which reduces the memory consumption for each parallel process and wall-clock time in the DMD by a factor approximately equal to the number of parallel processes. The parallel computation with communication is performed only for (X^TX), allowing for high parallel efficiency under massively parallel computations. Furthermore, the proposed exact parallel algorithm is extended to the Hankel DMD without any additional parallel computations, realizing the Hankel DMD of large-scale data collected by over a billion grid points with comparable cost and memory to the DMD without Hankel matrices. Moreover, this study shows that the Hankel DMD, which has been employed to enrich information and augment rank, is advantageous for large-scale high-dimensional data collected by high-fidelity simulations in data reconstruction and predictions of future states (while prior studies have reported such advantages for low-dimensional data). Several numerical experiments using large-scale data, including laminar and turbulent flows around a cylinder and transonic buffeting flow around a full aircraft configuration, demonstrate that (i) the proposed exact parallel algorithm reproduces the existing non-parallelized Hankel DMD, (ii) the Hankel DMD for large-scale data consisting of over a billion grid points is feasible by using the proposed exact parallel algorithm with high parallel efficiency on more than 6 thousand CPU cores, and (iii) the Hankel DMD has advantages for high-dimensional data such as (n > rsim 10^9).

提出了一种基于Hankel矩阵的大规模流动数据动态模态分解(DMD)精确并行算法。提出的算法使DMD和Hankel DMD能够在并行计算中无需任何近似的情况下,通过高保真流动模拟获得大规模数据,例如大涡模拟或使用超过10亿个网格点的直接数值模拟。该算法利用(X^TXin mathbb {R}^{ktimes k})的块矩阵(其中(Xin mathbb {R}^{ntimes k})为高保真仿真得到的大数据矩阵,快照数据个数为(n > rsim 10^9),快照个数为(klesssim O(10^3))),不做任何近似,完成DMD的计算,例如将X的奇异值分解替换为(X^TX)的特征值分解。然后,利用流模拟中常用的域分解对(X^TX)的计算进行并行化,将每个并行进程的内存消耗和DMD中的挂钟时间减少了大约等于并行进程数量的因子。具有通信的并行计算仅在(X^TX)上执行,允许在大规模并行计算下的高并行效率。此外,将该精确并行算法扩展到Hankel DMD中,无需额外的并行计算,实现了超过10亿个网格点的大规模数据的Hankel DMD,其成本和内存与不使用Hankel矩阵的DMD相当。此外,本研究表明,用于丰富信息和增强秩的Hankel DMD对于高保真仿真收集的大规模高维数据在数据重建和未来状态预测方面具有优势(而先前的研究已经报道了对低维数据的优势)。几个大规模数据的数值实验,包括圆柱周围的层流和湍流以及全飞机结构周围的跨音速抖振流,表明:(i)所提出的精确并行算法再现了现有的非并行化Hankel DMD; (ii)使用所提出的精确并行算法在超过6000个CPU内核上具有很高的并行效率,可以实现由超过10亿个网格点组成的大规模数据的Hankel DMD。(iii)汉高DMD对于高维数据(如(n > rsim 10^9))具有优势。
{"title":"Exact parallelized dynamic mode decomposition with Hankel matrix for large-scale flow data","authors":"Hiroyuki Asada,&nbsp;Soshi Kawai","doi":"10.1007/s00162-024-00730-0","DOIUrl":"10.1007/s00162-024-00730-0","url":null,"abstract":"<p>An exact parallel algorithm of dynamic mode decomposition (DMD) with Hankel matrices for large-scale flow data is proposed. The proposed algorithm enables the DMD and the Hankel DMD for large-scale data obtained by high-fidelity flow simulations, such as large-eddy simulations or direct numerical simulations using more than a billion grid points, on parallel computations without any approximations. The proposed algorithm completes the computations of the DMD by utilizing block matrices of <span>(X^TXin mathbb {R}^{ktimes k})</span> (where <span>(Xin mathbb {R}^{ntimes k})</span> is a large data matrix obtained by high-fidelity simulations, the number of snapshot data is <span>(n &gt; rsim 10^9)</span>, and the number of snapshots is <span>(klesssim O(10^3))</span>) without any approximations: for example, the singular value decomposition of <i>X</i> is replaced by the eigenvalue decomposition of <span>(X^TX)</span>. Then, the computation of <span>(X^TX)</span> is parallelized by utilizing the domain decomposition often used in flow simulations, which reduces the memory consumption for each parallel process and wall-clock time in the DMD by a factor approximately equal to the number of parallel processes. The parallel computation with communication is performed only for <span>(X^TX)</span>, allowing for high parallel efficiency under massively parallel computations. Furthermore, the proposed exact parallel algorithm is extended to the Hankel DMD without any additional parallel computations, realizing the Hankel DMD of large-scale data collected by over a billion grid points with comparable cost and memory to the DMD without Hankel matrices. Moreover, this study shows that the Hankel DMD, which has been employed to enrich information and augment rank, is advantageous for large-scale high-dimensional data collected by high-fidelity simulations in data reconstruction and predictions of future states (while prior studies have reported such advantages for low-dimensional data). Several numerical experiments using large-scale data, including laminar and turbulent flows around a cylinder and transonic buffeting flow around a full aircraft configuration, demonstrate that (i) the proposed exact parallel algorithm reproduces the existing non-parallelized Hankel DMD, (ii) the Hankel DMD for large-scale data consisting of over a billion grid points is feasible by using the proposed exact parallel algorithm with high parallel efficiency on more than 6 thousand CPU cores, and (iii) the Hankel DMD has advantages for high-dimensional data such as <span>(n &gt; rsim 10^9)</span>.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00730-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape diagram determination of a multiphase system in stratified configuration by CFD 多层结构多相系统形状图的CFD确定
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-12-07 DOI: 10.1007/s00162-024-00726-w
Emma O. Erezuma-de-la-Hoz, Alejandro J. García-Cuéllar, José Luis López-Salinas

Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (Re) and Bond (Bo) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.

采用流体体积法对水(顶部)、熔融金属(底部)和蒸汽(两者之间)的多相流现象进行了数值研究。像这样的多相流系统存在于广泛的工业应用和自然现象中,并且由于其产生能量的潜力而被广泛研究。由于界面形状对传热速率的影响,本工作特别关注界面形状。提出了一种基于Reynolds (Re)和Bond (Bo)无因次数构造界面形状图的新方法。该模型对控制力如粘滞力、惯性力和表面张力具有较好的辨识能力。确定了有效预混相的最佳界面形状。预混的意义在于它对蒸汽爆炸产生的决定性作用。此外,还考察了密度比和触发压力的影响。此外,还观察了Kelvin-Helmholtz和Rayleigh-Taylor破碎机制,并分析了它们的优势。所得结果与文献中已有的实验数据一致。本文旨在提供有用的信息,以增强我们对这一现象的基本认识,并适用于不同研究领域的进一步数值和实验研究。
{"title":"Shape diagram determination of a multiphase system in stratified configuration by CFD","authors":"Emma O. Erezuma-de-la-Hoz,&nbsp;Alejandro J. García-Cuéllar,&nbsp;José Luis López-Salinas","doi":"10.1007/s00162-024-00726-w","DOIUrl":"10.1007/s00162-024-00726-w","url":null,"abstract":"<p>Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (<i>Re</i>) and Bond (<i>Bo</i>) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analytical study of micro-droplet generation in microfluidic double T-junction devices under effects of channel depth ratio using VOF method 使用 VOF 方法分析研究通道深度比影响下微流体双 T 型连接装置中微液滴的生成情况
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-11-27 DOI: 10.1007/s00162-024-00720-2
Minh Duc Nguyen, The Khanh Lai, Ich Long Ngo

This paper describes a numerical study on micro-droplet generation in a microfluidic double T-junction device under the effects of channel depth using the Volume-Of-Fluid method. The effects of various parameters such as capillary number (Ca), water fraction (wf), viscosity ratio ((beta )), and particularly the channel depth ratio ((varepsilon )) were examined. Consequently, the numerical results match well with the experimental data obtained in the literature. Additionally, the micro-droplet size increases with increasing the channel depth ratio. A phase diagram with four main micro-droplet generation regimes is provided. Particularly, the alternating mode is narrowed in both Ca and wf ranges when increasing (varepsilon ). Moreover, four regimes of micro-droplet generation with the presence of channel depth were first discovered in the present study, and the stable micro-droplet generation regime can be gained within an effective range of both (varepsilon ) and (beta ). These results are very useful and valuable for many applications in emulsion production, hydrogel particle generation, and drug delivery synthesis in biomedical treatment.

本文采用流体容积法(Volume-Of-Fluid method)对微流体双 T 型连接装置中通道深度影响下的微液滴生成进行了数值研究。研究了各种参数的影响,如毛细管数(Ca)、水分量(wf)、粘度比((beta)),特别是通道深度比((varepsilon))。因此,数值结果与文献中获得的实验数据非常吻合。此外,微滴尺寸随着通道深度比的增加而增大。研究提供了四种主要微滴生成模式的相图。特别是当(varepsilon )增大时,交替模式在 Ca 和 wf 范围内都变窄了。此外,本研究首次发现了存在通道深度的四种微液滴生成机制,并且在有效的(varepsilon )和(beta )范围内都能获得稳定的微液滴生成机制。这些结果对于乳液生产、水凝胶颗粒生成和生物医学治疗中的药物输送合成等方面的许多应用都是非常有用和有价值的。
{"title":"An analytical study of micro-droplet generation in microfluidic double T-junction devices under effects of channel depth ratio using VOF method","authors":"Minh Duc Nguyen,&nbsp;The Khanh Lai,&nbsp;Ich Long Ngo","doi":"10.1007/s00162-024-00720-2","DOIUrl":"10.1007/s00162-024-00720-2","url":null,"abstract":"<p>This paper describes a numerical study on micro-droplet generation in a microfluidic double T-junction device under the effects of channel depth using the Volume-Of-Fluid method. The effects of various parameters such as capillary number (<i>Ca</i>), water fraction (<i>wf</i>), viscosity ratio <span>((beta ))</span>, and particularly the channel depth ratio <span>((varepsilon ))</span> were examined. Consequently, the numerical results match well with the experimental data obtained in the literature. Additionally, the micro-droplet size increases with increasing the channel depth ratio. A phase diagram with four main micro-droplet generation regimes is provided. Particularly, the alternating mode is narrowed in both <i>Ca</i> and <i>wf</i> ranges when increasing <span>(varepsilon )</span>. Moreover, four regimes of micro-droplet generation with the presence of channel depth were first discovered in the present study, and the stable micro-droplet generation regime can be gained within an effective range of both <span>(varepsilon )</span> and <span>(beta )</span>. These results are very useful and valuable for many applications in emulsion production, hydrogel particle generation, and drug delivery synthesis in biomedical treatment.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of the effect of the jet initial conditions on the wavelet separated near-field acoustic pressure 分析射流初始条件对小波分离近场声压的影响
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-11-21 DOI: 10.1007/s00162-024-00727-9
Stefano Meloni, Roberto Camussi, Christophe Bogey

This paper reports a parametric investigation of the effect of the nozzle exhaust initial conditions on the wavelet separated acoustic pressure generated by a single stream compressible jet in its near field from a database obtained by Large-Eddy Simulations of jet flows at M = 0.9 and Re = (10^5). The nozzle–exit boundary–layer conditions consist of different turbulence intensities for fixed thickness and several thicknesses in laminar conditions. Pressure time series are extracted from virtual probes distributed in the near field of the jets and the acoustic components of the near field pressure are extracted using a wavelet-based procedure able to decontaminate the signals from the hydrodynamic contribution. The reconstructed acoustic time series are analyzed in the frequency domain and in terms of Overall Sound Pressure Level (OASPL). The results show that both the boundary-layer thickness and the turbulence level significantly affect the acoustic pressure in terms of both intensity and directivity. In the laminar case, strong sideline components are observed and strongly depend on the boundary layer thickness. These components clearly appearing in the energy spectra are associated with the Kelvin–Helmholtz instability waves. For large nozzle-exit turbulence intensities, the acoustic field is more uniform and less intense in the sideline direction. On the other hand, the streamwise directivity of the acoustic pressure appears to be strictly correlated to the length of the jet potential core which strongly varies with the initial conditions.

本文报告了喷嘴排气初始条件对单流可压缩射流在其近场产生的小波分离声压的影响的参数研究,该参数是通过对 M = 0.9 和 Re =(10^5) 条件下的射流流进行 Large-Eddy 模拟获得的数据库。喷嘴出口边界层条件包括固定厚度下的不同湍流强度和层流条件下的多种厚度。压力时间序列是从分布在射流近场的虚拟探头中提取的,近场压力的声学分量则是通过一种基于小波的程序提取的,该程序能够从流体动力贡献中消除信号污染。对重建的声学时间序列进行了频域分析和整体声压级(OASPL)分析。结果表明,边界层厚度和湍流水平对声压的强度和指向性都有显著影响。在层流情况下,可以观察到很强的边线成分,并且与边界层厚度密切相关。这些明显出现在能谱中的成分与开尔文-赫尔姆霍兹不稳定波有关。在喷嘴出口湍流强度较大的情况下,边线方向的声场更加均匀,强度较低。另一方面,声压的流向指向性似乎与射流势核的长度密切相关,而射流势核的长度随初始条件变化很大。
{"title":"An analysis of the effect of the jet initial conditions on the wavelet separated near-field acoustic pressure","authors":"Stefano Meloni,&nbsp;Roberto Camussi,&nbsp;Christophe Bogey","doi":"10.1007/s00162-024-00727-9","DOIUrl":"10.1007/s00162-024-00727-9","url":null,"abstract":"<div><p>This paper reports a parametric investigation of the effect of the nozzle exhaust initial conditions on the wavelet separated acoustic pressure generated by a single stream compressible jet in its near field from a database obtained by Large-Eddy Simulations of jet flows at M = 0.9 and Re = <span>(10^5)</span>. The nozzle–exit boundary–layer conditions consist of different turbulence intensities for fixed thickness and several thicknesses in laminar conditions. Pressure time series are extracted from virtual probes distributed in the near field of the jets and the acoustic components of the near field pressure are extracted using a wavelet-based procedure able to decontaminate the signals from the hydrodynamic contribution. The reconstructed acoustic time series are analyzed in the frequency domain and in terms of Overall Sound Pressure Level (OASPL). The results show that both the boundary-layer thickness and the turbulence level significantly affect the acoustic pressure in terms of both intensity and directivity. In the laminar case, strong sideline components are observed and strongly depend on the boundary layer thickness. These components clearly appearing in the energy spectra are associated with the Kelvin–Helmholtz instability waves. For large nozzle-exit turbulence intensities, the acoustic field is more uniform and less intense in the sideline direction. On the other hand, the streamwise directivity of the acoustic pressure appears to be strictly correlated to the length of the jet potential core which strongly varies with the initial conditions.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing particulate behavior in high-speed, high-altitude conditions through an overlay-based computational approach 通过基于叠加的计算方法分析高速、高空条件下的微粒行为
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-11-18 DOI: 10.1007/s00162-024-00724-y
Akhil V. Marayikkottu, Nathaniel K. Myers, Irmak T. Karpuzcu, Deborah A. Levin, Qiong Liu

This paper presents an overlay-based one-way coupled Eulerian–Lagrangian computational approach designed to investigate the dynamics of particulate phases in extreme high-speed, high-altitude flight conditions characterized by very low particulate mass loading. Utilizing the Direct Simulation Monte Carlo method to generate accurate gas flow fields, this study explores two canonical hypersonic flow systems. First we focus on the hypersonic flow over a sphere-cone, revealing the formation of dust-free zones for small particulate diameters and describing the particulate interaction with gas shocks. As particulate diameter and flight speed increase, the characteristics of the particulate phase evolve, leading to the emergence of distinctive features such as high particulate concentration bands or regions void of particulates. Subsequently, the investigation considers flow over a double-cone, emphasizing the behavior of particulate phases in separated vortex-dominated systems where particulate-inertia-driven interactions with vortices result in unique particulate-free zones in the vicinity of the primary and secondary vortices. Additionally, the paper addresses the importance of using realistic fractal-like particulate shapes and demonstrates that the shape effect tends to decelerate the fractal aggregates and trap them along the boundaries of the primary vortex. This research contributes to a deeper understanding of particulate phase dynamics in extreme flight conditions, offering insights relevant to aerospace and aerodynamic applications.

本文提出了一种基于叠加的单向欧拉-拉格朗日耦合计算方法,旨在研究在颗粒质量负荷极低的极端高速、高空飞行条件下颗粒相的动力学。本研究利用直接模拟蒙特卡洛方法生成精确的气体流场,探索了两种典型的高超音速流动系统。首先,我们重点研究了球锥上方的高超音速流动,揭示了小颗粒直径无尘区的形成,并描述了颗粒与气体冲击的相互作用。随着微粒直径和飞行速度的增加,微粒相的特征也会发生变化,从而出现一些明显的特征,如高浓度微粒带或无微粒区域。随后,研究考虑了在双锥体上的流动,强调了微粒相在分离的涡流主导系统中的行为,在这种系统中,微粒惯性驱动与涡流的相互作用导致在主涡流和副涡流附近形成独特的无微粒区。此外,论文还论述了使用逼真的分形颗粒形状的重要性,并证明了形状效应往往会使分形聚集体减速,并将它们困在主涡的边界上。这项研究有助于加深对极端飞行条件下微粒相态动力学的理解,为航空航天和空气动力学应用提供相关见解。
{"title":"Analyzing particulate behavior in high-speed, high-altitude conditions through an overlay-based computational approach","authors":"Akhil V. Marayikkottu,&nbsp;Nathaniel K. Myers,&nbsp;Irmak T. Karpuzcu,&nbsp;Deborah A. Levin,&nbsp;Qiong Liu","doi":"10.1007/s00162-024-00724-y","DOIUrl":"10.1007/s00162-024-00724-y","url":null,"abstract":"<div><p>This paper presents an overlay-based one-way coupled Eulerian–Lagrangian computational approach designed to investigate the dynamics of particulate phases in extreme high-speed, high-altitude flight conditions characterized by very low particulate mass loading. Utilizing the Direct Simulation Monte Carlo method to generate accurate gas flow fields, this study explores two canonical hypersonic flow systems. First we focus on the hypersonic flow over a sphere-cone, revealing the formation of dust-free zones for small particulate diameters and describing the particulate interaction with gas shocks. As particulate diameter and flight speed increase, the characteristics of the particulate phase evolve, leading to the emergence of distinctive features such as high particulate concentration bands or regions void of particulates. Subsequently, the investigation considers flow over a double-cone, emphasizing the behavior of particulate phases in separated vortex-dominated systems where particulate-inertia-driven interactions with vortices result in unique particulate-free zones in the vicinity of the primary and secondary vortices. Additionally, the paper addresses the importance of using realistic fractal-like particulate shapes and demonstrates that the shape effect tends to decelerate the fractal aggregates and trap them along the boundaries of the primary vortex. This research contributes to a deeper understanding of particulate phase dynamics in extreme flight conditions, offering insights relevant to aerospace and aerodynamic applications.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube 管内纤毛跳动辅助蠕动的长波长分析修正案
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-11-07 DOI: 10.1007/s00162-024-00721-1
Mustafa Turkyilmazoglu

This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.

这项研究深入探讨了管状管道内双波正弦纤毛跳动的蠕动流变学。纤毛运动推动了蠕动流体流动的动态现象。采用传统的长波长润滑假设,将流动方程转化为相似形式。主要目的是考虑到真正的蠕动-纤毛运动效应。然后,我们得出了管内流体颗粒径向和轴向速度的解析解。值得注意的是,在这一领先近似水平上,纤毛跳动的影响可以忽略不计,这表明运动完全由蠕动表面波驱动。然而,通过分析对长波长极限的修正,我们发现纤毛的边界效应通过其偏心的椭圆路径显现出来。这种修正使我们能够提取压力梯度、流函数、轴向和径向速度、结果压力上升和阻力的表达式,所有这些都基于管道上的时间平均平均流速。最后,我们对纤毛辅助蠕动运动引起的流体流变学进行了一般性讨论,并用翔实的图表进行了说明。研究表明,在生物或生物医学应用中,由于纤毛跳动波对管壁产生的阻力,有必要在传统的长波长采用法中添加修正项。
{"title":"Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube","authors":"Mustafa Turkyilmazoglu","doi":"10.1007/s00162-024-00721-1","DOIUrl":"10.1007/s00162-024-00721-1","url":null,"abstract":"<div><p>This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave reflections and resonance in a Mach 0.9 turbulent jet 0.9 马赫湍流喷流中的波反射和共振
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-11-07 DOI: 10.1007/s00162-024-00722-0
Robin Prinja, Eduardo Martini, Peter Jordan, Aaron Towne, André V. G. Cavalieri

This work aims to provide a more complete understanding of the resonance mechanisms that occur in turbulent jets at high subsonic Mach number, as shown by Towne et al. (J. Fluid Mech., vol. 825, 2017, pp. 1113-1152). Resonance was suggested by that study to exist between upstream- and downstream-travelling guided waves. Five possible resonance mechanisms were postulated, each involving different families of guided waves that reflect in the nozzle exit plane and at a number of downstream turning points. However, that study did not identify which of the five resonance mechanisms underpin the observed spectral peaks. In this work, the waves underpinning resonance are identified via a biorthogonal projection of Large Eddy Simulation data on eigenbases provided by a locally parallel linear stability analysis. Two of the five scenarios postulated by Towne et al. are thus confirmed to exist in the turbulent jet. The reflection-coefficients in the nozzle exit and turning-point planes are, furthermore, identified. Such information is required as input for simplified resonance-modelling strategies such as developed in Jordan et al. (J. Fluid Mech., vol. 853, 2018, pp. 333-358) for jet-edge resonance, and in Mancinelli et al. (Exp. Fluids, vol. 60, 2019, pp. 1-9) for supersonic screech.

这项工作旨在更全面地了解 Towne 等人(《流体力学》,第 825 卷,2017 年,第 1113-1152 页)所述的亚音速高马赫数湍流射流中发生的共振机制。该研究认为上游和下游导波之间存在共振。研究假设了五种可能的共振机制,每种机制都涉及不同系列的导波,这些导波在喷嘴出口平面和若干下游转折点处发生反射。然而,该研究并未确定这五种共振机制中哪一种是观测到的光谱峰的基础。在这项工作中,通过对局部并行线性稳定性分析提供的特征基上的大涡流模拟数据进行双向投影,确定了支撑共振的波。因此,Towne 等人假设的五种情况中有两种被证实存在于湍流射流中。此外,还确定了喷嘴出口和转折点平面的反射系数。这些信息需要作为简化共振建模策略的输入,如 Jordan 等人(《流体力学》,第 853 卷,2018 年,第 333-358 页)针对喷流边缘共振和 Mancinelli 等人(《流体学报》,第 60 卷,2019 年,第 1-9 页)针对超音速尖啸所开发的策略。
{"title":"Wave reflections and resonance in a Mach 0.9 turbulent jet","authors":"Robin Prinja,&nbsp;Eduardo Martini,&nbsp;Peter Jordan,&nbsp;Aaron Towne,&nbsp;André V. G. Cavalieri","doi":"10.1007/s00162-024-00722-0","DOIUrl":"10.1007/s00162-024-00722-0","url":null,"abstract":"<div><p>This work aims to provide a more complete understanding of the resonance mechanisms that occur in turbulent jets at high subsonic Mach number, as shown by Towne et al. (<i>J. Fluid Mech.</i>, vol. 825, 2017, pp. 1113-1152). Resonance was suggested by that study to exist between upstream- and downstream-travelling guided waves. Five possible resonance mechanisms were postulated, each involving different families of guided waves that reflect in the nozzle exit plane and at a number of downstream turning points. However, that study did not identify which of the five resonance mechanisms underpin the observed spectral peaks. In this work, the waves underpinning resonance are identified via a biorthogonal projection of Large Eddy Simulation data on eigenbases provided by a locally parallel linear stability analysis. Two of the five scenarios postulated by Towne et al. are thus confirmed to exist in the turbulent jet. The reflection-coefficients in the nozzle exit and turning-point planes are, furthermore, identified. Such information is required as input for simplified resonance-modelling strategies such as developed in Jordan et al. (<i>J. Fluid Mech.</i>, vol. 853, 2018, pp. 333-358) for jet-edge resonance, and in Mancinelli et al. (<i>Exp. Fluids</i>, vol. 60, 2019, pp. 1-9) for supersonic screech.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended cluster-based network modeling for coherent structures in turbulent flows 湍流中相干结构的扩展聚类网络建模
IF 2.2 3区 工程技术 Q2 MECHANICS Pub Date : 2024-10-25 DOI: 10.1007/s00162-024-00723-z
Antonio Colanera, Johann Moritz Reumschüssel, Jan Paul Beuth, Matteo Chiatto, Luigi de Luca, Kilian Oberleithner

This study introduces the Extended Cluster-based Network Modeling (eCNM), a methodology to analyze complex fluid flows. The eCNM focuses on characterizing dynamics within specific subspaces or subsets of variables, providing valuable insights into complex flow phenomena. The effectiveness of the eCNM is demonstrated on a swirl flame in unforced conditions, characterized by a precessing vortex core (PVC), using synchronized data from PIV measurements, UV-images filtered around the OH* chemiluminescence wavelength, featuring the heat release rate distribution, and pressure signals from jet inlet probes. The analysis starts with choosing the distance metric for the coarse-graining process and the number of clusters of the model. This has been pursued by designing a filtered distance metric based on the filtered correlation matrix and minimizing the Bayesian information criterion (BIC) score, balancing the goodness of the fit of a model with its complexity. The standard cluster-based network model on the velocity fluctuations allowed for determining the characteristic frequency of the PVC. The construction of extended cluster centroids of the heat release rate reveals a rotating flame pattern, predominantly localized within regions influenced by PVC’s vortices roll-up. Spatial subdomain analysis is carried out, demonstrating the benefits of focusing on specific regions of interest within the fluid system and providing significant computational savings. Furthermore, eCNM allows for the handling of different sampling frequencies among datasets. Leveraging high-resolution pressure measurements as a reference dataset and velocity components as undersampled data, extended cluster centroids for velocity are successfully estimated, even when the velocity sampling frequency is artificially reduced. This study showcases the adaptability and robustness of eCNM as a valuable tool for comprehending and analyzing coherent structures in complex fluid flows.

本研究介绍了基于簇的扩展网络建模(eCNM),这是一种分析复杂流体流动的方法。eCNM 专注于描述特定子空间或变量子集内的动力学特征,为复杂的流动现象提供有价值的见解。我们利用 PIV 测量数据、围绕 OH* 化学发光波长滤波的 UV 图像(以热释放率分布为特征)以及喷射入口探头的压力信号等同步数据,演示了 eCNM 在非强制条件下漩涡火焰中的有效性,该火焰的特征是一个前冲漩涡核心 (PVC)。分析工作从选择粗粒化过程的距离度量和模型的簇数开始。为此,我们设计了一种基于滤波相关矩阵的滤波距离度量,并使贝叶斯信息准则(BIC)得分最小化,从而在模型的拟合度和复杂度之间取得平衡。基于速度波动的标准聚类网络模型可以确定聚氯乙烯的特征频率。热释放率扩展聚类中心点的构建揭示了一种旋转火焰模式,主要集中在受聚氯乙烯涡卷影响的区域。通过进行空间子域分析,展示了在流体系统中关注特定区域的好处,并显著节省了计算量。此外,eCNM 还可以处理不同数据集的不同采样频率。利用作为参考数据集的高分辨率压力测量值和作为采样不足数据的速度分量,即使人为降低速度采样频率,也能成功估算出速度的扩展聚类中心点。这项研究展示了 eCNM 的适应性和稳健性,它是理解和分析复杂流体流动中相干结构的重要工具。
{"title":"Extended cluster-based network modeling for coherent structures in turbulent flows","authors":"Antonio Colanera,&nbsp;Johann Moritz Reumschüssel,&nbsp;Jan Paul Beuth,&nbsp;Matteo Chiatto,&nbsp;Luigi de Luca,&nbsp;Kilian Oberleithner","doi":"10.1007/s00162-024-00723-z","DOIUrl":"10.1007/s00162-024-00723-z","url":null,"abstract":"<div><p>This study introduces the Extended Cluster-based Network Modeling (eCNM), a methodology to analyze complex fluid flows. The eCNM focuses on characterizing dynamics within specific subspaces or subsets of variables, providing valuable insights into complex flow phenomena. The effectiveness of the eCNM is demonstrated on a swirl flame in unforced conditions, characterized by a precessing vortex core (PVC), using synchronized data from PIV measurements, UV-images filtered around the OH* chemiluminescence wavelength, featuring the heat release rate distribution, and pressure signals from jet inlet probes. The analysis starts with choosing the distance metric for the coarse-graining process and the number of clusters of the model. This has been pursued by designing a filtered distance metric based on the filtered correlation matrix and minimizing the Bayesian information criterion (BIC) score, balancing the goodness of the fit of a model with its complexity. The standard cluster-based network model on the velocity fluctuations allowed for determining the characteristic frequency of the PVC. The construction of extended cluster centroids of the heat release rate reveals a rotating flame pattern, predominantly localized within regions influenced by PVC’s vortices roll-up. Spatial subdomain analysis is carried out, demonstrating the benefits of focusing on specific regions of interest within the fluid system and providing significant computational savings. Furthermore, eCNM allows for the handling of different sampling frequencies among datasets. Leveraging high-resolution pressure measurements as a reference dataset and velocity components as undersampled data, extended cluster centroids for velocity are successfully estimated, even when the velocity sampling frequency is artificially reduced. This study showcases the adaptability and robustness of eCNM as a valuable tool for comprehending and analyzing coherent structures in complex fluid flows.\u0000</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical and Computational Fluid Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1