首页 > 最新文献

Annals of Biomedical Engineering最新文献

英文 中文
AI Shaming: The Silent Stigma among Academic Writers and Researchers AI 耻辱:学术作家和研究人员中无声的耻辱。
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-08 DOI: 10.1007/s10439-024-03582-1
Louie Giray

AI shaming refers to the practice of criticizing or looking down on individuals or organizations for using AI to generate content or perform tasks. AI shaming has emerged as a recent phenomenon in academia. This paper examines the characteristics, causes, and effects of AI shaming on academic writers and researchers. AI shaming often involves dismissing the validity or authenticity of AI-assisted work, suggesting that using AI is deceitful, lazy, or less valuable than human-only efforts. The paper identifies various profiles of individuals who engage in AI shaming, including traditionalists, technophobes, and elitists, and explores their motivations. The effects of AI shaming are multifaceted, ranging from inhibited technology adoption and stifled innovation to increased stress among researchers and missed opportunities for efficiency. These consequences may hinder academic progress and limit the potential benefits of AI in research and scholarship. Despite these challenges, the paper argues that academic writers and researchers should not be ashamed of using AI when done responsibly and ethically. By embracing AI as a tool to augment human capabilities and by being transparent about its use, academic writers and researchers can lead the way in demonstrating responsible AI integration.

人工智能羞辱指的是批评或看不起使用人工智能生成内容或执行任务的个人或组织的做法。人工智能羞辱是最近学术界出现的一种现象。本文探讨了人工智能羞辱的特点、原因以及对学术作家和研究人员的影响。人工智能羞辱通常涉及否定人工智能辅助工作的有效性或真实性,暗示使用人工智能是欺骗、懒惰或不如纯人工工作有价值。本文指出了参与人工智能羞辱的各种人的特征,包括传统主义者、技术恐惧者和精英主义者,并探讨了他们的动机。人工智能羞辱的影响是多方面的,从抑制技术应用和扼杀创新,到增加研究人员的压力和错失提高效率的机会,不一而足。这些后果可能会阻碍学术进步,限制人工智能在研究和学术方面的潜在效益。尽管存在这些挑战,本文认为,学术写作者和研究人员不应该为使用人工智能而感到羞耻,只要以负责任和合乎道德的方式使用人工智能。通过将人工智能作为增强人类能力的工具,并对其使用保持透明,学术作家和研究人员可以带头展示负责任的人工智能整合。
{"title":"AI Shaming: The Silent Stigma among Academic Writers and Researchers","authors":"Louie Giray","doi":"10.1007/s10439-024-03582-1","DOIUrl":"10.1007/s10439-024-03582-1","url":null,"abstract":"<div><p>AI shaming refers to the practice of criticizing or looking down on individuals or organizations for using AI to generate content or perform tasks. AI shaming has emerged as a recent phenomenon in academia. This paper examines the characteristics, causes, and effects of AI shaming on academic writers and researchers. AI shaming often involves dismissing the validity or authenticity of AI-assisted work, suggesting that using AI is deceitful, lazy, or less valuable than human-only efforts. The paper identifies various profiles of individuals who engage in AI shaming, including traditionalists, technophobes, and elitists, and explores their motivations. The effects of AI shaming are multifaceted, ranging from inhibited technology adoption and stifled innovation to increased stress among researchers and missed opportunities for efficiency. These consequences may hinder academic progress and limit the potential benefits of AI in research and scholarship. Despite these challenges, the paper argues that academic writers and researchers should not be ashamed of using AI when done responsibly and ethically. By embracing AI as a tool to augment human capabilities and by being transparent about its use, academic writers and researchers can lead the way in demonstrating responsible AI integration.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 9","pages":"2319 - 2324"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Novel Soft Tissue Measurement Device for Individualized Finite Element Modeling in Custom-Fit CPAP Mask Evaluation 开发一种新型软组织测量设备,用于在 CPAP 面罩定制评估中进行个性化有限元建模。
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-08 DOI: 10.1007/s10439-024-03581-2
Erica Martelly, Summer Lee, Kristina Martinez, Sandeep Rana, Kenji Shimada

Purpose

Individual facial soft tissue properties are necessary for creating individualized finite element (FE) models to evaluate medical devices such as continuous positive airway pressure (CPAP) masks. There are no standard tools available to measure facial soft tissue elastic moduli, and techniques in literature require advanced equipment or custom parts to replicate.

Methods

We propose a simple and inexpensive soft tissue measurement (STM) indenter device to estimate facial soft tissue elasticity at five sites: chin, cheek near lip, below cheekbone, cheekbone, and cheek. The STM device consists of a probe with a linear actuator and force sensor, an adjustment system for probe orientation, a head support frame, and a controller. The device was validated on six ballistics gel samples and then tested on 28 subjects. Soft tissue thickness was also collected for each subject using ultrasound.

Results

Thickness and elastic modulus measurements were successfully collected for all subjects. The mean elastic modulus for each site is Ec = 53.04 ± 20.97 kPa for the chin, El = 16.33 ± 8.37 kPa for the cheek near lip, Ebc = 27.09 ± 11.38 kPa for below cheekbone, Ecb = 64.79 ± 17.12 kPa for the cheekbone, and Ech = 16.20 ± 5.09 kPa for the cheek. The thickness and elastic modulus values are in the range of previously reported values. One subject’s measured soft tissue elastic moduli and thickness were used to evaluate custom-fit CPAP mask fit in comparison to a model of that subject with arbitrary elastic moduli and thickness. The model with measured values more closely resembles in vivo leakage results.

Conclusion

Overall, the STM provides a first estimate of facial soft tissue elasticity and is affordable and easy to build with mostly off-the-shelf parts. These values can be used to create personalized FE models to evaluate custom-fit CPAP masks.

目的:要创建个性化的有限元(FE)模型来评估持续气道正压(CPAP)面罩等医疗设备,就必须要有个性化的面部软组织特性。目前还没有测量面部软组织弹性模量的标准工具,文献中的技术需要先进的设备或定制部件才能复制:方法:我们提出了一种简单而廉价的软组织测量(STM)压头装置,用于估算面部软组织在五个部位的弹性:下巴、靠近嘴唇的脸颊、颧骨下方、颧骨和脸颊。STM 设备由一个带线性致动器和力传感器的探头、一个用于调整探头方向的调整系统、一个头部支撑架和一个控制器组成。该装置在六个弹道凝胶样本上进行了验证,然后在 28 名受试者身上进行了测试。还使用超声波采集了每个受试者的软组织厚度:结果:成功采集了所有受试者的厚度和弹性模量。每个部位的平均弹性模量分别为:下巴 Ec = 53.04 ± 20.97 kPa;颊部近唇 El = 16.33 ± 8.37 kPa;颧骨以下 Ebc = 27.09 ± 11.38 kPa;颧骨 Ecb = 64.79 ± 17.12 kPa;颊部 Ech = 16.20 ± 5.09 kPa。厚度和弹性模量值均在之前报告的范围内。一名受试者的软组织弹性模量和厚度测量值被用于评估定制 CPAP 面罩的匹配度,并与该受试者具有任意弹性模量和厚度的模型进行比较。采用测量值的模型更接近于体内泄漏结果:总之,STM 提供了对面部软组织弹性的初步估计,而且价格低廉,易于使用现成的部件制作。这些数值可用于创建个性化的 FE 模型,以评估定制的 CPAP 面罩。
{"title":"Development of a Novel Soft Tissue Measurement Device for Individualized Finite Element Modeling in Custom-Fit CPAP Mask Evaluation","authors":"Erica Martelly,&nbsp;Summer Lee,&nbsp;Kristina Martinez,&nbsp;Sandeep Rana,&nbsp;Kenji Shimada","doi":"10.1007/s10439-024-03581-2","DOIUrl":"10.1007/s10439-024-03581-2","url":null,"abstract":"<div><h3>Purpose</h3><p>Individual facial soft tissue properties are necessary for creating individualized finite element (FE) models to evaluate medical devices such as continuous positive airway pressure (CPAP) masks. There are no standard tools available to measure facial soft tissue elastic moduli, and techniques in literature require advanced equipment or custom parts to replicate.</p><h3>Methods</h3><p>We propose a simple and inexpensive soft tissue measurement (STM) indenter device to estimate facial soft tissue elasticity at five sites: chin, cheek near lip, below cheekbone, cheekbone, and cheek. The STM device consists of a probe with a linear actuator and force sensor, an adjustment system for probe orientation, a head support frame, and a controller. The device was validated on six ballistics gel samples and then tested on 28 subjects. Soft tissue thickness was also collected for each subject using ultrasound.</p><h3>Results</h3><p>Thickness and elastic modulus measurements were successfully collected for all subjects. The mean elastic modulus for each site is <i>E</i><sub>c</sub> = 53.04 ± 20.97 kPa for the chin, <i>E</i><sub>l</sub> = 16.33 ± 8.37 kPa for the cheek near lip, <i>E</i><sub>bc</sub> = 27.09 ± 11.38 kPa for below cheekbone, <i>E</i><sub>cb</sub> = 64.79 ± 17.12 kPa for the cheekbone, and <i>E</i><sub>ch</sub> = 16.20 ± 5.09 kPa for the cheek. The thickness and elastic modulus values are in the range of previously reported values. One subject’s measured soft tissue elastic moduli and thickness were used to evaluate custom-fit CPAP mask fit in comparison to a model of that subject with arbitrary elastic moduli and thickness. The model with measured values more closely resembles in vivo leakage results.</p><h3>Conclusion</h3><p>Overall, the STM provides a first estimate of facial soft tissue elasticity and is affordable and easy to build with mostly off-the-shelf parts. These values can be used to create personalized FE models to evaluate custom-fit CPAP masks.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 12","pages":"3184 - 3195"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10439-024-03581-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An In Silico Modelling Approach to Predict Hemodynamic Outcomes in Diabetic and Hypertensive Kidney Disease 预测糖尿病和高血压肾病血液动力学结果的硅模拟方法
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-05 DOI: 10.1007/s10439-024-03573-2
Ning Wang, Ivan Benemerito, Steven P Sourbron, Alberto Marzo

Early diagnosis of kidney disease remains an unmet clinical challenge, preventing timely and effective intervention. Diabetes and hypertension are two main causes of kidney disease, can often appear together, and can only be distinguished by invasive biopsy. In this study, we developed a modelling approach to simulate blood velocity, volumetric flow rate, and pressure wave propagation in arterial networks of ageing, diabetic, and hypertensive virtual populations. The model was validated by comparing our predictions for pressure, volumetric flow rate and waveform-derived indexes with in vivo data on ageing populations from the literature. The model simulated the effects of kidney disease, and was calibrated to align quantitatively with in vivo data on diabetic and hypertensive nephropathy from the literature. Our study identified some potential biomarkers extracted from renal blood flow rate and flow pulsatility. For typical patient age groups, resistive index values were 0.69 (SD 0.05) and 0.74 (SD 0.02) in the early and severe stages of diabetic nephropathy, respectively. Similar trends were observed in the same stages of hypertensive nephropathy, with a range from 0.65 (SD 0.07) to 0.73 (SD 0.05), respectively. Mean renal blood flow rate through a single diseased kidney ranged from 329 (SD 40, early) to 317 (SD 38, severe) ml/min in diabetic nephropathy and 443 (SD 54, early) to 388 (SD 47, severe) ml/min in hypertensive nephropathy, showing potential as a biomarker for early diagnosis of kidney disease. This modelling approach demonstrated its potential application in informing biomarker identification and facilitating the setup of clinical trials.

肾脏疾病的早期诊断仍是一项尚未解决的临床难题,妨碍了及时有效的干预。糖尿病和高血压是导致肾脏疾病的两个主要原因,经常会同时出现,只有通过侵入性活检才能加以区分。在这项研究中,我们开发了一种建模方法来模拟老龄化、糖尿病和高血压虚拟人群动脉网络中的血流速度、容积流速和压力波传播。通过将我们对压力、容积流速和波形衍生指标的预测与文献中有关老龄化人群的体内数据进行比较,对模型进行了验证。该模型模拟了肾脏疾病的影响,并与文献中有关糖尿病和高血压肾病的活体数据进行了定量校准。我们的研究从肾脏血流速度和血流脉动性中发现了一些潜在的生物标记物。对于典型的患者年龄组,糖尿病肾病早期和严重阶段的阻力指数值分别为 0.69(标清 0.05)和 0.74(标清 0.02)。在高血压肾病的相同阶段也观察到类似的趋势,范围分别为 0.65(标清 0.07)至 0.73(标清 0.05)。通过单个病变肾脏的平均肾血流量在糖尿病肾病中为 329(标清 40,早期)至 317(标清 38,重度)毫升/分钟,在高血压肾病中为 443(标清 54,早期)至 388(标清 47,重度)毫升/分钟,显示出作为肾病早期诊断生物标志物的潜力。这种建模方法证明了其在为生物标记物鉴定提供信息和促进临床试验设置方面的潜在应用。
{"title":"An In Silico Modelling Approach to Predict Hemodynamic Outcomes in Diabetic and Hypertensive Kidney Disease","authors":"Ning Wang,&nbsp;Ivan Benemerito,&nbsp;Steven P Sourbron,&nbsp;Alberto Marzo","doi":"10.1007/s10439-024-03573-2","DOIUrl":"10.1007/s10439-024-03573-2","url":null,"abstract":"<div><p>Early diagnosis of kidney disease remains an unmet clinical challenge, preventing timely and effective intervention. Diabetes and hypertension are two main causes of kidney disease, can often appear together, and can only be distinguished by invasive biopsy. In this study, we developed a modelling approach to simulate blood velocity, volumetric flow rate, and pressure wave propagation in arterial networks of ageing, diabetic, and hypertensive virtual populations. The model was validated by comparing our predictions for pressure, volumetric flow rate and waveform-derived indexes with in vivo data on ageing populations from the literature. The model simulated the effects of kidney disease, and was calibrated to align quantitatively with in vivo data on diabetic and hypertensive nephropathy from the literature. Our study identified some potential biomarkers extracted from renal blood flow rate and flow pulsatility. For typical patient age groups, resistive index values were 0.69 (SD 0.05) and 0.74 (SD 0.02) in the early and severe stages of diabetic nephropathy, respectively. Similar trends were observed in the same stages of hypertensive nephropathy, with a range from 0.65 (SD 0.07) to 0.73 (SD 0.05), respectively. Mean renal blood flow rate through a single diseased kidney ranged from 329 (SD 40, early) to 317 (SD 38, severe) ml/min in diabetic nephropathy and 443 (SD 54, early) to 388 (SD 47, severe) ml/min in hypertensive nephropathy, showing potential as a biomarker for early diagnosis of kidney disease. This modelling approach demonstrated its potential application in informing biomarker identification and facilitating the setup of clinical trials.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"3098 - 3112"},"PeriodicalIF":3.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Cardiovascular Parameters Estimation for Fluid-Structure Simulations Using Gappy Proper Orthogonal Decomposition 使用 Gappy 适当正交分解为流体-结构模拟进行高效心血管参数估计
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-05 DOI: 10.1007/s10439-024-03568-z
J. Deus, E. Martin

As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient’s aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.

由于对整个血管进行全面详细的血流动力学模拟并不可行,因此数值分析应集中在心血管系统的特定区域,这就需要确定块状参数,以表示模拟计算域外的患者行为。我们提出了一种利用 gappy 适当正交分解(g-POD)估算心血管模型参数的新技术。我们利用 FSI 模拟构建了一个 POD 基础,用于计算不同的集合模型参数值,并应用线性算子保留可与现有患者测量结果进行比较的信息。然后,通过投影患者测量值或解决带有约束条件的最小化问题来计算重建解决方案的 POD 系数。然后利用 POD 重构来估计模型参数。在第一个测试案例中,使用人工患者测量值对 3 元素 Windkessel 模型的参数值进行了近似,得到的相对误差小于 4.2%。在第二个案例中,根据患者主动脉的几何形状对 4 组 3 元素 Windkessel 进行近似,结果流量误差小于 8%,压力误差小于 5%。该方法即使在病人数据嘈杂的情况下也能显示精确的结果。它能自动计算测量和模拟之间的延迟,并能灵活处理患者测量类型(特定点、空间或时间平均)。该方法易于实施,可用于通用 FSI 软件的模拟。
{"title":"Efficient Cardiovascular Parameters Estimation for Fluid-Structure Simulations Using Gappy Proper Orthogonal Decomposition","authors":"J. Deus,&nbsp;E. Martin","doi":"10.1007/s10439-024-03568-z","DOIUrl":"10.1007/s10439-024-03568-z","url":null,"abstract":"<div><p>As full-scale detailed hemodynamic simulations of the entire vasculature are not feasible, numerical analysis should be focused on specific regions of the cardiovascular system, which requires the identification of lumped parameters to represent the patient behavior outside the simulated computational domain. We present a novel technique for estimating cardiovascular model parameters using gappy Proper Orthogonal Decomposition (g-POD). A POD basis is constructed with FSI simulations for different values of the lumped model parameters, and a linear operator is applied to retain information that can be compared to the available patient measurements. Then, the POD coefficients of the reconstructed solution are computed either by projecting patient measurements or by solving a minimization problem with constraints. The POD reconstruction is then used to estimate the model parameters. In the first test case, the parameter values of a 3-element Windkessel model are approximated using artificial patient measurements, obtaining a relative error of less than 4.2%. In the second case, 4 sets of 3-element Windkessel are approximated in a patient’s aorta geometry, resulting in an error of less than 8% for the flow and less than 5% for the pressure. The method shows accurate results even with noisy patient data. It automatically calculates the delay between measurements and simulations and has flexibility in the types of patient measurements that can handle (at specific points, spatial or time averaged). The method is easy to implement and can be used in simulations performed in general-purpose FSI software.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"3037 - 3052"},"PeriodicalIF":3.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OpenHands: An Open-Source Statistical Shape Model of the Finger Bones OpenHands:一个开源的手指骨骼统计形状模型。
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-03 DOI: 10.1007/s10439-024-03560-7
T. A. Munyebvu, C. D. Metcalf, C. B. Burson-Thomas, D. Warwick, C. Everitt, L. King, A. Darekar, M. Browne, M. O. W. Heller, A. S. Dickinson

This paper presents statistical shape models of the four fingers of the hand, with an emphasis on anatomic analysis of the proximal and distal interphalangeal joints. A multi-body statistical shape modelling pipeline was implemented on an exemplar training dataset of computed tomography (CT) scans of 10 right hands (5F:5M, 27–37 years, free from disease or injury) imaged at 0.3 mm resolution, segmented, meshed and aligned. Model generated included pose neutralisation to remove joint angle variation during imaging. Repositioning was successful; no joint flexion variation was observed in the resulting model. The first principal component (PC) of morphological variation represented phalanx size in all fingers. Subsequent PCs showed variation in position along the palmar-dorsal axis, and bone breadth: length ratio. Finally, the models were interrogated to provide gross measures of bone lengths and joint spaces. These models have been published for open use to support wider community efforts in hand biomechanical analysis, providing bony anatomy descriptions whilst preserving the security of the underlying imaging data and privacy of the participants. The model describes a small, homogeneous population, and assumptions cannot be made about how it represents individuals outside the training dataset. However, it supplements anthropometric datasets with additional shape information, and may be useful for investigating factors such as joint morphology and design of hand-interfacing devices and products. The model has been shared as an open-source repository (https://github.com/abel-research/OpenHands), and we encourage the community to use and contribute to it.

本文介绍了手部四个手指的统计形状模型,重点是近端和远端指间关节的解剖分析。在一个示例训练数据集上实施了多体统计形状建模流水线,该数据集是以 0.3 毫米分辨率对 10 只右手(5F:5M,27-37 岁,无疾病或损伤)的计算机断层扫描(CT)扫描图像进行分割、网格划分和对齐。生成的模型包括姿势中和,以消除成像过程中的关节角度变化。重新定位很成功;在生成的模型中没有观察到关节弯曲变化。形态变化的第一个主成分(PC)代表了所有手指的指骨大小。随后的主成分显示了沿掌背轴线的位置变化以及骨宽:长度比。最后,对模型进行分析,以提供骨长度和关节间隙的粗略测量值。这些模型已公开发布,以支持更广泛的手部生物力学分析社区工作,在提供骨骼解剖描述的同时,保护底层成像数据的安全性和参与者的隐私。该模型描述的是一个小规模的同质人群,因此无法假设它如何代表训练数据集之外的个体。不过,它为人体测量数据集提供了额外的形状信息,可能有助于研究关节形态等因素以及手部界面设备和产品的设计。该模型已作为开放源代码库( https://github.com/abel-research/OpenHands )共享,我们鼓励社会各界使用和贡献。
{"title":"OpenHands: An Open-Source Statistical Shape Model of the Finger Bones","authors":"T. A. Munyebvu,&nbsp;C. D. Metcalf,&nbsp;C. B. Burson-Thomas,&nbsp;D. Warwick,&nbsp;C. Everitt,&nbsp;L. King,&nbsp;A. Darekar,&nbsp;M. Browne,&nbsp;M. O. W. Heller,&nbsp;A. S. Dickinson","doi":"10.1007/s10439-024-03560-7","DOIUrl":"10.1007/s10439-024-03560-7","url":null,"abstract":"<div><p>This paper presents statistical shape models of the four fingers of the hand, with an emphasis on anatomic analysis of the proximal and distal interphalangeal joints. A multi-body statistical shape modelling pipeline was implemented on an exemplar training dataset of computed tomography (CT) scans of 10 right hands (5F:5M, 27–37 years, free from disease or injury) imaged at 0.3 mm resolution, segmented, meshed and aligned. Model generated included pose neutralisation to remove joint angle variation during imaging. Repositioning was successful; no joint flexion variation was observed in the resulting model. The first principal component (PC) of morphological variation represented phalanx size in all fingers. Subsequent PCs showed variation in position along the palmar-dorsal axis, and bone breadth: length ratio. Finally, the models were interrogated to provide gross measures of bone lengths and joint spaces. These models have been published for open use to support wider community efforts in hand biomechanical analysis, providing bony anatomy descriptions whilst preserving the security of the underlying imaging data and privacy of the participants. The model describes a small, homogeneous population, and assumptions cannot be made about how it represents individuals outside the training dataset. However, it supplements anthropometric datasets with additional shape information, and may be useful for investigating factors such as joint morphology and design of hand-interfacing devices and products. The model has been shared as an open-source repository (https://github.com/abel-research/OpenHands), and we encourage the community to use and contribute to it.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"2975 - 2986"},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Free Monitoring of Endometrial Cancer Progression Using Multiphoton Microscopy 利用多光子显微镜对子宫内膜癌进展进行无标记监测
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-03 DOI: 10.1007/s10439-024-03574-1
Xuzhen Wu, Yanqing Kong, Yu Yi, Shuoyu Xu, Jianhua Chen, Jianxin Chen, Ping Jin

Endometrial cancer is the most common gynecological cancer in the developed world. However, the accuracy of current diagnostic methods is still unsatisfactory and time-consuming. Here, we presented an alternate approach to monitoring the progression of endometrial cancer via multiphoton microscopy imaging and analysis of collagen, which is often overlooked in current endometrial cancer diagnosis protocols but can offer a crucial signature in cancer biology. Multiphoton microscopy (MPM) based on the second-harmonic generation and two-photon excited fluorescence was introduced to visualize the microenvironment of endometrium in normal, hyperplasia without atypia, atypical hyperplasia, and endometrial cancer specimens. Furthermore, automatic image analysis based on the MPM image processing algorithm was used to quantify the differences in the collagen morphological features among them. MPM enables the visualization of the morphological details and alterations of the glands in the development process of endometrial cancer, including irregular changes in the structure of the gland, increased ratio of the gland to the interstitium, and atypical changes in the glandular epithelial cells. Moreover, the destructed basement membrane caused by gland proliferation and fusion is clearly shown in SHG images, which is a key feature for identifying endometrial cancer progression. Quantitative analysis reveals that the formation of endometrial cancer is accompanied by an increase in collagen fiber length and width, a progressive linearization and loosening of interstitial collagen, and a more random arrangement of interstitial collagen. Observation and quantitative analysis of interstitial collagen provide invaluable information in monitoring the progression of endometrial cancer. Label-free multiphoton imaging reported here has the potential to become an in situ histological tool for effective and accurate early diagnosis and detection of malignant lesions in endometrial cancer.

子宫内膜癌是发达国家最常见的妇科癌症。然而,目前诊断方法的准确性仍不能令人满意,而且耗时较长。在这里,我们提出了另一种通过多光子显微镜成像和分析胶原蛋白来监测子宫内膜癌进展的方法,胶原蛋白在目前的子宫内膜癌诊断方案中往往被忽视,但却能提供癌症生物学中的重要特征。该研究引入了基于二次谐波发生和双光子激发荧光的多光子显微镜(MPM),用于观察正常、无不典型增生、不典型增生和子宫内膜癌标本中子宫内膜的微环境。此外,基于 MPM 图像处理算法的自动图像分析被用来量化它们之间胶原形态特征的差异。MPM 能够观察到子宫内膜癌发展过程中腺体的形态细节和改变,包括腺体结构的不规则变化、腺体与间质比例的增加以及腺上皮细胞的非典型变化。此外,SHG 图像还清晰显示了腺体增生和融合导致的基底膜破坏,这是识别子宫内膜癌进展的关键特征。定量分析显示,子宫内膜癌的形成伴随着胶原纤维长度和宽度的增加,间质胶原逐渐线性化和松散化,间质胶原的排列更加随意。对间质胶原的观察和定量分析为监测子宫内膜癌的进展提供了宝贵的信息。本文报告的无标记多光子成像技术有望成为一种原位组织学工具,用于有效、准确地早期诊断和检测子宫内膜癌的恶性病变。
{"title":"Label-Free Monitoring of Endometrial Cancer Progression Using Multiphoton Microscopy","authors":"Xuzhen Wu,&nbsp;Yanqing Kong,&nbsp;Yu Yi,&nbsp;Shuoyu Xu,&nbsp;Jianhua Chen,&nbsp;Jianxin Chen,&nbsp;Ping Jin","doi":"10.1007/s10439-024-03574-1","DOIUrl":"10.1007/s10439-024-03574-1","url":null,"abstract":"<div><p>Endometrial cancer is the most common gynecological cancer in the developed world. However, the accuracy of current diagnostic methods is still unsatisfactory and time-consuming. Here, we presented an alternate approach to monitoring the progression of endometrial cancer via multiphoton microscopy imaging and analysis of collagen, which is often overlooked in current endometrial cancer diagnosis protocols but can offer a crucial signature in cancer biology. Multiphoton microscopy (MPM) based on the second-harmonic generation and two-photon excited fluorescence was introduced to visualize the microenvironment of endometrium in normal, hyperplasia without atypia, atypical hyperplasia, and endometrial cancer specimens. Furthermore, automatic image analysis based on the MPM image processing algorithm was used to quantify the differences in the collagen morphological features among them. MPM enables the visualization of the morphological details and alterations of the glands in the development process of endometrial cancer, including irregular changes in the structure of the gland, increased ratio of the gland to the interstitium, and atypical changes in the glandular epithelial cells. Moreover, the destructed basement membrane caused by gland proliferation and fusion is clearly shown in SHG images, which is a key feature for identifying endometrial cancer progression. Quantitative analysis reveals that the formation of endometrial cancer is accompanied by an increase in collagen fiber length and width, a progressive linearization and loosening of interstitial collagen, and a more random arrangement of interstitial collagen. Observation and quantitative analysis of interstitial collagen provide invaluable information in monitoring the progression of endometrial cancer. Label-free multiphoton imaging reported here has the potential to become an in situ histological tool for effective and accurate early diagnosis and detection of malignant lesions in endometrial cancer.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"3113 - 3124"},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Finite Element Analysis of Human Rib Biomechanics: A Framework for Improved Generalizability. 人体肋骨生物力学的概率有限元分析:提高通用性的框架。
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-02 DOI: 10.1007/s10439-024-03571-4
Vivek Bhaskar Kote, Lance L Frazer, Avani Shukla, Ashley Bailly, Sydney Hicks, Derek A Jones, Drew D DiSerafino, Matthew L Davis, Daniel P Nicolella

In dynamic impact events, thoracic injuries often involve rib fractures, which are closely related to injury severity. Previous studies have investigated the behavior of isolated ribs under impact loading conditions, but often neglected the variability in anatomical shape and tissue material properties. In this study, we used probabilistic finite element analysis and statistical shape modeling to investigate the effect of population-wide variability in rib cortical bone tissue mechanical properties and rib shape on the biomechanical response of the rib to impact loading. Using the probabilistic finite element analysis results, a response surface model was generated to rapidly investigate the biomechanical response of an isolated rib under dynamic anterior-posterior load given the variability in rib morphometry and tissue material properties. The response surface was used to generate pre-fracture force-displacement computational corridors for the overall population and a population sub-group of older mid-sized males. When compared to the experimental data, the computational mean response had a RMSE of 4.28N (peak force 94N) and 6.11N (peak force 116N) for the overall population and sub-group respectively, whereas the normalized area metric when comparing the experimental and computational corridors ranged from 3.32% to 22.65% for the population and 10.90% to 32.81% for the sub-group. Furthermore, probabilistic sensitivities were computed in which the contribution of uncertainty and variability of the parameters of interest was quantified. The study found that rib cortical bone elastic modulus, rib morphometry and cortical thickness are the random variables that produce the largest variability in the predicted force-displacement response. The proposed framework offers a novel approach for accounting biological variability in a representative population and has the potential to improve the generalizability of findings in biomechanical studies.

在动态撞击事件中,胸部损伤往往涉及肋骨骨折,这与损伤的严重程度密切相关。以往的研究调查了孤立肋骨在冲击载荷条件下的行为,但往往忽略了解剖形状和组织材料特性的变化。在本研究中,我们使用概率有限元分析和统计形状建模来研究肋骨皮质骨组织机械性能和肋骨形状的全人群变异性对肋骨在冲击载荷下生物力学响应的影响。利用概率有限元分析结果,生成了一个响应面模型,以快速研究在肋骨形态和组织材料特性存在变异的情况下,孤立肋骨在前后动态载荷作用下的生物力学响应。响应面用于生成整体人群和中老年男性人群子群的骨折前力-位移计算走廊。与实验数据相比,总体和分组的计算平均响应均方根误差分别为 4.28N(峰值力 94N)和 6.11N(峰值力 116N),而在比较实验和计算走廊时,总体的归一化面积指标为 3.32% 至 22.65%,分组的归一化面积指标为 10.90% 至 32.81%。此外,还计算了概率敏感性,对相关参数的不确定性和可变性的贡献进行了量化。研究发现,肋骨皮质骨弹性模量、肋骨形态测量和皮质厚度是在预测力-位移响应中产生最大变异的随机变量。所提出的框架为计算代表性人群的生物变异性提供了一种新方法,并有可能提高生物力学研究结果的普适性。
{"title":"Probabilistic Finite Element Analysis of Human Rib Biomechanics: A Framework for Improved Generalizability.","authors":"Vivek Bhaskar Kote, Lance L Frazer, Avani Shukla, Ashley Bailly, Sydney Hicks, Derek A Jones, Drew D DiSerafino, Matthew L Davis, Daniel P Nicolella","doi":"10.1007/s10439-024-03571-4","DOIUrl":"https://doi.org/10.1007/s10439-024-03571-4","url":null,"abstract":"<p><p>In dynamic impact events, thoracic injuries often involve rib fractures, which are closely related to injury severity. Previous studies have investigated the behavior of isolated ribs under impact loading conditions, but often neglected the variability in anatomical shape and tissue material properties. In this study, we used probabilistic finite element analysis and statistical shape modeling to investigate the effect of population-wide variability in rib cortical bone tissue mechanical properties and rib shape on the biomechanical response of the rib to impact loading. Using the probabilistic finite element analysis results, a response surface model was generated to rapidly investigate the biomechanical response of an isolated rib under dynamic anterior-posterior load given the variability in rib morphometry and tissue material properties. The response surface was used to generate pre-fracture force-displacement computational corridors for the overall population and a population sub-group of older mid-sized males. When compared to the experimental data, the computational mean response had a RMSE of 4.28N (peak force 94N) and 6.11N (peak force 116N) for the overall population and sub-group respectively, whereas the normalized area metric when comparing the experimental and computational corridors ranged from 3.32% to 22.65% for the population and 10.90% to 32.81% for the sub-group. Furthermore, probabilistic sensitivities were computed in which the contribution of uncertainty and variability of the parameters of interest was quantified. The study found that rib cortical bone elastic modulus, rib morphometry and cortical thickness are the random variables that produce the largest variability in the predicted force-displacement response. The proposed framework offers a novel approach for accounting biological variability in a representative population and has the potential to improve the generalizability of findings in biomechanical studies.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instrumented Mouthguard Decoupling Affects Measured Head Kinematic Accuracy 仪器护齿去耦影响头部运动测量精度
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-02 DOI: 10.1007/s10439-024-03550-9
Ryan A. Gellner, Mark T. Begonia, Matthew Wood, Lewis Rockwell, Taylor Geiman, Caitlyn Jung, Steve Rowson

Many recent studies have used boil-and-bite style instrumented mouthguards to measure head kinematics during impact in sports. Instrumented mouthguards promise greater accuracy than their predecessors because of their superior ability to couple directly to the skull. These mouthguards have been validated in the lab and on the field, but little is known about the effects of decoupling during impact. Decoupling can occur for various reasons, such as poor initial fit, wear-and-tear, or excessive impact forces. To understand how decoupling influences measured kinematic error, we fit a boil-and-bite instrumented mouthguard to a 3D-printed dentition mounted to a National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform. We also instrumented the headform with linear accelerometers and angular rate sensors at its center of gravity (CG). We performed a series of pendulum impact tests, varying impactor face and impact direction. We measured linear acceleration and angular velocity, and we calculated angular acceleration from the mouthguard and the headform CG. We created decoupling conditions by varying the gap between the lower jaw and the bottom face of the mouthguard. We tested three gap conditions: 0 mm (control), 1.6 mm, and 4.8 mm. Mouthguard measurements were transformed to the CG and compared to the reference measurements. We found that gap condition, impact duration, and impact direction significantly influenced mouthguard measurement error. Error was higher for larger gaps and in frontal (front and front boss) conditions. Higher errors were also found in padded conditions, but the mouthguards did not collect all rigid impacts due to inherent limitations. We present characteristic decoupling time history curves for each kinematic measurement. Exemplary frequency spectra indicating characteristic decoupling frequencies are also described. Researchers using boil-and-bite instrumented mouthguards should be aware of their limitations when interpreting results and should seek to address decoupling through advanced post-processing techniques when possible.

最近的许多研究都使用沸腾咬合式仪器护齿来测量运动中撞击时的头部运动学。仪器式护齿因其直接与头骨耦合的能力更强,因此比其前代产品具有更高的准确性。这些护齿已在实验室和赛场上得到验证,但人们对撞击时脱钩的影响知之甚少。发生脱钩的原因有很多,例如初始配合不佳、磨损或冲击力过大。为了了解脱钩如何影响测量的运动学误差,我们将沸腾咬合仪器护齿与安装在国家运动装备标准操作委员会(NOCSAE)头模上的 3D 打印牙模进行了匹配。我们还在头模的重心(CG)处安装了线性加速度计和角速率传感器。我们进行了一系列摆锤冲击测试,改变了冲击面和冲击方向。我们测量了线性加速度和角速度,并计算了护齿和头模重心的角加速度。我们通过改变下颌与护齿底面之间的间隙来创造去耦条件。我们测试了三种间隙条件:0 毫米(对照组)、1.6 毫米和 4.8 毫米。将护齿测量值转换为 CG 值,并与参考测量值进行比较。我们发现,间隙条件、撞击持续时间和撞击方向对护齿测量误差有显著影响。间隙越大和正面(前方和前方老板)条件下的误差越大。在有衬垫的情况下误差也更大,但由于固有的限制,护齿并不能收集所有的刚性撞击。我们展示了每种运动学测量的特征解耦时间历史曲线。我们还描述了显示特征解耦频率的示例频谱。使用沸腾咬合仪器护齿的研究人员在解释结果时应注意其局限性,并应尽可能通过先进的后处理技术来解决解耦问题。
{"title":"Instrumented Mouthguard Decoupling Affects Measured Head Kinematic Accuracy","authors":"Ryan A. Gellner,&nbsp;Mark T. Begonia,&nbsp;Matthew Wood,&nbsp;Lewis Rockwell,&nbsp;Taylor Geiman,&nbsp;Caitlyn Jung,&nbsp;Steve Rowson","doi":"10.1007/s10439-024-03550-9","DOIUrl":"10.1007/s10439-024-03550-9","url":null,"abstract":"<div><p>Many recent studies have used boil-and-bite style instrumented mouthguards to measure head kinematics during impact in sports. Instrumented mouthguards promise greater accuracy than their predecessors because of their superior ability to couple directly to the skull. These mouthguards have been validated in the lab and on the field, but little is known about the effects of decoupling during impact. Decoupling can occur for various reasons, such as poor initial fit, wear-and-tear, or excessive impact forces. To understand how decoupling influences measured kinematic error, we fit a boil-and-bite instrumented mouthguard to a 3D-printed dentition mounted to a National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform. We also instrumented the headform with linear accelerometers and angular rate sensors at its center of gravity (CG). We performed a series of pendulum impact tests, varying impactor face and impact direction. We measured linear acceleration and angular velocity, and we calculated angular acceleration from the mouthguard and the headform CG. We created decoupling conditions by varying the gap between the lower jaw and the bottom face of the mouthguard. We tested three gap conditions: 0 mm (control), 1.6 mm, and 4.8 mm. Mouthguard measurements were transformed to the CG and compared to the reference measurements. We found that gap condition, impact duration, and impact direction significantly influenced mouthguard measurement error. Error was higher for larger gaps and in frontal (front and front boss) conditions. Higher errors were also found in padded conditions, but the mouthguards did not collect all rigid impacts due to inherent limitations. We present characteristic decoupling time history curves for each kinematic measurement. Exemplary frequency spectra indicating characteristic decoupling frequencies are also described. Researchers using boil-and-bite instrumented mouthguards should be aware of their limitations when interpreting results and should seek to address decoupling through advanced post-processing techniques when possible.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 10","pages":"2854 - 2871"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airbag Vests in Equestrian Sports: Is Use Associated with Harm? 马术运动中的安全气囊背心:使用是否会造成伤害?
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-02 DOI: 10.1007/s10439-024-03507-y
Catherine Meyer, Fernanda Gabriel, Kevin Schrum, Michele Hollis, Margo Short, Sara Gould

Airbag vests (AV) are increasingly popular in equestrian sports. The efficacy of AV in protecting against serious injury has not been adequately analyzed, nor have product testing standards been established. This study provides an overview of current research to understand AV efficacy and future areas of improvement. A systematic review applying the PRISMA framework, NIH Study Quality Assessment, and CEBM Level of Evidence was conducted. Employing variations of “equestrian sport,” “powered two-wheeled vehicle,” “thoracic injury,” “chest deflection,” “airbag vest,” and “safety vest,” 18 articles were identified for data collection from three recognized research databases and citation searching. In laboratory settings, the ability of AV to protect against thoracic injuries was variable based on concurrent foam-based safety vest (SV) usage, impact speed, and impact mechanism. Studies that examined equestrian falls with AV found an association with increased injury rates and risk. SVs were shown to provide inconclusive efficacy in protecting against injuries in experimental and cohort studies. Protective capabilities depend on material, temperature, and impact mechanism. Further limiting use, equestrians reported not wearing, or incorrectly wearing SV due to unknown benefits, low comfort, and ill fit. In equestrian sports, based on published literature to date, AV have not been associated with a reduction in injury. AV appear to be associated with an increase in the risk of serious or fatal injuries in certain settings. However, research in this area is limited and future, large-scale studies should be conducted to further evaluate the efficacy of the air vests.

气囊背心(AV)在马术运动中越来越受欢迎。目前尚未对防弹背心在防止严重伤害方面的功效进行充分分析,也未制定产品测试标准。本研究概述了当前了解防弹背心功效的研究以及未来需要改进的领域。研究采用 PRISMA 框架、NIH 研究质量评估和 CEBM 证据等级进行了系统性综述。采用 "马术运动"、"动力两轮车"、"胸部损伤"、"胸部偏转"、"安全气囊背心 "和 "安全背心 "等不同术语,从三个公认的研究数据库和引文检索中确定了 18 篇文章用于收集数据。在实验室环境中,根据同时使用的泡沫塑料安全背心(SV)、撞击速度和撞击机制,反车辆安全背心防止胸部受伤的能力各不相同。使用反车辆安全背心对马术摔倒进行检查的研究发现,反车辆安全背心与受伤率和风险增加有关。在实验和队列研究中,SV 在防止受伤方面的功效尚无定论。保护能力取决于材料、温度和撞击机制。马术运动员报告称,由于SV的好处不明、舒适度低和不合适,他们没有佩戴或没有正确佩戴SV,这进一步限制了SV的使用。在马术运动中,根据迄今为止已发表的文献,反车辆运动与减少受伤无关。在某些情况下,反向背心似乎会增加严重或致命伤害的风险。不过,这方面的研究还很有限,今后应开展大规模研究,进一步评估气垫背心的功效。
{"title":"Airbag Vests in Equestrian Sports: Is Use Associated with Harm?","authors":"Catherine Meyer,&nbsp;Fernanda Gabriel,&nbsp;Kevin Schrum,&nbsp;Michele Hollis,&nbsp;Margo Short,&nbsp;Sara Gould","doi":"10.1007/s10439-024-03507-y","DOIUrl":"10.1007/s10439-024-03507-y","url":null,"abstract":"<div><p>Airbag vests (AV) are increasingly popular in equestrian sports. The efficacy of AV in protecting against serious injury has not been adequately analyzed, nor have product testing standards been established. This study provides an overview of current research to understand AV efficacy and future areas of improvement. A systematic review applying the PRISMA framework, NIH Study Quality Assessment, and CEBM Level of Evidence was conducted. Employing variations of “equestrian sport,” “powered two-wheeled vehicle,” “thoracic injury,” “chest deflection,” “airbag vest,” and “safety vest,” 18 articles were identified for data collection from three recognized research databases and citation searching. In laboratory settings, the ability of AV to protect against thoracic injuries was variable based on concurrent foam-based safety vest (SV) usage, impact speed, and impact mechanism. Studies that examined equestrian falls with AV found an association with increased injury rates and risk. SVs were shown to provide inconclusive efficacy in protecting against injuries in experimental and cohort studies. Protective capabilities depend on material, temperature, and impact mechanism. Further limiting use, equestrians reported not wearing, or incorrectly wearing SV due to unknown benefits, low comfort, and ill fit. In equestrian sports, based on published literature to date, AV have not been associated with a reduction in injury. AV appear to be associated with an increase in the risk of serious or fatal injuries in certain settings. However, research in this area is limited and future, large-scale studies should be conducted to further evaluate the efficacy of the air vests.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 11","pages":"2916 - 2922"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instability in Computational Models of Vascular Smooth Muscle Cell Contraction 血管平滑肌细胞收缩计算模型的不稳定性
IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-29 DOI: 10.1007/s10439-024-03532-x
Alessandro Giudici, Jason M. Szafron, Abhay B. Ramachandra, Bart Spronck

Purpose

Through their contractile and synthetic capacity, vascular smooth muscle cells (VSMCs) can regulate the stiffness and resistance of the circulation. To model the contraction of blood vessels, an active stress component can be added to the (passive) Cauchy stress tensor. Different constitutive formulations have been proposed to describe this active stress component. Notably, however, measuring biomechanical behaviour of contracted blood vessels ex vivo presents several experimental challenges, which complicate the acquisition of comprehensive datasets to inform complex active stress models. In this work, we examine formulations for use with limited experimental contraction data as well as those developed to capture more comprehensive datasets.

Methods

First, we prove analytically that a subset of constitutive active stress formulations exhibits unstable behaviours (i.e., a non-unique diameter solution for a given pressure) in certain parameter ranges, particularly for large contractile deformations. Second, using experimental literature data, we present two case studies where these formulations are used to capture the contractile response of VSMCs in the presence of (1) limited and (2) extensive contraction data.

Results

We show how limited contraction data complicates selecting an appropriate active stress model for vascular applications, potentially resulting in unrealistic modelled behaviours.

Conclusion

Our data provide a useful reference for selecting an active stress model which balances the trade-off between accuracy and available biomechanical information. Whilst complex physiologically motivated models’ superior accuracy is recommended whenever active biomechanics can be extensively characterised experimentally, a constant 2nd Piola-Kirchhoff active stress model balances well accuracy and applicability with sparse contractile data.

目的:血管平滑肌细胞(VSMC)通过其收缩和合成能力,可以调节血液循环的硬度和阻力。为模拟血管收缩,可在(被动)考希应力张量中加入主动应力分量。人们提出了不同的构成公式来描述这种主动应力成分。但值得注意的是,测量体内收缩血管的生物力学行为面临着一些实验挑战,这使得获取全面数据集以建立复杂的主动应力模型变得更加复杂。在这项工作中,我们研究了在有限的实验收缩数据下使用的公式,以及为获取更全面的数据集而开发的公式:首先,我们通过分析证明,在某些参数范围内,特别是在大收缩变形情况下,主动应力构成公式的一个子集表现出不稳定行为(即给定压力下的非唯一直径解)。其次,利用实验文献数据,我们介绍了两个案例研究,即在存在(1)有限收缩数据和(2)大量收缩数据的情况下,使用这些公式捕捉 VSMC 的收缩响应:结果:我们展示了有限的收缩数据如何使血管应用中选择合适的主动应力模型变得复杂,从而可能导致不切实际的建模行为:我们的数据为选择主动应力模型提供了有用的参考,该模型在准确性和可用生物力学信息之间取得了平衡。只要能通过实验对主动生物力学进行广泛表征,我们就会推荐使用精度更高的复杂生理模型,而常数 2 Piola-Kirchhoff 主动应力模型则能在收缩数据稀少的情况下很好地平衡精度和适用性。
{"title":"Instability in Computational Models of Vascular Smooth Muscle Cell Contraction","authors":"Alessandro Giudici,&nbsp;Jason M. Szafron,&nbsp;Abhay B. Ramachandra,&nbsp;Bart Spronck","doi":"10.1007/s10439-024-03532-x","DOIUrl":"10.1007/s10439-024-03532-x","url":null,"abstract":"<div><h3>Purpose</h3><p>Through their contractile and synthetic capacity, vascular smooth muscle cells (VSMCs) can regulate the stiffness and resistance of the circulation. To model the contraction of blood vessels, an active stress component can be added to the (passive) Cauchy stress tensor. Different constitutive formulations have been proposed to describe this active stress component. Notably, however, measuring biomechanical behaviour of contracted blood vessels ex vivo presents several experimental challenges, which complicate the acquisition of comprehensive datasets to inform complex active stress models. In this work, we examine formulations for use with limited experimental contraction data as well as those developed to capture more comprehensive datasets.</p><h3>Methods</h3><p>First, we prove analytically that a subset of constitutive active stress formulations exhibits unstable behaviours (i.e., a non-unique diameter solution for a given pressure) in certain parameter ranges, particularly for large contractile deformations. Second, using experimental literature data, we present two case studies where these formulations are used to capture the contractile response of VSMCs in the presence of (1) limited and (2) extensive contraction data.</p><h3>Results</h3><p>We show how limited contraction data complicates selecting an appropriate active stress model for vascular applications, potentially resulting in unrealistic modelled behaviours.</p><h3>Conclusion</h3><p>Our data provide a useful reference for selecting an active stress model which balances the trade-off between accuracy and available biomechanical information. Whilst complex physiologically motivated models’ superior accuracy is recommended whenever active biomechanics can be extensively characterised experimentally, a constant 2nd Piola-Kirchhoff active stress model balances well accuracy and applicability with sparse contractile data.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 9","pages":"2403 - 2416"},"PeriodicalIF":3.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annals of Biomedical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1