Pub Date : 2024-06-12DOI: 10.1007/s40194-024-01800-x
Yingying Zuo, Huijie Liu, Dongrui Li, Yisong Gao, Xuanmo Li
The dissimilar Al/Ti joints were tentatively welded under different welding tools via dynamic support friction stir welding (FSW). The joint formation, intermetallic compounds (IMCs) layer, and mechanical properties of Al/Ti joint were investigated. The results showed that a Co-based alloy welding tool with a 15-mm shoulder diameter achieved the good external appearance and internal tissue. A diffusion layer with ~ 4 μm existed at the upper interface, while the diffusion layer at the lower layer was ~ 3 μm. Detrimental and continuous IMC layers were not generated at the Al/Ti interface, and root defects were avoided. This joint had the largest tensile strength of 189 MPa and fractured at the heat-affected zone (HAZ). The interface bonding, Ti fragments and hole defects in stirring zone, and the HAZ softening determined the ultimate fracture location. The dynamic support FSW offered a novel approach to achieve high-quality joining of Al/Ti dissimilar metals.
{"title":"A realization of Al/Ti dissimilar friction stir welding via bottom dynamic support using a Co-based alloy welding tool","authors":"Yingying Zuo, Huijie Liu, Dongrui Li, Yisong Gao, Xuanmo Li","doi":"10.1007/s40194-024-01800-x","DOIUrl":"10.1007/s40194-024-01800-x","url":null,"abstract":"<div><p>The dissimilar Al/Ti joints were tentatively welded under different welding tools via dynamic support friction stir welding (FSW). The joint formation, intermetallic compounds (IMCs) layer, and mechanical properties of Al/Ti joint were investigated. The results showed that a Co-based alloy welding tool with a 15-mm shoulder diameter achieved the good external appearance and internal tissue. A diffusion layer with ~ 4 μm existed at the upper interface, while the diffusion layer at the lower layer was ~ 3 μm. Detrimental and continuous IMC layers were not generated at the Al/Ti interface, and root defects were avoided. This joint had the largest tensile strength of 189 MPa and fractured at the heat-affected zone (HAZ). The interface bonding, Ti fragments and hole defects in stirring zone, and the HAZ softening determined the ultimate fracture location. The dynamic support FSW offered a novel approach to achieve high-quality joining of Al/Ti dissimilar metals.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 10","pages":"2661 - 2669"},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1007/s40194-024-01792-8
Wanlu Hong, Zeshan Abbas, Lun Zhao, Long Xu, Kai Ye, Hafiz Abdul Saboor, Md Shafiqul Islam
The ultrasonic metal welding technology is widely promoted as a new connection approach in the field of current energy vehicle wiring harness connection. In the present investigation, low-temperature mechanical properties of slotted and normal terminals were studied. The EVR 25 mm2 copper wires are selected for welding using ultrasonic wire harness welding with two different structures of T2 copper terminals. Then, a more stable joint structure under the same welding parameters is investigated through tensile tests at − 30 °C and 25 °C. The results showed that the ST joint has higher static mechanical properties than the NT joint at 25 °C and the peak load of the joint is increased. In addition, the results investigated that the performance and welded interface texture of ST joints is reliable than NT joints under 25 °C, the maximum joint load is increased by 12.93% under − 30 °C, the joint energy absorption is increased by 87.58%, and ST joint stability is better and safer in actual production applications. At the same welding parameters, the ST joints have less neck contraction at 25 °C and the ligamentous sockets are smaller and densely welded surfaces. The failures of ST joints and NT joints are investigated under the same welding parameters. The energy loss during the ST joint welding process is smaller and the welding effect is better and advantageous. The SEM findings showed that the failure of the ST joint and the NT joint is different and the tensile strength of the ST joint is greater under the same low-temperature conditions.
超声波金属焊接技术作为一种新的连接方法在当前能源汽车线束连接领域得到广泛推广。本研究对开槽端子和普通端子的低温力学性能进行了研究。选取 EVR 25 mm2 铜线,采用超声波线束焊接技术与两种不同结构的 T2 铜端子进行焊接。然后,通过在 - 30 °C 和 25 °C 下进行拉伸试验,研究了在相同焊接参数下更稳定的接头结构。结果表明,在 25 °C 时,ST 接头的静态机械性能高于 NT 接头,接头的峰值载荷也有所增加。此外,研究结果还表明,在 25 ° C 下,ST 接头的性能和焊接界面纹理比 NT 接头可靠,在 - 30 °C 下,接头最大载荷增加了 12.93%,接头能量吸收增加了 87.58%,在实际生产应用中,ST 接头的稳定性更好、更安全。在相同的焊接参数下,ST 接头在 25 ℃ 时的颈部收缩较小,韧带套筒较小,焊接表面致密。在相同的焊接参数下,对 ST 接头和 NT 接头的失效情况进行了研究。ST 接头焊接过程中的能量损失较小,焊接效果更好,具有优势。扫描电镜研究结果表明,在相同的低温条件下,ST 接头和 NT 接头的失效情况不同,ST 接头的抗拉强度更大。
{"title":"Low-temperature mechanical properties of slotted and normal terminals using ultrasonic wire harness welding","authors":"Wanlu Hong, Zeshan Abbas, Lun Zhao, Long Xu, Kai Ye, Hafiz Abdul Saboor, Md Shafiqul Islam","doi":"10.1007/s40194-024-01792-8","DOIUrl":"10.1007/s40194-024-01792-8","url":null,"abstract":"<div><p>The ultrasonic metal welding technology is widely promoted as a new connection approach in the field of current energy vehicle wiring harness connection. In the present investigation, low-temperature mechanical properties of slotted and normal terminals were studied. The EVR 25 mm<sup>2</sup> copper wires are selected for welding using ultrasonic wire harness welding with two different structures of T2 copper terminals. Then, a more stable joint structure under the same welding parameters is investigated through tensile tests at − 30 °C and 25 °C. The results showed that the ST joint has higher static mechanical properties than the NT joint at 25 °C and the peak load of the joint is increased. In addition, the results investigated that the performance and welded interface texture of ST joints is reliable than NT joints under 25 °C, the maximum joint load is increased by 12.93% under − 30 °C, the joint energy absorption is increased by 87.58%, and ST joint stability is better and safer in actual production applications. At the same welding parameters, the ST joints have less neck contraction at 25 °C and the ligamentous sockets are smaller and densely welded surfaces. The failures of ST joints and NT joints are investigated under the same welding parameters. The energy loss during the ST joint welding process is smaller and the welding effect is better and advantageous. The SEM findings showed that the failure of the ST joint and the NT joint is different and the tensile strength of the ST joint is greater under the same low-temperature conditions.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2057 - 2069"},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1007/s40194-024-01799-1
Miranda Marcus, Matt Nitsch, Lance Cronley, Maggie Gottfried, Jeff Ellis
Welding of dissimilar polymers is becoming more common. While joining of dissimilar polymers is traditionally accomplished via the use of adhesives or mechanical methods such as fasteners, snap fits, and staking, these approaches cannot always be effectively applied. For these applications, where adhesives and mechanical bonding cannot be used, it may be possible to directly weld or bond polymers that are miscible but have different material properties via welding techniques. In this work, infrared welding was used to join acrylonitrile butadiene styrene (ABS) to polyphenylene oxide (PPO), and hot plate welding was used to join ABS to polyvinyl chloride (PVC), and polystyrene (PS) to polycarbonate (PC) as an initial investigation into a new approach to bonding dissimilar polymers. Through the use of targeted heating to match the polymer viscosities to each other, the weld strength was improved by up to three times and, when optimized, the strength of the dissimilar bond as equivalent to that of the similar material weld.
{"title":"Welding of selected dissimilar polymers via matching viscosity through dual temperature infrared and hot plate heating","authors":"Miranda Marcus, Matt Nitsch, Lance Cronley, Maggie Gottfried, Jeff Ellis","doi":"10.1007/s40194-024-01799-1","DOIUrl":"10.1007/s40194-024-01799-1","url":null,"abstract":"<div><p>Welding of dissimilar polymers is becoming more common. While joining of dissimilar polymers is traditionally accomplished via the use of adhesives or mechanical methods such as fasteners, snap fits, and staking, these approaches cannot always be effectively applied. For these applications, where adhesives and mechanical bonding cannot be used, it may be possible to directly weld or bond polymers that are miscible but have different material properties via welding techniques. In this work, infrared welding was used to join acrylonitrile butadiene styrene (ABS) to polyphenylene oxide (PPO), and hot plate welding was used to join ABS to polyvinyl chloride (PVC), and polystyrene (PS) to polycarbonate (PC) as an initial investigation into a new approach to bonding dissimilar polymers. Through the use of targeted heating to match the polymer viscosities to each other, the weld strength was improved by up to three times and, when optimized, the strength of the dissimilar bond as equivalent to that of the similar material weld.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 12","pages":"3215 - 3225"},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141358511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1007/s40194-024-01786-6
M. Giese, M. Graebner, D. Schroepfer, K. Treutler, S. Lorenz, T. Kannengiesser, V. Wesling
The reduction of CO2 emissions is closely linked to the development of highly efficient and economical steel components in plant and process engineering. To withstand the high combined corrosive, tribological, thermal, and mechanical stresses, wear-resistant coatings tailored to the application and steel grade are used. In addition to the increasing demand to substitute conventional cobalt alloys with nickel alloys, there is also a growing need for defined or functional surfaces of high integrity. Due to high tool wear, milling operations required to produce the complex geometries of the components are often not economically feasible for SMEs. By means of alloy modification of the filler metals for nickel-based plasma build-up welded wear-resistant coatings and by the use of innovative ultrasonic-assisted milling processes more favourable machinability shall be achieved without reducing the wear protection potential. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on the machinability is investigated. This is done based on a wear protection alloy NiCrMoSiFeB (trade name: Colmonoy 56 PTA) typically used for screw machines, which substitutes conventional CoCr alloys (Stellite). Metallurgical investigations and in-situ measurements of occurring process forces and temperatures at the tool cutting edge during milling as well as subsequent investigations of tool wear and surface integrity allow a detailed analysis and correlation between microstructural properties and machinability. For the cast samples, a clear change in the microstructure and hardness can be seen through the addition of Al, Ti, or Nb. These differences lead to an improvement in the machining process for Nb. Al and Ti cause long-needled or star-shaped precipitations and hardness increases, which lead to higher cutting forces and increased tool wear.
{"title":"Alloy modification and ultrasonic-assisted milling of wear-resistant alloys with defined surfaces","authors":"M. Giese, M. Graebner, D. Schroepfer, K. Treutler, S. Lorenz, T. Kannengiesser, V. Wesling","doi":"10.1007/s40194-024-01786-6","DOIUrl":"10.1007/s40194-024-01786-6","url":null,"abstract":"<div><p>The reduction of CO<sub>2</sub> emissions is closely linked to the development of highly efficient and economical steel components in plant and process engineering. To withstand the high combined corrosive, tribological, thermal, and mechanical stresses, wear-resistant coatings tailored to the application and steel grade are used. In addition to the increasing demand to substitute conventional cobalt alloys with nickel alloys, there is also a growing need for defined or functional surfaces of high integrity. Due to high tool wear, milling operations required to produce the complex geometries of the components are often not economically feasible for SMEs. By means of alloy modification of the filler metals for nickel-based plasma build-up welded wear-resistant coatings and by the use of innovative ultrasonic-assisted milling processes more favourable machinability shall be achieved without reducing the wear protection potential. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on the machinability is investigated. This is done based on a wear protection alloy NiCrMoSiFeB (trade name: Colmonoy 56 PTA) typically used for screw machines, which substitutes conventional CoCr alloys (Stellite). Metallurgical investigations and in-situ measurements of occurring process forces and temperatures at the tool cutting edge during milling as well as subsequent investigations of tool wear and surface integrity allow a detailed analysis and correlation between microstructural properties and machinability. For the cast samples, a clear change in the microstructure and hardness can be seen through the addition of Al, Ti, or Nb. These differences lead to an improvement in the machining process for Nb. Al and Ti cause long-needled or star-shaped precipitations and hardness increases, which lead to higher cutting forces and increased tool wear.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 10","pages":"2567 - 2575"},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01786-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-08DOI: 10.1007/s40194-024-01797-3
Juho Havia, Kalle Lipiäinen, Antti Ahola, Timo Björk
In the welded joints, fatigue failures typically originate from defects or notch-like geometries under cyclic loading. This study investigates the impact of stress relief grooves (SRG) on the fatigue performance of butt-welded cast steel to ultra-high-strength steel components using experimental fatigue tests and finite element method. The experiments examined the fatigue properties of hybrid joints between G26CrMo4 cast steel (t = 20 mm) and S960 steel plate (t = 6 mm) with and without SRG. Gas metal arc welding process was used to weld the butt joints that had a permanent root backing machined on the cast steel part, causing a crack-like defect to the weld root. Additionally, the top surfaces of the welded parts were aligned, resulting in a significant axial misalignment in the butt joint. The SRG, positioned close to the weld root, was found to have a beneficial influence on the joint’s fatigue performance by a factor of 1.2 when using the nominal stress criterion. However, the fatigue capacity was still roughly 35% lower compared to the symmetrical equivalent due to the secondary bending stress, caused by axial misalignment. The finite element analyses indicated that the SRG reduces the amount of secondary stresses at the weld root leading to lower total structural stress. The study recommends using the FAT80 (m = 3) design curve in the structural stress method, for similar butt-welds having a crack-like defect, parallel to the loading direction, at the weld root. However, for welded joints with crack-like defects, it is advisable to use linear elastic fracture mechanics rather than relying solely on stress-based local approaches.
{"title":"Fatigue design of stress relief grooves to prevent weld root fatigue in butt-welded cast steel to ultra-high-strength steel joints","authors":"Juho Havia, Kalle Lipiäinen, Antti Ahola, Timo Björk","doi":"10.1007/s40194-024-01797-3","DOIUrl":"10.1007/s40194-024-01797-3","url":null,"abstract":"<div><p>In the welded joints, fatigue failures typically originate from defects or notch-like geometries under cyclic loading. This study investigates the impact of stress relief grooves (SRG) on the fatigue performance of butt-welded cast steel to ultra-high-strength steel components using experimental fatigue tests and finite element method. The experiments examined the fatigue properties of hybrid joints between G26CrMo4 cast steel (<i>t</i> = 20 mm) and S960 steel plate (<i>t</i> = 6 mm) with and without SRG. Gas metal arc welding process was used to weld the butt joints that had a permanent root backing machined on the cast steel part, causing a crack-like defect to the weld root. Additionally, the top surfaces of the welded parts were aligned, resulting in a significant axial misalignment in the butt joint. The SRG, positioned close to the weld root, was found to have a beneficial influence on the joint’s fatigue performance by a factor of 1.2 when using the nominal stress criterion. However, the fatigue capacity was still roughly 35% lower compared to the symmetrical equivalent due to the secondary bending stress, caused by axial misalignment. The finite element analyses indicated that the SRG reduces the amount of secondary stresses at the weld root leading to lower total structural stress. The study recommends using the FAT80 (<i>m</i> = 3) design curve in the structural stress method, for similar butt-welds having a crack-like defect, parallel to the loading direction, at the weld root. However, for welded joints with crack-like defects, it is advisable to use linear elastic fracture mechanics rather than relying solely on stress-based local approaches.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2203 - 2216"},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01797-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-08DOI: 10.1007/s40194-024-01795-5
Antoine Queguineur, Rahul Cherukuri, Aloshious Lambai, Manasi Sameer Dalal, Pasi Peura, Gaurav Mohanty, Jean-Yves Hascoët, Iñigo Flores Ituarte
Duplex stainless steels (DSS) in wire and arc additive manufacturing (WAAM) have attracted significant research attention due to their mechanical properties and corrosion resistance. This study uses conventional and nanomechanical testing methods to compare the mechanical and microstructural behaviors at macroscopic and microscopic length scales. Macro hardness (HV10) testing yielded 259 and 249 in low and high heat input (HI) samples, respectively, while ferrite content averaged 52.7 and 48.5%. However, these results fail to provide conclusive insight into the potential influence of microstructural variations at the macroscopic level, likely due to the composite response of the material. To overcome this limitation, the mechanical response of the DSS samples is assessed at the grain level via high throughput nanoindentation mapping with image processing to track the location of each indent. This approach enabled differentiating the indents landing on ferrite and austenite phases as well as those landing on the interfaces. The results showed that the austenite phase had higher hardness (4.30 and 4.35 GPa) than the ferrite phase (3.89 GPa and 4.03 GPa) for high and low HI samples, respectively. The observed differences in hardness between the phases can be attributed to higher nitrogen content in the austenitic phase.
线弧快速成型制造(WAAM)中的双相不锈钢(DSS)因其机械性能和耐腐蚀性能而备受研究关注。本研究采用传统和纳米力学测试方法,比较宏观和微观长度尺度上的力学和微观结构行为。宏观硬度(HV10)测试结果显示,低热输入(HI)和高热输入(HI)样品的硬度分别为 259 和 249,铁素体含量平均为 52.7% 和 48.5%。然而,由于材料的复合反应,这些结果无法为微观结构变化在宏观层面的潜在影响提供结论性见解。为了克服这一局限性,我们通过高通量纳米压痕绘图和图像处理来跟踪每个压痕的位置,从而在晶粒水平上评估 DSS 样品的机械响应。这种方法能够区分铁素体和奥氏体相上的压痕以及界面上的压痕。结果显示,在高 HI 和低 HI 样品中,奥氏体相的硬度(4.30 和 4.35 GPa)分别高于铁素体相(3.89 GPa 和 4.03 GPa)。观察到的相间硬度差异可归因于奥氏体相中较高的氮含量。
{"title":"Correlated high throughput nanoindentation mapping and microstructural characterization of wire and arc additively manufactured 2205 duplex stainless steel","authors":"Antoine Queguineur, Rahul Cherukuri, Aloshious Lambai, Manasi Sameer Dalal, Pasi Peura, Gaurav Mohanty, Jean-Yves Hascoët, Iñigo Flores Ituarte","doi":"10.1007/s40194-024-01795-5","DOIUrl":"10.1007/s40194-024-01795-5","url":null,"abstract":"<div><p>Duplex stainless steels (DSS) in wire and arc additive manufacturing (WAAM) have attracted significant research attention due to their mechanical properties and corrosion resistance. This study uses conventional and nanomechanical testing methods to compare the mechanical and microstructural behaviors at macroscopic and microscopic length scales. Macro hardness (HV10) testing yielded 259 and 249 in low and high heat input (HI) samples, respectively, while ferrite content averaged 52.7 and 48.5%. However, these results fail to provide conclusive insight into the potential influence of microstructural variations at the macroscopic level, likely due to the composite response of the material. To overcome this limitation, the mechanical response of the DSS samples is assessed at the grain level via high throughput nanoindentation mapping with image processing to track the location of each indent. This approach enabled differentiating the indents landing on ferrite and austenite phases as well as those landing on the interfaces. The results showed that the austenite phase had higher hardness (4.30 and 4.35 GPa) than the ferrite phase (3.89 GPa and 4.03 GPa) for high and low HI samples, respectively. The observed differences in hardness between the phases can be attributed to higher nitrogen content in the austenitic phase.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 9","pages":"2247 - 2257"},"PeriodicalIF":2.4,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01795-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141369218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1007/s40194-024-01789-3
Yuki Ono, Heikki Remes, Koji Kinoshita, Halid Can Yıldırım, Alain Nussbaumer
This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in high-strength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.
{"title":"Local relaxation of residual stress in high-strength steel welded joints treated by HFMI","authors":"Yuki Ono, Heikki Remes, Koji Kinoshita, Halid Can Yıldırım, Alain Nussbaumer","doi":"10.1007/s40194-024-01789-3","DOIUrl":"10.1007/s40194-024-01789-3","url":null,"abstract":"<div><p>This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in high-strength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic–plastic finite element analyses that account for the combined effect of geometry, residual stress, and material properties. This simulation uses two treated geometry models: with or without surface roughness on HFMI groove, and two material properties: S690QL and AH36 structural steels. The results show that surface roughness and load history, including high-peak loads, significantly influence fatigue response. It is revealed that the model neglecting the surface roughness cannot represent the amount of residual stress change and fatigue damage at less than 100 µm depth from the surface. In addition, the local yield strength in the HFMI-treated zone affects the plasticity behavior near the surface imperfection under the high-peak loads, which provides comparatively different fatigue damage between S690QL and AH36 in some cases. As a result, this study provides the further understanding needed to develop a robust modeling approach to the fatigue life estimation of HFMI-treated welds subjected to high-peak loads.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2187 - 2202"},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01789-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1007/s40194-024-01798-2
Shamzin Yazdanian, Steve Ales, Zhan Wen Chen
A strong effort has continued to optimize friction stir lap welding (FSLW) process and to achieve high strength of dissimilar metal welds. For more than a decade, various studies have shown that Al-to-Ti FSL welds can be strong under quasi-static loading. Recently, Al-to-Ti FSL welds have also been shown to be strong under cyclic loading, due to the unique and thin diffusion bonding layer formed at the interface. In this study, how readily high fatigue strength of AA2024-to-Ti6Al4V FSL welds can be achieved is assessed. First, the effect of increasing the pin size on the fatigue strength of the welds has been evaluated. Second, fatigue testing has been conducted on the welds of which diffusion bonding is more ascertained by the use of an interlayer. It has been found that the fatigue strength of the welds is insensitive to the pin size. This will be shown to be the result of the width of the diffusional bond to be insensitive to the use of a larger pin or whether the pin has penetrated to the bottom plate. Simulation has suggested that stress concentration in locations of lapping ends is not significantly affected by the increase of the metallurgically welded width, explaining that pin size and penetration-dependent weld width do not affect the fatigue strength. It has also been shown that interlayer assisted diffusion bonding has affected insignificantly the fatigue strength of the welds. Thus, the high fatigue strength is insensitive to process variation.
{"title":"Effects of pin size and of using an interlayer on interface bonding and fatigue strength of AA2024 to Ti6Al4V lap joints made using friction stir welding","authors":"Shamzin Yazdanian, Steve Ales, Zhan Wen Chen","doi":"10.1007/s40194-024-01798-2","DOIUrl":"10.1007/s40194-024-01798-2","url":null,"abstract":"<div><p>A strong effort has continued to optimize friction stir lap welding (FSLW) process and to achieve high strength of dissimilar metal welds. For more than a decade, various studies have shown that Al-to-Ti FSL welds can be strong under quasi-static loading. Recently, Al-to-Ti FSL welds have also been shown to be strong under cyclic loading, due to the unique and thin diffusion bonding layer formed at the interface. In this study, how readily high fatigue strength of AA2024-to-Ti6Al4V FSL welds can be achieved is assessed. First, the effect of increasing the pin size on the fatigue strength of the welds has been evaluated. Second, fatigue testing has been conducted on the welds of which diffusion bonding is more ascertained by the use of an interlayer. It has been found that the fatigue strength of the welds is insensitive to the pin size. This will be shown to be the result of the width of the diffusional bond to be insensitive to the use of a larger pin or whether the pin has penetrated to the bottom plate. Simulation has suggested that stress concentration in locations of lapping ends is not significantly affected by the increase of the metallurgically welded width, explaining that pin size and penetration-dependent weld width do not affect the fatigue strength. It has also been shown that interlayer assisted diffusion bonding has affected insignificantly the fatigue strength of the welds. Thus, the high fatigue strength is insensitive to process variation.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2217 - 2233"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1007/s40194-024-01794-6
A. K. Vishwakarma, D. Debnath, M. D. Pawar, V. Muthiyan, B. Gautam, R. Khatirkar, Himanshu Shekhar, V. D. Hiwarkar
In the present study, laser welding of additively manufactured AlSi10Mg was undertaken with AlSi10Mg (similar) and Al6061 (dissimilar) alloy. The aim was to understand the laser weldability of selective laser melting (SLM)-printed AlSi10Mg alloy without filler material. The similar and dissimilar type of butt joints were prepared, and it is found that dissimilar weldments had better mechanical properties than similar weldments. The heat treatment on these welded plates also improved their mechanical properties. The precipitation of Mg2Si particles was evident from the XRD and TEM analysis. The as-built cellular structure was broken due to heat treatment and also near the weld zone in the as-welded plate. It was observed that microhardness increased with increase in Mg2Si content after the heat treatment process. The strength of welded samples was less than that of the base metals. The heat treatment results in ~ 20% increase in the tensile strength of the welded samples with significant increase in elongation.
{"title":"Laser welding of additively manufactured AlSi10Mg and conventionally manufactured Al6061 alloy","authors":"A. K. Vishwakarma, D. Debnath, M. D. Pawar, V. Muthiyan, B. Gautam, R. Khatirkar, Himanshu Shekhar, V. D. Hiwarkar","doi":"10.1007/s40194-024-01794-6","DOIUrl":"10.1007/s40194-024-01794-6","url":null,"abstract":"<div><p>In the present study, laser welding of additively manufactured AlSi10Mg was undertaken with AlSi10Mg (similar) and Al6061 (dissimilar) alloy. The aim was to understand the laser weldability of selective laser melting (SLM)-printed AlSi10Mg alloy without filler material. The similar and dissimilar type of butt joints were prepared, and it is found that dissimilar weldments had better mechanical properties than similar weldments. The heat treatment on these welded plates also improved their mechanical properties. The precipitation of Mg<sub>2</sub>Si particles was evident from the XRD and TEM analysis. The as-built cellular structure was broken due to heat treatment and also near the weld zone in the as-welded plate. It was observed that microhardness increased with increase in Mg<sub>2</sub>Si content after the heat treatment process. The strength of welded samples was less than that of the base metals. The heat treatment results in ~ 20% increase in the tensile strength of the welded samples with significant increase in elongation.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 7","pages":"1731 - 1745"},"PeriodicalIF":2.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s40194-024-01793-7
Xing Han, Chang Li, Han Sun, Yichang Sun
The serviceability of cladding layers manufactured by laser depends on the microstructure formed by the metallurgical solidification. The microstructure in the clad layer is influenced by several factors. Among them, the elemental distribution state of the molten powder in the molten pool plays a dominant role. The diffusion distribution of elements is closely related to the non-equilibrium metallurgical behavior in the additive manufacturing process. Therefore, it is important to conduct an in-depth study on the multi-field coupling behavior and the heat and mass transfer mechanism in laser additive manufacturing process. In this study, a coupled thermal-fluid–solid multi-physical field numerical model for the laser cladding of 316L stainless steel powder on 45 steels was developed. The transient change patterns of the temperature, flow and stress fields for the cladding process were quantitatively revealed. The diffusion process of the powder elements within the molten pool was considered to reveal the element distribution law in the clad layer. The effects of the surface tension, buoyancy for molten pool, and Marangoni convection on the flow field also were considered, and the validity of the numerical model was verified. This study provides a theoretical basis for optimizing the laser cladding process.
{"title":"Numerical simulation of multi-field coupling behavior and heat and mass transfer mechanism in laser additive manufacturing process","authors":"Xing Han, Chang Li, Han Sun, Yichang Sun","doi":"10.1007/s40194-024-01793-7","DOIUrl":"10.1007/s40194-024-01793-7","url":null,"abstract":"<div><p>The serviceability of cladding layers manufactured by laser depends on the microstructure formed by the metallurgical solidification. The microstructure in the clad layer is influenced by several factors. Among them, the elemental distribution state of the molten powder in the molten pool plays a dominant role. The diffusion distribution of elements is closely related to the non-equilibrium metallurgical behavior in the additive manufacturing process. Therefore, it is important to conduct an in-depth study on the multi-field coupling behavior and the heat and mass transfer mechanism in laser additive manufacturing process. In this study, a coupled thermal-fluid–solid multi-physical field numerical model for the laser cladding of 316L stainless steel powder on 45 steels was developed. The transient change patterns of the temperature, flow and stress fields for the cladding process were quantitatively revealed. The diffusion process of the powder elements within the molten pool was considered to reveal the element distribution law in the clad layer. The effects of the surface tension, buoyancy for molten pool, and Marangoni convection on the flow field also were considered, and the validity of the numerical model was verified. This study provides a theoretical basis for optimizing the laser cladding process.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 7","pages":"1707 - 1730"},"PeriodicalIF":2.4,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}