首页 > 最新文献

Welding in the World最新文献

英文 中文
Determination of the load acting on the probe by separating force and torque during FSW of AA 6060 T66 通过分离 AA 6060 T66 FSW 过程中的力和扭矩确定作用在探针上的载荷
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-19 DOI: 10.1007/s40194-024-01831-4
Martin Sennewald, Ramon Wüstefeld, Michael Hasieber, Torsten Löhn, Jean Pierre Bergmann

The development of suitable welding processes is required to meet the ever-increasing demands on joining processes, particularly for lightweight construction and increasing environmental awareness. Friction stir welding (FSW) represents a promising alternative to conventional fusion welding processes, particularly for the joining of low-melting-point materials such as aluminium and magnesium alloys, which present a number of challenges, including the formation of pores and the occurrence of hot cracks. The central element of the process is the friction stir welding tool, which consists of a shoulder and a probe. The rotation and the simultaneous application of pressure during the joining process create a friction-based heat input through the tool. The excellent mechanical properties resulting from dynamic recrystallisation during the welding process are a major advantage of the process. As a result, strengths comparable to those of the base material can be achieved. However, FSW is subject to process-specific challenges, including high process forces, which result in the fabrication of complex and robust devices. Additionally, high dynamic loads on the friction stir welding tools must be considered. In many cases, the design of friction stir welding tools is based on empirical data. However, these empirical values are machine-, component- and material-specific, which often results in under- or overmatching of friction stir welding tools. Sudden probe failure, component scrap, and low process reliability are the direct consequences of undermatching. Overmatching results in enlarged tools with limited accessibility, high heat input, and high process forces, leading to component deformation. The aim of this study is to determine the load on the probe by separating the forces and torque of the shoulder and the probe in order to be able to make statements about the load acting on the probe and the resulting stress state. The knowledge of the stress state can be employed to design friction stir welding tools, both statically and dynamically, for a specific welding task. A strategy was devised to distribute the load exerted on the shoulder and probe. To this end, the length of the probe was gradually reduced between the welding tests. The investigations were carried out with a force-controlled robotized welding setup in which AA 6060 T66 sheets with a thickness of 5 mm were welded. A Kistler multicomponent dynamometer type 9139AA allows to measure the Cartesian forces to be recorded in the x-, y-, and z-directions with a sampling rate of 80 kHz. The weld seam properties were determined by visual and metallographic inspections as well as tensile and bending tests in accordance with DIN EN ISO 25239–5.

为了满足对焊接工艺日益增长的需求,特别是轻质建筑和日益增强的环保意识,需要开发合适的焊接工艺。搅拌摩擦焊(FSW)是传统熔化焊接工艺的一种很有前途的替代工艺,尤其是在连接铝合金和镁合金等低熔点材料时,因为这些材料会产生气孔和热裂纹。该工艺的核心要素是搅拌摩擦焊接工具,它由一个肩部和一个探头组成。焊接过程中的旋转和同时施加的压力会通过工具产生摩擦热输入。焊接过程中的动态再结晶产生的优异机械性能是该工艺的一大优势。因此,可以达到与母材相当的强度。然而,FSW 焊接工艺也面临着一些特定工艺的挑战,其中包括高工艺力,这导致了复杂和坚固设备的制造。此外,还必须考虑搅拌摩擦焊接工具所承受的高动态载荷。在许多情况下,搅拌摩擦焊接工具的设计都是基于经验数据。然而,这些经验值是针对特定机器、部件和材料的,这往往会导致搅拌摩擦焊工具匹配不足或匹配过度。探头突然失效、部件报废和工艺可靠性低是匹配不足的直接后果。过度匹配则会导致工具变大,可操作性受限,输入热量高,加工力大,从而导致部件变形。本研究的目的是通过分离肩部和测头的力和扭矩来确定测头上的载荷,从而能够对作用在测头上的载荷以及由此产生的应力状态做出说明。应力状态的知识可用于设计搅拌摩擦焊接工具,无论是静态还是动态,以完成特定的焊接任务。我们设计了一种策略来分散施加在肩部和探针上的载荷。为此,探针的长度在两次焊接试验之间逐渐缩短。研究使用了力控机器人焊接装置,对厚度为 5 毫米的 AA 6060 T66 板材进行焊接。基斯勒 9139AA 型多分量测力计可测量记录 x、y 和 z 方向上的笛卡尔力,采样率为 80 kHz。根据 DIN EN ISO 25239-5 标准,通过目视和金相检验以及拉伸和弯曲测试确定焊缝性能。
{"title":"Determination of the load acting on the probe by separating force and torque during FSW of AA 6060 T66","authors":"Martin Sennewald,&nbsp;Ramon Wüstefeld,&nbsp;Michael Hasieber,&nbsp;Torsten Löhn,&nbsp;Jean Pierre Bergmann","doi":"10.1007/s40194-024-01831-4","DOIUrl":"10.1007/s40194-024-01831-4","url":null,"abstract":"<div><p>The development of suitable welding processes is required to meet the ever-increasing demands on joining processes, particularly for lightweight construction and increasing environmental awareness. Friction stir welding (FSW) represents a promising alternative to conventional fusion welding processes, particularly for the joining of low-melting-point materials such as aluminium and magnesium alloys, which present a number of challenges, including the formation of pores and the occurrence of hot cracks. The central element of the process is the friction stir welding tool, which consists of a shoulder and a probe. The rotation and the simultaneous application of pressure during the joining process create a friction-based heat input through the tool. The excellent mechanical properties resulting from dynamic recrystallisation during the welding process are a major advantage of the process. As a result, strengths comparable to those of the base material can be achieved. However, FSW is subject to process-specific challenges, including high process forces, which result in the fabrication of complex and robust devices. Additionally, high dynamic loads on the friction stir welding tools must be considered. In many cases, the design of friction stir welding tools is based on empirical data. However, these empirical values are machine-, component- and material-specific, which often results in under- or overmatching of friction stir welding tools. Sudden probe failure, component scrap, and low process reliability are the direct consequences of undermatching. Overmatching results in enlarged tools with limited accessibility, high heat input, and high process forces, leading to component deformation. The aim of this study is to determine the load on the probe by separating the forces and torque of the shoulder and the probe in order to be able to make statements about the load acting on the probe and the resulting stress state. The knowledge of the stress state can be employed to design friction stir welding tools, both statically and dynamically, for a specific welding task. A strategy was devised to distribute the load exerted on the shoulder and probe. To this end, the length of the probe was gradually reduced between the welding tests. The investigations were carried out with a force-controlled robotized welding setup in which AA 6060 T66 sheets with a thickness of 5 mm were welded. A Kistler multicomponent dynamometer type 9139AA allows to measure the Cartesian forces to be recorded in the <i>x</i>-, <i>y</i>-, and <i>z</i>-directions with a sampling rate of 80 kHz. The weld seam properties were determined by visual and metallographic inspections as well as tensile and bending tests in accordance with DIN EN ISO 25239–5.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 11","pages":"2927 - 2940"},"PeriodicalIF":2.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01831-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructural evolution during low-temperature TLP bonding of WC-6Co cemented carbide to AISI 1045 steel using multi-layer of Ni/Cu/In/Cu/Ni 使用多层 Ni/Cu/In/Cu/Ni 将 WC-6Co 硬质合金与 AISI 1045 钢进行低温 TLP 焊接时的微观结构演变
IF 2.1 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-13 DOI: 10.1007/s40194-024-01833-2
Saeid Nahri, Reza Tavangar

Transient liquid phase (TLP) bonding of WC-6Co cemented carbide to 1045 steel was performed using a selected Ni/Cu/In/Cu/Ni multi-interlayer at low temperature of 650°C for three different holding times of 10, 20, and 30 min. The Cu and Ni layers were electro deposited on the joining surface of both substrates to prepare the interfaces for joining. Then, an indium film with thickness of 5 μm was settled between them as an interlayer to form the Cu-In solid solution via TLP process. For a bonding time of 10 min, isothermal solidification of copper solid solution was incomplete and double-phase microstructure of δ-(Cu) was formed, but it was observed that by prolonging the TLP holding time to 30 min, due to a rather completing of homogenization of the isothermally formed Cu-In solid solution in joint area, the maximum shear strength of 173 MPa was obtained.

在 650°C 的低温下,使用精选的 Ni/Cu/In/Cu/Ni 多层中间膜,在 10、20 和 30 分钟三个不同的保温时间内,将 WC-6Co 硬质合金与 1045 钢进行了瞬态液相 (TLP) 键合。铜层和镍层被电沉积在两种基材的接合面上,为接合界面做好准备。然后,在它们之间沉淀厚度为 5 μm 的铟膜作为中间层,通过 TLP 工艺形成铜铟固溶体。在接合时间为 10 分钟时,铜固溶体的等温凝固不完全,形成了 δ-(Cu) 的双相微观结构,但据观察,将 TLP 保温时间延长到 30 分钟后,由于等温形成的铜铟固溶体在接合区域的均匀化相当完全,因此获得了 173 兆帕的最大剪切强度。
{"title":"Microstructural evolution during low-temperature TLP bonding of WC-6Co cemented carbide to AISI 1045 steel using multi-layer of Ni/Cu/In/Cu/Ni","authors":"Saeid Nahri, Reza Tavangar","doi":"10.1007/s40194-024-01833-2","DOIUrl":"https://doi.org/10.1007/s40194-024-01833-2","url":null,"abstract":"<p>Transient liquid phase (TLP) bonding of WC-6Co cemented carbide to 1045 steel was performed using a selected Ni/Cu/In/Cu/Ni multi-interlayer at low temperature of 650°C for three different holding times of 10, 20, and 30 min. The Cu and Ni layers were electro deposited on the joining surface of both substrates to prepare the interfaces for joining. Then, an indium film with thickness of 5 μm was settled between them as an interlayer to form the Cu-In solid solution via TLP process. For a bonding time of 10 min, isothermal solidification of copper solid solution was incomplete and double-phase microstructure of δ-(Cu) was formed, but it was observed that by prolonging the TLP holding time to 30 min, due to a rather completing of homogenization of the isothermally formed Cu-In solid solution in joint area, the maximum shear strength of 173 MPa was obtained.</p>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"38 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of interfacial morphology and weldability window on tin and aluminum plates welded using regulated water shockwaves 使用调节水冲击波焊接锡板和铝板时界面形态和可焊性窗口的影响
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-12 DOI: 10.1007/s40194-024-01834-1
Satyanarayan, Kazuyuki Hokamoto, Shigeru Tanaka, Akihisa Mori, Daisuke Inao

An effect of distances between the flyer plate and the explosive (d = 30, 40, 50, and 60 mm) on the welded interfaces of tin (Sn)–aluminum (Al) plates is discussed. Sn (flyer) and Al (base) plates were welded by adopting an underwater explosive detonation system. The interfaces were characterized using a metallurgical microscope and scanning electron microscope (SEM). As the distance (d) was increased, a change in the wavy parameters (amplitude and wavelength) of the interfaces was observed. The experimental results for welded Sn/Al plates were investigated based on the welding window (WW) constructed using numerical software (AUTODYN-2D). Based on the data, window parameters (the collision point velocities, Vc, and the collision angles,β) for welded Sn and Al plates were found to be in agreement with numerical data, and plates welded at a water distance of 60 mm exhibited good quality of welding.

讨论了飞板和炸药之间的距离(d = 30、40、50 和 60 毫米)对锡铝板焊接界面的影响。锡(飞边)和铝(基底)板通过水下炸药引爆系统进行焊接。使用金相显微镜和扫描电子显微镜(SEM)对界面进行了表征。随着距离(d)的增加,观察到界面的波浪参数(振幅和波长)发生了变化。根据使用数值软件(AUTODYN-2D)构建的焊接窗口(WW),研究了锡/铝焊接板的实验结果。根据数据,发现锡板和铝板焊接的窗口参数(碰撞点速度 Vc 和碰撞角 β)与数值数据一致,水距为 60 mm 的焊接板显示出良好的焊接质量。
{"title":"The effect of interfacial morphology and weldability window on tin and aluminum plates welded using regulated water shockwaves","authors":"Satyanarayan,&nbsp;Kazuyuki Hokamoto,&nbsp;Shigeru Tanaka,&nbsp;Akihisa Mori,&nbsp;Daisuke Inao","doi":"10.1007/s40194-024-01834-1","DOIUrl":"10.1007/s40194-024-01834-1","url":null,"abstract":"<div><p>An effect of distances between the flyer plate and the explosive (<i>d</i> = 30, 40, 50, and 60 mm) on the welded interfaces of tin (Sn)–aluminum (Al) plates is discussed. Sn (flyer) and Al (base) plates were welded by adopting an underwater explosive detonation system. The interfaces were characterized using a metallurgical microscope and scanning electron microscope (SEM). As the distance (d) was increased, a change in the wavy parameters (amplitude and wavelength) of the interfaces was observed. The experimental results for welded Sn/Al plates were investigated based on the welding window (WW) constructed using numerical software (AUTODYN-2D). Based on the data, window parameters (the collision point velocities, V<sub>c</sub>, and the collision angles,β) for welded Sn and Al plates were found to be in agreement with numerical data, and plates welded at a water distance of 60 mm exhibited good quality of welding.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 11","pages":"2941 - 2951"},"PeriodicalIF":2.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the estimation method for the mean stress effect on the fatigue strength of welded joints with various failure modes and joint types 不同失效模式和接头类型下平均应力对焊接接头疲劳强度影响的估算方法研究
IF 2.1 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-11 DOI: 10.1007/s40194-024-01815-4
Yukihide Yoshihara, Naoki Osawa, Hidekazu Murakawa, Peiyuan Dai

In compact box-shaped steel structures, partial penetration welds are frequently selected as the welding technique, and root fatigue failure might manifest in these joints. In order to ensure the structural integrity of steel structures, it is necessary to develop an assessment approach for evaluating the efficacy of post-weld heat treatment (stress relief) in enhancing the fatigue strength of root-failed welded joints. In this study, bending fatigue experiments employing stress ratios of R = 0 and − 1 have been carried out on as-welded and stress-relieved welded joint specimens. The test objects include root-failed plug weld specimens, as well as toe-failed out-of-plane gusset weld joint and T-joint specimens. The welding residual stresses near the root notch and weld toe are measured by X-ray diffraction technique. The assessment of the mean stress effect on fatigue strength has been examined through the utilization of the modified MIL-HandBook-5D equivalent stress range. The equivalent stress range is evaluated by using two fatigue assessment stresses: structural stress and elastic–plastic local stress. It has been confirmed that all fatigue test results, irrespective of the failure mode or the joint type, whether from the as-welded or stress-relieved specimens, can be closely approximated using a single S–N curve with either definition of the equivalent stress. This outcome indicates the accomplishment of assessing the mean stress effect on the fatigue strength of welded joints with various failure modes and joint types.

在紧凑型箱形钢结构中,部分熔透焊缝经常被选为焊接技术,这些焊缝可能会出现根部疲劳失效。为了确保钢结构的结构完整性,有必要开发一种评估方法,用于评价焊后热处理(应力消除)对提高根部失效焊点疲劳强度的效果。在这项研究中,采用 R = 0 和 - 1 的应力比对原焊接和应力释放焊接接头试样进行了弯曲疲劳试验。试验对象包括根部失效的塞焊试样,以及趾部失效的平面外桁架焊缝和 T 形接头试样。通过 X 射线衍射技术测量了根部缺口和焊趾附近的焊接残余应力。通过使用修改后的 MIL-HandBook-5D 等效应力范围,评估了平均应力对疲劳强度的影响。等效应力范围通过两种疲劳评估应力进行评估:结构应力和弹塑性局部应力。经证实,所有疲劳测试结果,无论失效模式或接头类型如何,无论是来自焊接状态试样还是应力消除试样,均可使用单一的 S-N 曲线与任一定义的等效应力接近。这一结果表明,评估平均应力对各种失效模式和接头类型的焊接接头疲劳强度的影响是可行的。
{"title":"Study on the estimation method for the mean stress effect on the fatigue strength of welded joints with various failure modes and joint types","authors":"Yukihide Yoshihara, Naoki Osawa, Hidekazu Murakawa, Peiyuan Dai","doi":"10.1007/s40194-024-01815-4","DOIUrl":"https://doi.org/10.1007/s40194-024-01815-4","url":null,"abstract":"<p>In compact box-shaped steel structures, partial penetration welds are frequently selected as the welding technique, and root fatigue failure might manifest in these joints. In order to ensure the structural integrity of steel structures, it is necessary to develop an assessment approach for evaluating the efficacy of post-weld heat treatment (stress relief) in enhancing the fatigue strength of root-failed welded joints. In this study, bending fatigue experiments employing stress ratios of <i>R</i> = 0 and − 1 have been carried out on as-welded and stress-relieved welded joint specimens. The test objects include root-failed plug weld specimens, as well as toe-failed out-of-plane gusset weld joint and T-joint specimens. The welding residual stresses near the root notch and weld toe are measured by X-ray diffraction technique. The assessment of the mean stress effect on fatigue strength has been examined through the utilization of the modified MIL-HandBook-5D equivalent stress range. The equivalent stress range is evaluated by using two fatigue assessment stresses: structural stress and elastic–plastic local stress. It has been confirmed that all fatigue test results, irrespective of the failure mode or the joint type, whether from the as-welded or stress-relieved specimens, can be closely approximated using a single S–N curve with either definition of the equivalent stress. This outcome indicates the accomplishment of assessing the mean stress effect on the fatigue strength of welded joints with various failure modes and joint types.</p>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"9 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the effect of Zn, Cu, and brass interlayers in friction stir welded St37 and AZ31 dissimilar joints 搅拌摩擦焊接 St37 和 AZ31 异种接头中锌、铜和黄铜夹层的影响
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-10 DOI: 10.1007/s40194-024-01819-0
Amin Shakoori, Tohid Saeid, Ali Ebrahimpour

In this research, dissimilar friction stir welding of AZ31 magnesium alloy and St37 steel sheets was performed to investigate the effect of Zn, Cu, and brass interlayers on the microstructure and mechanical properties of the joint. After conducting microstructural and mechanical evaluations, welding with a Zn interlayer exhibited the best strength and bonding efficiency, achieving 161 MPa and 60%, respectively. Since mechanical and metallurgical bonding at the interface plays a complementary role in improving welding properties, the presence of the Zn interlayer, by deoxidizing and enhancing reactions at the interface, increases the thickness of the Fe-Al-based intermetallic compound layer from 110 nm in welding without an interlayer to 300 nm. This results in improved mechanical properties of the welds. Examination of the fracture surfaces from the tensile test samples shows that all samples exhibit brittle fracture, except for the sample with the Zn interlayer, which displays a combination of ductile and brittle fracture.

本研究对 AZ31 镁合金和 St37 钢板进行了异种搅拌摩擦焊接,以研究锌、铜和黄铜夹层对接头微观结构和机械性能的影响。在进行了微观结构和机械评估后,使用锌夹层的焊接表现出了最佳的强度和结合效率,分别达到了 161 兆帕和 60%。由于界面上的机械和冶金结合在改善焊接性能方面起着相辅相成的作用,Zn 中间膜的存在通过在界面上脱氧和增强反应,将以 Fe-Al 为基础的金属间化合物层的厚度从无中间膜焊接时的 110 nm 增加到 300 nm。这就提高了焊缝的机械性能。对拉伸试验样品断裂面的检查显示,除了带有锌中间层的样品显示出韧性和脆性相结合的断裂外,所有样品都显示出脆性断裂。
{"title":"On the effect of Zn, Cu, and brass interlayers in friction stir welded St37 and AZ31 dissimilar joints","authors":"Amin Shakoori,&nbsp;Tohid Saeid,&nbsp;Ali Ebrahimpour","doi":"10.1007/s40194-024-01819-0","DOIUrl":"10.1007/s40194-024-01819-0","url":null,"abstract":"<div><p>In this research, dissimilar friction stir welding of AZ31 magnesium alloy and St37 steel sheets was performed to investigate the effect of Zn, Cu, and brass interlayers on the microstructure and mechanical properties of the joint. After conducting microstructural and mechanical evaluations, welding with a Zn interlayer exhibited the best strength and bonding efficiency, achieving 161 MPa and 60%, respectively. Since mechanical and metallurgical bonding at the interface plays a complementary role in improving welding properties, the presence of the Zn interlayer, by deoxidizing and enhancing reactions at the interface, increases the thickness of the Fe-Al-based intermetallic compound layer from 110 nm in welding without an interlayer to 300 nm. This results in improved mechanical properties of the welds. Examination of the fracture surfaces from the tensile test samples shows that all samples exhibit brittle fracture, except for the sample with the Zn interlayer, which displays a combination of ductile and brittle fracture.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 11","pages":"2891 - 2910"},"PeriodicalIF":2.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01819-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on residual stress, microstructure, and properties of the electron beam welded Haynes 230-based thin-walled piece 电子束焊接海恩斯 230 型薄壁件的残余应力、微观结构和性能研究
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-07 DOI: 10.1007/s40194-024-01832-3
Jian Xu, Yang Guo, Hailong Cheng, Guijun Mao, Shaolin Zhao, Xin Wu

Haynes 230 material is an important high-temperature alloy used in many significant applications. Electron beam welding (EBW) process is necessary for Haynes 230 to realize some complex structures. In this study, by combining three-dimensional finite element simulation with different experimental methods, the thermal behavior, residual stress, microstructure, and mechanical properties of Haynes 230 thin-walled weldment made by EBW were comprehensively investigated. The EBW process would induce an uneven temperature distribution in the weldment, which then results in a large amount of tensile residual stress. Sufficient amount of precipitates was generated to provide enough enhancement for the strength. The quality of the weldment was good to provide comparable strength to the base metal. This study could offer important information for the application of EBW welded Haynes 230 material, especially in the thin-walled workpieces that are used in hot-end components of combustion gas turbines.

Haynes 230 材料是一种重要的高温合金,被广泛应用于许多重要领域。电子束焊接(EBW)工艺是实现某些复杂结构所必需的。本研究结合三维有限元模拟和不同的实验方法,全面研究了 EBW 工艺制成的 Haynes 230 薄壁焊件的热行为、残余应力、微观结构和力学性能。EBW 工艺会导致焊件温度分布不均,进而产生大量拉伸残余应力。产生的足够数量的析出物足以提高强度。焊接件的质量良好,可提供与母材相当的强度。这项研究为 EBW 焊接 Haynes 230 材料的应用提供了重要信息,尤其是在燃烧式燃气轮机热端部件中使用的薄壁工件方面。
{"title":"Investigation on residual stress, microstructure, and properties of the electron beam welded Haynes 230-based thin-walled piece","authors":"Jian Xu,&nbsp;Yang Guo,&nbsp;Hailong Cheng,&nbsp;Guijun Mao,&nbsp;Shaolin Zhao,&nbsp;Xin Wu","doi":"10.1007/s40194-024-01832-3","DOIUrl":"10.1007/s40194-024-01832-3","url":null,"abstract":"<div><p>Haynes 230 material is an important high-temperature alloy used in many significant applications. Electron beam welding (EBW) process is necessary for Haynes 230 to realize some complex structures. In this study, by combining three-dimensional finite element simulation with different experimental methods, the thermal behavior, residual stress, microstructure, and mechanical properties of Haynes 230 thin-walled weldment made by EBW were comprehensively investigated. The EBW process would induce an uneven temperature distribution in the weldment, which then results in a large amount of tensile residual stress. Sufficient amount of precipitates was generated to provide enough enhancement for the strength. The quality of the weldment was good to provide comparable strength to the base metal. This study could offer important information for the application of EBW welded Haynes 230 material, especially in the thin-walled workpieces that are used in hot-end components of combustion gas turbines.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3129 - 3140"},"PeriodicalIF":2.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of aluminium-titanium-stainless steel three-layer composites produced by explosive welding 爆炸焊接生产的铝钛不锈钢三层复合材料的结构分析
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-05 DOI: 10.1007/s40194-024-01830-5
I. Galvão, G. H. S. F. L. Carvalho, J. Pimenta, T. Abreu, C. Leitão, R. M. Leal, R. Mendes

The present work aimed to study the morphological, microstructural, and mechanical properties of Al sheet-Ti sheet-SS sheet composites produced by explosion welding. Trimetallic composites with sound structure and very good mechanical behaviour were obtained. The mechanical performance of the produced composites makes them very appropriate for applications requiring increased lightness, corrosion resistance, and mechanical properties at high and low temperature. Regarding the weldability of the material trio, the type of the explosive mixture was found to have a strong influence on the results. Better conditions were achieved by using a mixture with a lower detonation velocity, as high detonation velocities are not appropriate for welding low melting temperature flyers, like aluminium alloys. Although IMC-rich zones were formed at the Al-Ti and Ti-SS interfaces of the composites, these regions were encompassed/accommodated by ductile interfacial waves, which allowed to overcome the brittleness of the IMC regions and to achieve composites with an improved performance. An encompassing literature-based study also allowed to infer that, regardless of the material couples being joined by EXW, the matrix of the intermediate regions formed at the weld interface is always richer in the main element of the welded couple with lower melting temperature.

本工作旨在研究通过爆炸焊接生产的铝片-钛片-SS 片复合材料的形态、微观结构和机械性能。结果表明,三金属复合材料具有良好的结构和机械性能。所生产的复合材料的机械性能使其非常适合于要求提高轻质、耐腐蚀性和高低温机械性能的应用。关于三组材料的可焊性,发现爆炸混合物的类型对结果有很大影响。使用爆速较低的混合物可获得较好的焊接条件,因为高爆速不适合焊接铝合金等低熔点飞散物。虽然在复合材料的 Al-Ti 和 Ti-SS 界面形成了富含 IMC 的区域,但这些区域被韧性界面波所覆盖/容纳,从而克服了 IMC 区域的脆性,使复合材料的性能得到改善。基于文献的全面研究还推断出,无论采用 EXW 焊接的是哪种材料组合,在焊接界面形成的中间区域基体总是富含熔化温度较低的焊接组合的主要元素。
{"title":"Structural analysis of aluminium-titanium-stainless steel three-layer composites produced by explosive welding","authors":"I. Galvão,&nbsp;G. H. S. F. L. Carvalho,&nbsp;J. Pimenta,&nbsp;T. Abreu,&nbsp;C. Leitão,&nbsp;R. M. Leal,&nbsp;R. Mendes","doi":"10.1007/s40194-024-01830-5","DOIUrl":"10.1007/s40194-024-01830-5","url":null,"abstract":"<div><p>The present work aimed to study the morphological, microstructural, and mechanical properties of Al sheet-Ti sheet-SS sheet composites produced by explosion welding. Trimetallic composites with sound structure and very good mechanical behaviour were obtained. The mechanical performance of the produced composites makes them very appropriate for applications requiring increased lightness, corrosion resistance, and mechanical properties at high and low temperature. Regarding the weldability of the material trio, the type of the explosive mixture was found to have a strong influence on the results. Better conditions were achieved by using a mixture with a lower detonation velocity, as high detonation velocities are not appropriate for welding low melting temperature flyers, like aluminium alloys. Although IMC-rich zones were formed at the Al-Ti and Ti-SS interfaces of the composites, these regions were encompassed/accommodated by ductile interfacial waves, which allowed to overcome the brittleness of the IMC regions and to achieve composites with an improved performance. An encompassing literature-based study also allowed to infer that, regardless of the material couples being joined by EXW, the matrix of the intermediate regions formed at the weld interface is always richer in the main element of the welded couple with lower melting temperature.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 11","pages":"2911 - 2925"},"PeriodicalIF":2.4,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Required fatigue strength (RFS) – a simple concept for determining an equivalent stress range indicating the necessary minimum joint quality in contrast to the actual modified equivalent strength (MES) method 所需疲劳强度 (RFS) - 一个简单的概念,用于确定等效应力范围,表明必要的最低接头质量,与实际的修正等效强度 (MES) 方法形成对比
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-08-28 DOI: 10.1007/s40194-024-01820-7
J. Baumgartner, M. Breitenberger, C. M. Sonsino

 This paper treats different fatigue (FAT)-scenarios for determining damage-equivalent stress ranges according to two methods for transforming a stress or load spectrum into a damage-equivalent constant amplitude loading, i.e., the Modified Equivalent Stress (MES) and the Required Fatigue Strength (RFS) concepts. The MES method is suggested by the IIW-recommendations for fatigue design and the RFS method is applied especially in the design of vehicle safety components. The resulting MES- and RFS-ranges are similar, but not equal. The MES-method delivers a damage-equivalent stress range that depends on the selected FAT-value, i.e., the position of the Woehler-curve is decisive. In contrast, the RFS-method results in a damage-equivalent fictitious Woehler-line that indicates the lowest necessary strength quality for a given stress spectrum. The allocation of the modified equivalent stress range to the appertaining bi-linear Woehler-curve does not result in the fatigue life caused by the spectrum. Only in the case of a linear Woehler-curve, the fatigue life is directly obtained. In the case of the RFS-application, the fatigue life is by definition equal to the spectrum length. For durability tests, the modified equivalent stress range (at ({L}_{S}) cycles) and the associated FAT-Woehler-curve should not be used. However, the Woehler-curve derived by the RFS-method allows experimental durability proofs for any amplitude-cycle combination along it. Furthermore, the required lowest necessary strength also enables the selection of the most cost-effective manufacturing technique and quality. The RFS-Woehler-curve also results in a FAT-value with a defined probability of failure depending on the required safety factor.

本文根据将应力或载荷谱转化为损害当量恒定振幅载荷的两种方法,即修正当量应力(MES)和所需疲劳强度(RFS)概念,讨论了用于确定损害当量应力范围的不同疲劳(FAT)情景。MES 方法是 IIW 建议的疲劳设计方法,而 RFS 方法则特别适用于车辆安全部件的设计。由此得出的 MES 和 RFS 范围相似,但并不等同。MES 方法提供的损伤当量应力范围取决于所选的 FAT 值,即 Woehler 曲线的位置起决定性作用。相比之下,RFS 方法得出的损害当量虚构 Woehler 线表示给定应力谱的最低必要强度质量。将修改后的等效应力范围分配到相应的双线性 Woehler 曲线上并不会导致应力谱引起的疲劳寿命。只有在线性 Woehler 曲线的情况下,才能直接获得疲劳寿命。在 RFS 应用中,疲劳寿命根据定义等于频谱长度。对于耐久性试验,不应使用修正的等效应力范围(在 ({L}_{S}) 周期)和相关的 FAT-Woehler 曲线。然而,通过 RFS 方法得出的 Woehler 曲线可以对其沿线的任何振幅-周期组合进行耐久性实验证明。此外,所需的最低必要强度还有助于选择最具成本效益的制造技术和质量。根据所需的安全系数,RFS-Woehler-曲线还可得出具有确定失效概率的 FAT 值。
{"title":"Required fatigue strength (RFS) – a simple concept for determining an equivalent stress range indicating the necessary minimum joint quality in contrast to the actual modified equivalent strength (MES) method","authors":"J. Baumgartner,&nbsp;M. Breitenberger,&nbsp;C. M. Sonsino","doi":"10.1007/s40194-024-01820-7","DOIUrl":"10.1007/s40194-024-01820-7","url":null,"abstract":"<div><p> This paper treats different fatigue (FAT)-scenarios for determining damage-equivalent stress ranges according to two methods for transforming a stress or load spectrum into a damage-equivalent constant amplitude loading, i.e., the Modified Equivalent Stress (MES) and the Required Fatigue Strength (RFS) concepts. The MES method is suggested by the IIW-recommendations for fatigue design and the RFS method is applied especially in the design of vehicle safety components. The resulting MES- and RFS-ranges are similar, but not equal. The MES-method delivers a damage-equivalent stress range that depends on the selected FAT-value, i.e., the position of the Woehler-curve is decisive. In contrast, the RFS-method results in a damage-equivalent fictitious Woehler-line that indicates the lowest necessary strength quality for a given stress spectrum. The allocation of the modified equivalent stress range to the appertaining bi-linear Woehler-curve does not result in the fatigue life caused by the spectrum. Only in the case of a linear Woehler-curve, the fatigue life is directly obtained. In the case of the RFS-application, the fatigue life is by definition equal to the spectrum length. For durability tests, the modified equivalent stress range (at <span>({L}_{S})</span> cycles) and the associated FAT-Woehler-curve should not be used. However, the Woehler-curve derived by the RFS-method allows experimental durability proofs for any amplitude-cycle combination along it. Furthermore, the required lowest necessary strength also enables the selection of the most cost-effective manufacturing technique and quality. The RFS-Woehler-curve also results in a FAT-value with a defined probability of failure depending on the required safety factor.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3177 - 3194"},"PeriodicalIF":2.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01820-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and mechanical properties of C/C composites/Ni superalloy dissimilar brazed joint for high-temperature applications 用于高温应用的碳/碳复合材料/镍超合金异种钎焊接头的微观结构和机械性能
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-08-27 DOI: 10.1007/s40194-024-01826-1
Yuanxun Shen, Yunyue Li, Lanbing Sheng, Yiming Liang, Chuanyong Hao, Chun She

In this paper, the brazing of high-reliability C/C composite-metal joints for high-temperature application was studied. The surface of C/C composites was modified by the Cr metallization process and then brazed to Ni-based superalloy by AgPd braze. Alumina block was used as interlayer, and a zig-zag interfacial structure was constructed at the composites/braze interface. The results show that, after the metallization process, a strong adhesion reaction layer consisting of Cr carbides was coated on the C/C surface which in turn obviously improved the wettability of braze. The molted braze filled completely into the laser-machined holes in the C/C substrate and well-bonded interfaces and a homogeneous Ag(Pd) solution microstructure were obtained in the joint. The strength of the joint with C/C metalized at 1100 ℃ is higher than that of the joint with 1300 ℃. The joints exhibit very high bending strength of up to 82 MPa and shear strength of up to 54 MPa, respectively. The braze spikes increase the connection area and provide a strong pinning effect.

本文研究了用于高温应用的高可靠性 C/C 复合金属接头的钎焊。通过铬金属化工艺对 C/C 复合材料的表面进行改性,然后通过 AgPd 钎焊将其钎焊到镍基超合金上。采用氧化铝块作为中间层,在复合材料/钎焊界面上构建了 "之 "字形界面结构。结果表明,经过金属化处理后,C/C 表面镀上了一层由碳化铬组成的强粘附反应层,从而明显改善了钎料的润湿性。熔融钎料完全填充到 C/C 基材上的激光加工孔中,在接合处获得了良好的结合界面和均匀的 Ag(Pd) 溶液微观结构。温度为 1100 ℃ 的 C/C 金属化接头的强度高于温度为 1300 ℃ 的接头。接头的抗弯强度和抗剪强度分别高达 82 兆帕和 54 兆帕。钎钉增加了连接面积,并提供了强大的销钉效应。
{"title":"Microstructure and mechanical properties of C/C composites/Ni superalloy dissimilar brazed joint for high-temperature applications","authors":"Yuanxun Shen,&nbsp;Yunyue Li,&nbsp;Lanbing Sheng,&nbsp;Yiming Liang,&nbsp;Chuanyong Hao,&nbsp;Chun She","doi":"10.1007/s40194-024-01826-1","DOIUrl":"10.1007/s40194-024-01826-1","url":null,"abstract":"<div><p>In this paper, the brazing of high-reliability C/C composite-metal joints for high-temperature application was studied. The surface of C/C composites was modified by the Cr metallization process and then brazed to Ni-based superalloy by AgPd braze. Alumina block was used as interlayer, and a zig-zag interfacial structure was constructed at the composites/braze interface. The results show that, after the metallization process, a strong adhesion reaction layer consisting of Cr carbides was coated on the C/C surface which in turn obviously improved the wettability of braze. The molted braze filled completely into the laser-machined holes in the C/C substrate and well-bonded interfaces and a homogeneous Ag(Pd) solution microstructure were obtained in the joint. The strength of the joint with C/C metalized at 1100 ℃ is higher than that of the joint with 1300 ℃. The joints exhibit very high bending strength of up to 82 MPa and shear strength of up to 54 MPa, respectively. The braze spikes increase the connection area and provide a strong pinning effect.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3071 - 3078"},"PeriodicalIF":2.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of holding time on interfacial evolution and mechanical strength of wide-gap brazed K417G superalloy joints 保温时间对宽间隙钎焊 K417G 超合金接头界面演变和机械强度的影响
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-08-26 DOI: 10.1007/s40194-024-01828-z
Xinyu Ren, Hao Wang, Wenwen Li, Qi Dong, Bo Chen, Wei Mao

K417G superalloy is widely applied in gas turbine components such as blades, vanes, and nozzles. In this study, wide-gap brazing of K417G superalloy is investigated using BNi-5 filler alloy. The brazing experiment is conducted at 1150 °C for different holding times with the fixed gap of 0.2 mm. For the joints brazed for 15 min, the brazing seam mainly consists of γ/γ’ phase, Ni2Si and TiC phase. The average tensile strength tested at 950 °C is 401 MPa. As the holding time increased, the excessive element diffusion phenomenon is observed. Hence, Ni2Si intermetallic phases gradually become embedded in the additive alloy particles. The interfacial evolution and fracture behavior are discussed.

K417G 超合金广泛应用于燃气轮机部件,如叶片、叶片和喷嘴。本研究使用 BNi-5 填充合金研究了 K417G 超耐热合金的宽间隙钎焊。钎焊实验在 1150 °C、固定间隙为 0.2 mm 的不同保温时间下进行。对于钎焊 15 分钟的接头,钎缝主要由 γ/γ'相、Ni2Si 和 TiC 相组成。在 950 °C 下测试的平均拉伸强度为 401 MPa。随着保温时间的延长,观察到元素过度扩散现象。因此,Ni2Si 金属间相逐渐嵌入添加剂合金颗粒中。本文讨论了界面演变和断裂行为。
{"title":"Effect of holding time on interfacial evolution and mechanical strength of wide-gap brazed K417G superalloy joints","authors":"Xinyu Ren,&nbsp;Hao Wang,&nbsp;Wenwen Li,&nbsp;Qi Dong,&nbsp;Bo Chen,&nbsp;Wei Mao","doi":"10.1007/s40194-024-01828-z","DOIUrl":"10.1007/s40194-024-01828-z","url":null,"abstract":"<div><p>K417G superalloy is widely applied in gas turbine components such as blades, vanes, and nozzles. In this study, wide-gap brazing of K417G superalloy is investigated using BNi-5 filler alloy. The brazing experiment is conducted at 1150 °C for different holding times with the fixed gap of 0.2 mm. For the joints brazed for 15 min, the brazing seam mainly consists of γ/γ’ phase, Ni<sub>2</sub>Si and TiC phase. The average tensile strength tested at 950 °C is 401 MPa. As the holding time increased, the excessive element diffusion phenomenon is observed. Hence, Ni<sub>2</sub>Si intermetallic phases gradually become embedded in the additive alloy particles. The interfacial evolution and fracture behavior are discussed.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3079 - 3084"},"PeriodicalIF":2.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Welding in the World
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1