Pub Date : 2024-11-27DOI: 10.1007/s00162-024-00720-2
Minh Duc Nguyen, The Khanh Lai, Ich Long Ngo
This paper describes a numerical study on micro-droplet generation in a microfluidic double T-junction device under the effects of channel depth using the Volume-Of-Fluid method. The effects of various parameters such as capillary number (Ca), water fraction (wf), viscosity ratio ((beta )), and particularly the channel depth ratio ((varepsilon )) were examined. Consequently, the numerical results match well with the experimental data obtained in the literature. Additionally, the micro-droplet size increases with increasing the channel depth ratio. A phase diagram with four main micro-droplet generation regimes is provided. Particularly, the alternating mode is narrowed in both Ca and wf ranges when increasing (varepsilon ). Moreover, four regimes of micro-droplet generation with the presence of channel depth were first discovered in the present study, and the stable micro-droplet generation regime can be gained within an effective range of both (varepsilon ) and (beta ). These results are very useful and valuable for many applications in emulsion production, hydrogel particle generation, and drug delivery synthesis in biomedical treatment.
本文采用流体容积法(Volume-Of-Fluid method)对微流体双 T 型连接装置中通道深度影响下的微液滴生成进行了数值研究。研究了各种参数的影响,如毛细管数(Ca)、水分量(wf)、粘度比((beta)),特别是通道深度比((varepsilon))。因此,数值结果与文献中获得的实验数据非常吻合。此外,微滴尺寸随着通道深度比的增加而增大。研究提供了四种主要微滴生成模式的相图。特别是当(varepsilon )增大时,交替模式在 Ca 和 wf 范围内都变窄了。此外,本研究首次发现了存在通道深度的四种微液滴生成机制,并且在有效的(varepsilon )和(beta )范围内都能获得稳定的微液滴生成机制。这些结果对于乳液生产、水凝胶颗粒生成和生物医学治疗中的药物输送合成等方面的许多应用都是非常有用和有价值的。
{"title":"An analytical study of micro-droplet generation in microfluidic double T-junction devices under effects of channel depth ratio using VOF method","authors":"Minh Duc Nguyen, The Khanh Lai, Ich Long Ngo","doi":"10.1007/s00162-024-00720-2","DOIUrl":"10.1007/s00162-024-00720-2","url":null,"abstract":"<p>This paper describes a numerical study on micro-droplet generation in a microfluidic double T-junction device under the effects of channel depth using the Volume-Of-Fluid method. The effects of various parameters such as capillary number (<i>Ca</i>), water fraction (<i>wf</i>), viscosity ratio <span>((beta ))</span>, and particularly the channel depth ratio <span>((varepsilon ))</span> were examined. Consequently, the numerical results match well with the experimental data obtained in the literature. Additionally, the micro-droplet size increases with increasing the channel depth ratio. A phase diagram with four main micro-droplet generation regimes is provided. Particularly, the alternating mode is narrowed in both <i>Ca</i> and <i>wf</i> ranges when increasing <span>(varepsilon )</span>. Moreover, four regimes of micro-droplet generation with the presence of channel depth were first discovered in the present study, and the stable micro-droplet generation regime can be gained within an effective range of both <span>(varepsilon )</span> and <span>(beta )</span>. These results are very useful and valuable for many applications in emulsion production, hydrogel particle generation, and drug delivery synthesis in biomedical treatment.</p>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1007/s00162-024-00727-9
Stefano Meloni, Roberto Camussi, Christophe Bogey
This paper reports a parametric investigation of the effect of the nozzle exhaust initial conditions on the wavelet separated acoustic pressure generated by a single stream compressible jet in its near field from a database obtained by Large-Eddy Simulations of jet flows at M = 0.9 and Re = (10^5). The nozzle–exit boundary–layer conditions consist of different turbulence intensities for fixed thickness and several thicknesses in laminar conditions. Pressure time series are extracted from virtual probes distributed in the near field of the jets and the acoustic components of the near field pressure are extracted using a wavelet-based procedure able to decontaminate the signals from the hydrodynamic contribution. The reconstructed acoustic time series are analyzed in the frequency domain and in terms of Overall Sound Pressure Level (OASPL). The results show that both the boundary-layer thickness and the turbulence level significantly affect the acoustic pressure in terms of both intensity and directivity. In the laminar case, strong sideline components are observed and strongly depend on the boundary layer thickness. These components clearly appearing in the energy spectra are associated with the Kelvin–Helmholtz instability waves. For large nozzle-exit turbulence intensities, the acoustic field is more uniform and less intense in the sideline direction. On the other hand, the streamwise directivity of the acoustic pressure appears to be strictly correlated to the length of the jet potential core which strongly varies with the initial conditions.
本文报告了喷嘴排气初始条件对单流可压缩射流在其近场产生的小波分离声压的影响的参数研究,该参数是通过对 M = 0.9 和 Re =(10^5) 条件下的射流流进行 Large-Eddy 模拟获得的数据库。喷嘴出口边界层条件包括固定厚度下的不同湍流强度和层流条件下的多种厚度。压力时间序列是从分布在射流近场的虚拟探头中提取的,近场压力的声学分量则是通过一种基于小波的程序提取的,该程序能够从流体动力贡献中消除信号污染。对重建的声学时间序列进行了频域分析和整体声压级(OASPL)分析。结果表明,边界层厚度和湍流水平对声压的强度和指向性都有显著影响。在层流情况下,可以观察到很强的边线成分,并且与边界层厚度密切相关。这些明显出现在能谱中的成分与开尔文-赫尔姆霍兹不稳定波有关。在喷嘴出口湍流强度较大的情况下,边线方向的声场更加均匀,强度较低。另一方面,声压的流向指向性似乎与射流势核的长度密切相关,而射流势核的长度随初始条件变化很大。
{"title":"An analysis of the effect of the jet initial conditions on the wavelet separated near-field acoustic pressure","authors":"Stefano Meloni, Roberto Camussi, Christophe Bogey","doi":"10.1007/s00162-024-00727-9","DOIUrl":"10.1007/s00162-024-00727-9","url":null,"abstract":"<div><p>This paper reports a parametric investigation of the effect of the nozzle exhaust initial conditions on the wavelet separated acoustic pressure generated by a single stream compressible jet in its near field from a database obtained by Large-Eddy Simulations of jet flows at M = 0.9 and Re = <span>(10^5)</span>. The nozzle–exit boundary–layer conditions consist of different turbulence intensities for fixed thickness and several thicknesses in laminar conditions. Pressure time series are extracted from virtual probes distributed in the near field of the jets and the acoustic components of the near field pressure are extracted using a wavelet-based procedure able to decontaminate the signals from the hydrodynamic contribution. The reconstructed acoustic time series are analyzed in the frequency domain and in terms of Overall Sound Pressure Level (OASPL). The results show that both the boundary-layer thickness and the turbulence level significantly affect the acoustic pressure in terms of both intensity and directivity. In the laminar case, strong sideline components are observed and strongly depend on the boundary layer thickness. These components clearly appearing in the energy spectra are associated with the Kelvin–Helmholtz instability waves. For large nozzle-exit turbulence intensities, the acoustic field is more uniform and less intense in the sideline direction. On the other hand, the streamwise directivity of the acoustic pressure appears to be strictly correlated to the length of the jet potential core which strongly varies with the initial conditions.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1007/s00162-024-00724-y
Akhil V. Marayikkottu, Nathaniel K. Myers, Irmak T. Karpuzcu, Deborah A. Levin, Qiong Liu
This paper presents an overlay-based one-way coupled Eulerian–Lagrangian computational approach designed to investigate the dynamics of particulate phases in extreme high-speed, high-altitude flight conditions characterized by very low particulate mass loading. Utilizing the Direct Simulation Monte Carlo method to generate accurate gas flow fields, this study explores two canonical hypersonic flow systems. First we focus on the hypersonic flow over a sphere-cone, revealing the formation of dust-free zones for small particulate diameters and describing the particulate interaction with gas shocks. As particulate diameter and flight speed increase, the characteristics of the particulate phase evolve, leading to the emergence of distinctive features such as high particulate concentration bands or regions void of particulates. Subsequently, the investigation considers flow over a double-cone, emphasizing the behavior of particulate phases in separated vortex-dominated systems where particulate-inertia-driven interactions with vortices result in unique particulate-free zones in the vicinity of the primary and secondary vortices. Additionally, the paper addresses the importance of using realistic fractal-like particulate shapes and demonstrates that the shape effect tends to decelerate the fractal aggregates and trap them along the boundaries of the primary vortex. This research contributes to a deeper understanding of particulate phase dynamics in extreme flight conditions, offering insights relevant to aerospace and aerodynamic applications.
{"title":"Analyzing particulate behavior in high-speed, high-altitude conditions through an overlay-based computational approach","authors":"Akhil V. Marayikkottu, Nathaniel K. Myers, Irmak T. Karpuzcu, Deborah A. Levin, Qiong Liu","doi":"10.1007/s00162-024-00724-y","DOIUrl":"10.1007/s00162-024-00724-y","url":null,"abstract":"<div><p>This paper presents an overlay-based one-way coupled Eulerian–Lagrangian computational approach designed to investigate the dynamics of particulate phases in extreme high-speed, high-altitude flight conditions characterized by very low particulate mass loading. Utilizing the Direct Simulation Monte Carlo method to generate accurate gas flow fields, this study explores two canonical hypersonic flow systems. First we focus on the hypersonic flow over a sphere-cone, revealing the formation of dust-free zones for small particulate diameters and describing the particulate interaction with gas shocks. As particulate diameter and flight speed increase, the characteristics of the particulate phase evolve, leading to the emergence of distinctive features such as high particulate concentration bands or regions void of particulates. Subsequently, the investigation considers flow over a double-cone, emphasizing the behavior of particulate phases in separated vortex-dominated systems where particulate-inertia-driven interactions with vortices result in unique particulate-free zones in the vicinity of the primary and secondary vortices. Additionally, the paper addresses the importance of using realistic fractal-like particulate shapes and demonstrates that the shape effect tends to decelerate the fractal aggregates and trap them along the boundaries of the primary vortex. This research contributes to a deeper understanding of particulate phase dynamics in extreme flight conditions, offering insights relevant to aerospace and aerodynamic applications.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s00162-024-00721-1
Mustafa Turkyilmazoglu
This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.
{"title":"Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube","authors":"Mustafa Turkyilmazoglu","doi":"10.1007/s00162-024-00721-1","DOIUrl":"10.1007/s00162-024-00721-1","url":null,"abstract":"<div><p>This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s00162-024-00722-0
Robin Prinja, Eduardo Martini, Peter Jordan, Aaron Towne, André V. G. Cavalieri
This work aims to provide a more complete understanding of the resonance mechanisms that occur in turbulent jets at high subsonic Mach number, as shown by Towne et al. (J. Fluid Mech., vol. 825, 2017, pp. 1113-1152). Resonance was suggested by that study to exist between upstream- and downstream-travelling guided waves. Five possible resonance mechanisms were postulated, each involving different families of guided waves that reflect in the nozzle exit plane and at a number of downstream turning points. However, that study did not identify which of the five resonance mechanisms underpin the observed spectral peaks. In this work, the waves underpinning resonance are identified via a biorthogonal projection of Large Eddy Simulation data on eigenbases provided by a locally parallel linear stability analysis. Two of the five scenarios postulated by Towne et al. are thus confirmed to exist in the turbulent jet. The reflection-coefficients in the nozzle exit and turning-point planes are, furthermore, identified. Such information is required as input for simplified resonance-modelling strategies such as developed in Jordan et al. (J. Fluid Mech., vol. 853, 2018, pp. 333-358) for jet-edge resonance, and in Mancinelli et al. (Exp. Fluids, vol. 60, 2019, pp. 1-9) for supersonic screech.
{"title":"Wave reflections and resonance in a Mach 0.9 turbulent jet","authors":"Robin Prinja, Eduardo Martini, Peter Jordan, Aaron Towne, André V. G. Cavalieri","doi":"10.1007/s00162-024-00722-0","DOIUrl":"10.1007/s00162-024-00722-0","url":null,"abstract":"<div><p>This work aims to provide a more complete understanding of the resonance mechanisms that occur in turbulent jets at high subsonic Mach number, as shown by Towne et al. (<i>J. Fluid Mech.</i>, vol. 825, 2017, pp. 1113-1152). Resonance was suggested by that study to exist between upstream- and downstream-travelling guided waves. Five possible resonance mechanisms were postulated, each involving different families of guided waves that reflect in the nozzle exit plane and at a number of downstream turning points. However, that study did not identify which of the five resonance mechanisms underpin the observed spectral peaks. In this work, the waves underpinning resonance are identified via a biorthogonal projection of Large Eddy Simulation data on eigenbases provided by a locally parallel linear stability analysis. Two of the five scenarios postulated by Towne et al. are thus confirmed to exist in the turbulent jet. The reflection-coefficients in the nozzle exit and turning-point planes are, furthermore, identified. Such information is required as input for simplified resonance-modelling strategies such as developed in Jordan et al. (<i>J. Fluid Mech.</i>, vol. 853, 2018, pp. 333-358) for jet-edge resonance, and in Mancinelli et al. (<i>Exp. Fluids</i>, vol. 60, 2019, pp. 1-9) for supersonic screech.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1007/s00162-024-00723-z
Antonio Colanera, Johann Moritz Reumschüssel, Jan Paul Beuth, Matteo Chiatto, Luigi de Luca, Kilian Oberleithner
This study introduces the Extended Cluster-based Network Modeling (eCNM), a methodology to analyze complex fluid flows. The eCNM focuses on characterizing dynamics within specific subspaces or subsets of variables, providing valuable insights into complex flow phenomena. The effectiveness of the eCNM is demonstrated on a swirl flame in unforced conditions, characterized by a precessing vortex core (PVC), using synchronized data from PIV measurements, UV-images filtered around the OH* chemiluminescence wavelength, featuring the heat release rate distribution, and pressure signals from jet inlet probes. The analysis starts with choosing the distance metric for the coarse-graining process and the number of clusters of the model. This has been pursued by designing a filtered distance metric based on the filtered correlation matrix and minimizing the Bayesian information criterion (BIC) score, balancing the goodness of the fit of a model with its complexity. The standard cluster-based network model on the velocity fluctuations allowed for determining the characteristic frequency of the PVC. The construction of extended cluster centroids of the heat release rate reveals a rotating flame pattern, predominantly localized within regions influenced by PVC’s vortices roll-up. Spatial subdomain analysis is carried out, demonstrating the benefits of focusing on specific regions of interest within the fluid system and providing significant computational savings. Furthermore, eCNM allows for the handling of different sampling frequencies among datasets. Leveraging high-resolution pressure measurements as a reference dataset and velocity components as undersampled data, extended cluster centroids for velocity are successfully estimated, even when the velocity sampling frequency is artificially reduced. This study showcases the adaptability and robustness of eCNM as a valuable tool for comprehending and analyzing coherent structures in complex fluid flows.
{"title":"Extended cluster-based network modeling for coherent structures in turbulent flows","authors":"Antonio Colanera, Johann Moritz Reumschüssel, Jan Paul Beuth, Matteo Chiatto, Luigi de Luca, Kilian Oberleithner","doi":"10.1007/s00162-024-00723-z","DOIUrl":"10.1007/s00162-024-00723-z","url":null,"abstract":"<div><p>This study introduces the Extended Cluster-based Network Modeling (eCNM), a methodology to analyze complex fluid flows. The eCNM focuses on characterizing dynamics within specific subspaces or subsets of variables, providing valuable insights into complex flow phenomena. The effectiveness of the eCNM is demonstrated on a swirl flame in unforced conditions, characterized by a precessing vortex core (PVC), using synchronized data from PIV measurements, UV-images filtered around the OH* chemiluminescence wavelength, featuring the heat release rate distribution, and pressure signals from jet inlet probes. The analysis starts with choosing the distance metric for the coarse-graining process and the number of clusters of the model. This has been pursued by designing a filtered distance metric based on the filtered correlation matrix and minimizing the Bayesian information criterion (BIC) score, balancing the goodness of the fit of a model with its complexity. The standard cluster-based network model on the velocity fluctuations allowed for determining the characteristic frequency of the PVC. The construction of extended cluster centroids of the heat release rate reveals a rotating flame pattern, predominantly localized within regions influenced by PVC’s vortices roll-up. Spatial subdomain analysis is carried out, demonstrating the benefits of focusing on specific regions of interest within the fluid system and providing significant computational savings. Furthermore, eCNM allows for the handling of different sampling frequencies among datasets. Leveraging high-resolution pressure measurements as a reference dataset and velocity components as undersampled data, extended cluster centroids for velocity are successfully estimated, even when the velocity sampling frequency is artificially reduced. This study showcases the adaptability and robustness of eCNM as a valuable tool for comprehending and analyzing coherent structures in complex fluid flows.\u0000</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"39 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1007/s00162-024-00719-9
Vassili Kitsios, Laurent Cordier, Terence J. O’Kane
A reduced-order model (ROM) of the global oceans is developed by projecting the hydrostatic Boussinesq equations of motion onto a proper orthogonal decomposition (POD) basis. Three-dimensional POD modes are calculated from the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the POD ROM are calculated using a regression approach. The performance of various POD ROM configurations are assessed. Each configuration is derived from an alternate sea-water equation of state, linking the density and temperature fields. POD ROM variants incorporating an equation of state in which density is a quadratic function of temperature, are able to reproduce the statistics of the large-scale structures at a fraction of the computational cost required to numerically simulate this flow. Due to the speed and efficiency of calculation, such reduced-order models of the global geophysical system will enable researchers and policy makers to assess the physical risk for a broader range of potential future climate scenarios.
通过将流体静力学布辛斯克运动方程投影到适当的正交分解(POD)基础上,建立了全球海洋的降阶模式(ROM)。三维 POD 模式是根据集合气候再分析数据集的海洋场计算得出的。POD ROM 中的系数采用回归方法计算。评估了各种 POD ROM 配置的性能。每种配置都来自于一个将密度场和温度场联系起来的备用海水状态方程。POD ROM 变体包含密度是温度二次函数的状态方程,能够以数值模拟这种流动所需的计算成本的一小部分再现大规模结构的统计数据。由于计算速度快、效率高,这种全球地球物理系统的降阶模型将使研究人员和决策者能够评估未来更多潜在气候情景下的物理风险。
{"title":"Proper orthogonal decomposition reduced-order model of the global oceans","authors":"Vassili Kitsios, Laurent Cordier, Terence J. O’Kane","doi":"10.1007/s00162-024-00719-9","DOIUrl":"10.1007/s00162-024-00719-9","url":null,"abstract":"<div><p>A reduced-order model (ROM) of the global oceans is developed by projecting the hydrostatic Boussinesq equations of motion onto a proper orthogonal decomposition (POD) basis. Three-dimensional POD modes are calculated from the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the POD ROM are calculated using a regression approach. The performance of various POD ROM configurations are assessed. Each configuration is derived from an alternate sea-water equation of state, linking the density and temperature fields. POD ROM variants incorporating an equation of state in which density is a quadratic function of temperature, are able to reproduce the statistics of the large-scale structures at a fraction of the computational cost required to numerically simulate this flow. Due to the speed and efficiency of calculation, such reduced-order models of the global geophysical system will enable researchers and policy makers to assess the physical risk for a broader range of potential future climate scenarios.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 5","pages":"707 - 727"},"PeriodicalIF":2.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00719-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s00162-024-00710-4
Kai Wang, Tiangui Ye, Xueren Wang, Guoyong Jin, Yukun Chen
To analyze the noise induced by moving rigid structures in low Mach number flows, acoustic governing equations based on the viscous/acoustic splitting method and the arbitrary Lagrangian–Eulerian method are rigorously derived. In order to resolve the numerical instability generated in a non-uniform mean flow, the modified viscous/acoustic method, based on the filtering method, is developed. The acoustic equations are transformed into the same form as the incompressible flow equations by introducing the acoustic co-velocity and solved based on a collocated grid finite volume method. An approach for solving acoustic equation based on the PIMPLE algorithm is presented and computed in open-source computational fluid dynamics software OpenFOAM, which brings down communication costs and speeds up computing efficiency. Furthermore, the source term decomposition is extended to study the noise generated by each source term in a motion grid. Several examples including stationary and moving meshes have been designed to prove the accuracy of this approach. Finally, the aerodynamic and acoustic properties for the flow past a transversely oscillating cylinder at Re = 200, Ma = 0.2 in lock-in and non-lock-in regions is present.
{"title":"A hybrid method for aeroacoustic computation of moving rigid bodies in low Mach number flows","authors":"Kai Wang, Tiangui Ye, Xueren Wang, Guoyong Jin, Yukun Chen","doi":"10.1007/s00162-024-00710-4","DOIUrl":"10.1007/s00162-024-00710-4","url":null,"abstract":"<div><p>To analyze the noise induced by moving rigid structures in low Mach number flows, acoustic governing equations based on the viscous/acoustic splitting method and the arbitrary Lagrangian–Eulerian method are rigorously derived. In order to resolve the numerical instability generated in a non-uniform mean flow, the modified viscous/acoustic method, based on the filtering method, is developed. The acoustic equations are transformed into the same form as the incompressible flow equations by introducing the acoustic co-velocity and solved based on a collocated grid finite volume method. An approach for solving acoustic equation based on the PIMPLE algorithm is presented and computed in open-source computational fluid dynamics software OpenFOAM, which brings down communication costs and speeds up computing efficiency. Furthermore, the source term decomposition is extended to study the noise generated by each source term in a motion grid. Several examples including stationary and moving meshes have been designed to prove the accuracy of this approach. Finally, the aerodynamic and acoustic properties for the flow past a transversely oscillating cylinder at Re = 200, Ma = 0.2 in lock-in and non-lock-in regions is present.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 5","pages":"747 - 777"},"PeriodicalIF":2.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s00162-024-00715-z
Eduardo Martini, Clement Caillaud, Guillaume Lehnasch, Peter Jordan, Oliver Schmidt
Different transition to turbulence routes for the flow around blunt bodies are possible. Non-modal amplification of perturbations via the lift-up effect has recently been explored to explain transition near the stagnation point in axisymmetric bodies. However, only perturbations already present in the boundary layer can be amplified, and the mechanisms by which free-stream perturbations enter the boundary layer have not yet been fully explored. In this study, we present an investigation of how disturbances enter the boundary layer via the stagnation point. This linear mechanism is expected to dominate over non-linear mechanisms previously identified on the formation of boundary layer perturbations at low turbulence intensity levels. A parametric investigation is presented, revealing trends with Reynolds and Mach numbers.
{"title":"Perturbation amplification near the stagnation point of blunt bodies","authors":"Eduardo Martini, Clement Caillaud, Guillaume Lehnasch, Peter Jordan, Oliver Schmidt","doi":"10.1007/s00162-024-00715-z","DOIUrl":"10.1007/s00162-024-00715-z","url":null,"abstract":"<div><p>Different transition to turbulence routes for the flow around blunt bodies are possible. Non-modal amplification of perturbations via the lift-up effect has recently been explored to explain transition near the stagnation point in axisymmetric bodies. However, only perturbations already present in the boundary layer can be amplified, and the mechanisms by which free-stream perturbations enter the boundary layer have not yet been fully explored. In this study, we present an investigation of how disturbances enter the boundary layer via the stagnation point. This linear mechanism is expected to dominate over non-linear mechanisms previously identified on the formation of boundary layer perturbations at low turbulence intensity levels. A parametric investigation is presented, revealing trends with Reynolds and Mach numbers.\u0000</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 6","pages":"937 - 951"},"PeriodicalIF":2.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s00162-024-00718-w
Antonio Cuéllar, Andrea Ianiro, Stefano Discetti
In this work we assess the impact of the limited availability of wall-embedded sensors on the full 3D estimation of the flow field in a turbulent channel with (Re_{tau }=200). The estimation technique is based on a 3D generative adversarial network (3D-GAN). We recently demonstrated that 3D-GANs are capable of estimating fields with good accuracy by employing fully-resolved wall quantities (pressure and streamwise/spanwise wall shear stress on a grid with DNS resolution). However, the practical implementation in an experimental setting is challenging due to the large number of sensors required. In this work, we aim to estimate the flow fields with substantially fewer sensors. The impact of the reduction of the number of sensors on the quality of the flow reconstruction is assessed in terms of accuracy degradation and spectral length-scales involved. It is found that the accuracy degradation is mainly due to the spatial undersampling of scales, rather than the reduction of the number of sensors per se. We explore the performance of the estimator in case only one wall quantity is available. When a large number of sensors is available, pressure measurements provide more accurate flow field estimations. Conversely, the elongated patterns of the streamwise wall shear stress make this quantity the most suitable when only few sensors are available. As a further step towards a real application, the effect of sensor noise is also quantified. It is shown that configurations with fewer sensors are less sensitive to measurement noise.
在这项工作中,我们评估了墙壁嵌入式传感器的有限可用性对具有 (Re_{tau }=200) 湍流通道中流场的全三维估计的影响。估计技术基于三维生成式对抗网络(3D-GAN)。我们最近证明,三维生成式对抗网络能够通过采用完全解析的壁面量(具有 DNS 分辨率的网格上的压力和流向/跨向壁面切应力)来准确估计流场。然而,由于需要大量传感器,在实验环境中实际应用具有挑战性。在这项工作中,我们的目标是用更少的传感器来估算流场。我们从精度下降和涉及的频谱长度尺度两个方面评估了减少传感器数量对流场重建质量的影响。结果发现,精度下降的主要原因是空间尺度采样不足,而不是传感器数量减少本身。我们探讨了估计器在只有一个壁面量的情况下的性能。在有大量传感器的情况下,压力测量能提供更精确的流场估算。相反,流向壁面剪应力的细长模式使其在仅有少量传感器的情况下成为最合适的参数。在实际应用中,我们还对传感器噪声的影响进行了量化。结果表明,传感器数量较少的配置对测量噪声的敏感度较低。
{"title":"Some effects of limited wall-sensor availability on flow estimation with 3D-GANs","authors":"Antonio Cuéllar, Andrea Ianiro, Stefano Discetti","doi":"10.1007/s00162-024-00718-w","DOIUrl":"10.1007/s00162-024-00718-w","url":null,"abstract":"<div><p>In this work we assess the impact of the limited availability of wall-embedded sensors on the full 3D estimation of the flow field in a turbulent channel with <span>(Re_{tau }=200)</span>. The estimation technique is based on a 3D generative adversarial network (3D-GAN). We recently demonstrated that 3D-GANs are capable of estimating fields with good accuracy by employing fully-resolved wall quantities (pressure and streamwise/spanwise wall shear stress on a grid with DNS resolution). However, the practical implementation in an experimental setting is challenging due to the large number of sensors required. In this work, we aim to estimate the flow fields with substantially fewer sensors. The impact of the reduction of the number of sensors on the quality of the flow reconstruction is assessed in terms of accuracy degradation and spectral length-scales involved. It is found that the accuracy degradation is mainly due to the spatial undersampling of scales, rather than the reduction of the number of sensors per se. We explore the performance of the estimator in case only one wall quantity is available. When a large number of sensors is available, pressure measurements provide more accurate flow field estimations. Conversely, the elongated patterns of the streamwise wall shear stress make this quantity the most suitable when only few sensors are available. As a further step towards a real application, the effect of sensor noise is also quantified. It is shown that configurations with fewer sensors are less sensitive to measurement noise.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":"38 5","pages":"729 - 745"},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-024-00718-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}