首页 > 最新文献

Welding in the World最新文献

英文 中文
Interfacial microstructure and electrochemical behavior of diffusion welded joints of Zr-Alloy and super duplex stainless steel 锆合金和超级双相不锈钢扩散焊接接头的界面微观结构和电化学行为
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-07-13 DOI: 10.1007/s40194-024-01804-7
Avinash Kumar, Arindam Dhar, Ishita Koley, Sukumar Kundu

In this study, solid-state diffusion welded joints of zirconium alloy (Zr-Alloy) and super duplex stainless steel (SS) were prepared at 875 °C with varying welding times of 30, 45, 60, 75, and 90 minutes using a welding pressure of 4-MPa in a vacuum. The interface microstructure was characterized using optical, scanning electron microscopy in backscattered electron mode, and electron probe micro-analyzer. With 30 minutes of welding time, no intermetallic compounds were observed at the weld interface due to the minimum diffusion activity of chemical elements across the joints. However, for 45 minutes and above welding time, a phase mixture of ZrFe2 + ZrCr2 was observed near the interface of the welded joint, and the width of the phase mixture gradually increased with a further increase in welding time. The maximum joint tensile strength of ~ 302 MPa along with ~ 5.9% elongation was achieved in the joint developed for 45 minutes of welding time due to the formation of finely widened reaction products at the diffusion interface. The electrochemical studies of the welded joints were also investigated and a comparison was drawn between the same base metals using different electrochemical measurement techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization in 0.1 mol/L HCl solution. It was identified that the corrosion rate of the welded joint made with 90 minutes welding time is the highest and the corrosion of the welded joints occurred in micro-galvanic mode due to the presence of intermetallic compounds at the joint interface.

本研究在 875 ℃ 下制备了锆合金(Zr-Alloy)和超级双相不锈钢(SS)的固态扩散焊接接头,焊接时间分别为 30、45、60、75 和 90 分钟,真空焊接压力为 4-MPa。使用光学、背散射电子模式扫描电子显微镜和电子探针显微分析仪对界面微观结构进行了表征。焊接时间为 30 分钟时,由于化学元素在焊点上的扩散活动最小,因此在焊接界面上没有观察到金属间化合物。但在焊接时间为 45 分钟及以上时,在焊点界面附近观察到了 ZrFe2 + ZrCr2 的相混合物,并且随着焊接时间的进一步延长,相混合物的宽度逐渐增大。在焊接时间为 45 分钟的焊点中,由于在扩散界面上形成了细微加宽的反应产物,焊点抗拉强度达到最大值 ~ 302 MPa,伸长率达到 ~ 5.9%。此外,还对焊接接头进行了电化学研究,并使用不同的电化学测量技术(如开路电位、电化学阻抗光谱和 0.1 mol/L HCl 溶液中的电位极化)对相同贱金属进行了比较。结果表明,焊接时间为 90 分钟的焊接接头的腐蚀速率最高,由于接头界面存在金属间化合物,焊接接头的腐蚀以微电蚀模式发生。
{"title":"Interfacial microstructure and electrochemical behavior of diffusion welded joints of Zr-Alloy and super duplex stainless steel","authors":"Avinash Kumar,&nbsp;Arindam Dhar,&nbsp;Ishita Koley,&nbsp;Sukumar Kundu","doi":"10.1007/s40194-024-01804-7","DOIUrl":"10.1007/s40194-024-01804-7","url":null,"abstract":"<div><p>In this study, solid-state diffusion welded joints of zirconium alloy (Zr-Alloy) and super duplex stainless steel (SS) were prepared at 875 °C with varying welding times of 30, 45, 60, 75, and 90 minutes using a welding pressure of 4-MPa in a vacuum. The interface microstructure was characterized using optical, scanning electron microscopy in backscattered electron mode, and electron probe micro-analyzer. With 30 minutes of welding time, no intermetallic compounds were observed at the weld interface due to the minimum diffusion activity of chemical elements across the joints. However, for 45 minutes and above welding time, a phase mixture of ZrFe<sub>2</sub> + ZrCr<sub>2</sub> was observed near the interface of the welded joint, and the width of the phase mixture gradually increased with a further increase in welding time. The maximum joint tensile strength of ~ 302 MPa along with ~ 5.9% elongation was achieved in the joint developed for 45 minutes of welding time due to the formation of finely widened reaction products at the diffusion interface. The electrochemical studies of the welded joints were also investigated and a comparison was drawn between the same base metals using different electrochemical measurement techniques such as open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization in 0.1 mol/L HCl solution. It was identified that the corrosion rate of the welded joint made with 90 minutes welding time is the highest and the corrosion of the welded joints occurred in micro-galvanic mode due to the presence of intermetallic compounds at the joint interface.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics and grain refinement of the weld bead by the GTAW with the alternating current on the filling wires 填充焊丝交流 GTAW 焊接熔珠的特征和晶粒细化
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-07-09 DOI: 10.1007/s40194-024-01807-4
Xueping Song, Jia Zhang, Xiaoquan Yu, Huayu Zhao, Jianzhou Xu, Jian Liu, Jiankang Huang, Ding Fan

To control the formation and grain structural characteristics in the welding process, an alternating current (AC)-assisted double-wire feeding strategy was applied to a traditional gas tungsten arc welding (GTAW) process. During this process, two filler wires were connected to AC power and fed to the molten pool in a nonplanar and symmetric manner from one side. The influences of the AC, AC frequency, and arc current on various parameters, including the molten droplet size, droplet transition frequency, and deposited bead formation, were evaluated. The research revealed that this method could be implemented to effectively achieve a well-formed weld bead, especially at high ACs. Microstructural analysis indicated that the grain size decreased with increasing AC frequency. Finally, the underlying mechanism of grain refinement resulting from the addition of AC to the double filler wire was discussed.

为了控制焊接过程中的成形和晶粒结构特征,在传统的气体钨极氩弧焊(GTAW)过程中采用了交流电(AC)辅助双焊丝进给策略。在此过程中,两根焊丝与交流电源相连,以非平面对称的方式从一侧送入熔池。研究评估了交流电、交流电频率和电弧电流对各种参数的影响,包括熔滴尺寸、熔滴转换频率和沉积珠的形成。研究表明,采用这种方法可以有效地获得成形良好的焊缝,尤其是在高交流电压下。微观结构分析表明,晶粒尺寸随着交流频率的增加而减小。最后,还讨论了在双填充焊丝中添加交流电导致晶粒细化的基本机制。
{"title":"Characteristics and grain refinement of the weld bead by the GTAW with the alternating current on the filling wires","authors":"Xueping Song,&nbsp;Jia Zhang,&nbsp;Xiaoquan Yu,&nbsp;Huayu Zhao,&nbsp;Jianzhou Xu,&nbsp;Jian Liu,&nbsp;Jiankang Huang,&nbsp;Ding Fan","doi":"10.1007/s40194-024-01807-4","DOIUrl":"10.1007/s40194-024-01807-4","url":null,"abstract":"<div><p>To control the formation and grain structural characteristics in the welding process, an alternating current (AC)-assisted double-wire feeding strategy was applied to a traditional gas tungsten arc welding (GTAW) process. During this process, two filler wires were connected to AC power and fed to the molten pool in a nonplanar and symmetric manner from one side. The influences of the AC, AC frequency, and arc current on various parameters, including the molten droplet size, droplet transition frequency, and deposited bead formation, were evaluated. The research revealed that this method could be implemented to effectively achieve a well-formed weld bead, especially at high ACs. Microstructural analysis indicated that the grain size decreased with increasing AC frequency. Finally, the underlying mechanism of grain refinement resulting from the addition of AC to the double filler wire was discussed.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the role of process parameters of CMT welding and their statistical behaviour on the tensile properties of weld joint of novel aluminium hybrid composite 评估 CMT 焊接工艺参数及其统计行为对新型铝混合复合材料焊点拉伸性能的影响
IF 2.1 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-07-08 DOI: 10.1007/s40194-024-01805-6
Vibhu Singh, M. S. Niranjan, Qasim Murtaza

The present study investigates the cold metal transfer (CMT) welding of a novel hybrid aluminium composite (AA6061-T6/ 2wt.% TiB2/ 0.5wt.% La2O3) fabricated via stir casting. It analyzes the effect of welding parameters, i.e. current, travel speed, and gas flow rate, on the tensile strength of the composite’s weld joint using response surface methodology (RSM). Also, a dedicated study of the microstructure and mechanical properties of weld joints at optimal parameters has been conducted. Results indicate that current significantly affects tensile strength, followed by travel speed and gas flow rate. The optimal parameters identified are 142 A current, 9 mm/s travel speed, and 14 L/min gas flow rate for maximizing tensile strength. Welds at optimal parameters displayed no solidification cracking and minimum porosity. The microstructural analysis confirmed the presence of reinforcements in the composite with the formation of finer grains in the fusion zone (FZ) compared to the heat-affected zone (HAZ). Microhardness tests showed the highest values in the FZ and the lowest in the HAZ, while tensile tests showed reduced strength at HAZ compared to the FZ and base composite, with dominant brittle behaviour. Post-weld heat treatment improved ductility, as indicated by deeper dimples and tear ridges with fewer cleavage facets in fracture analysis.

本研究调查了通过搅拌铸造制造的新型混合铝复合材料(AA6061-T6/ 2wt.% TiB2/ 0.5wt.% La2O3)的冷金属转移(CMT)焊接。研究采用响应面方法(RSM)分析了焊接参数(即电流、移动速度和气体流速)对复合材料焊点拉伸强度的影响。此外,还对最佳参数下焊点的微观结构和机械性能进行了专门研究。结果表明,电流对拉伸强度的影响很大,其次是移动速度和气体流速。已确定的最佳参数为 142 A 电流、9 mm/s 移动速度和 14 L/min 气体流速,可最大限度地提高拉伸强度。最佳参数下的焊缝没有凝固裂纹,孔隙率最小。微观结构分析证实了复合材料中存在增强体,与热影响区(HAZ)相比,熔合区(FZ)形成了更细的晶粒。显微硬度测试表明,熔合区的硬度值最高,而热影响区的硬度值最低;拉伸测试表明,与熔合区和基底复合材料相比,热影响区的强度有所降低,主要表现为脆性。焊接后的热处理改善了延展性,断裂分析中更深的凹陷和撕裂脊以及更少的劈裂面都表明了这一点。
{"title":"Evaluation of the role of process parameters of CMT welding and their statistical behaviour on the tensile properties of weld joint of novel aluminium hybrid composite","authors":"Vibhu Singh, M. S. Niranjan, Qasim Murtaza","doi":"10.1007/s40194-024-01805-6","DOIUrl":"https://doi.org/10.1007/s40194-024-01805-6","url":null,"abstract":"<p>The present study investigates the cold metal transfer (CMT) welding of a novel hybrid aluminium composite (AA6061-T6/ 2wt.% TiB<sub>2</sub>/ 0.5wt.% La<sub>2</sub>O<sub>3</sub>) fabricated via stir casting. It analyzes the effect of welding parameters, i.e. current, travel speed, and gas flow rate, on the tensile strength of the composite’s weld joint using response surface methodology (RSM). Also, a dedicated study of the microstructure and mechanical properties of weld joints at optimal parameters has been conducted. Results indicate that current significantly affects tensile strength, followed by travel speed and gas flow rate. The optimal parameters identified are 142 A current, 9 mm/s travel speed, and 14 L/min gas flow rate for maximizing tensile strength. Welds at optimal parameters displayed no solidification cracking and minimum porosity. The microstructural analysis confirmed the presence of reinforcements in the composite with the formation of finer grains in the fusion zone (FZ) compared to the heat-affected zone (HAZ). Microhardness tests showed the highest values in the FZ and the lowest in the HAZ, while tensile tests showed reduced strength at HAZ compared to the FZ and base composite, with dominant brittle behaviour. Post-weld heat treatment improved ductility, as indicated by deeper dimples and tear ridges with fewer cleavage facets in fracture analysis.</p>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper contribution on microstructure and mechanical properties of dissimilar gas tungsten arc welded Ti–6Al–4V to Inconel® X-750 铜对异种气体钨极氩弧焊 Ti-6Al-4V 与 Inconel® X-750 的微观结构和机械性能的影响
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-07-02 DOI: 10.1007/s40194-024-01803-8
D. Ioannidou, A. Kaldellis, N. Makris, S. Deligiannis, P. Skarvelis, P. E. Tsakiridis

Dissimilar metal welding (DMW) between titanium alloys and nickel-based superalloys can contribute to acquiring light, heat-resistant frameworks of enhanced efficiency. The current study constitutes an attempt to obtain joints between a Ni-superalloy and a Ti-alloy, investigating the beneficial impact of copper on the microstructure of the weld metal (WM), through precipitation of ternary Ti–Ni–Cu intermetallic compounds (IMCs), instead of Ni–Ti ones, previously reported in weldments between such alloys. Gas tungsten arc welding (GTAW) was performed between Ti–6Al–4V and Inconel® X-750, varying the welding current and using different copper filler wires (pure Cu and NiCu). The microstructural characterization of weldments was conducted by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and a further nanoscale examination was performed using a transmission electron microscope (TEM). Identification of IMCs and precipitates was achieved by X-ray diffraction (XRD), while the mechanical properties were investigated through microhardness Vickers measurements. Crack-free joints were obtained, albeit with the presence of IMCs comprising Ti–Ni, Ti–Cu, and Ti–Ni–Cu, as well as titanium carbides (TiCs). Cu exhibited a positive influence on the joints’ microstructure. Elevating the welding current led to accelerated cooling and solidification rates, resulting in enhanced Vickers microhardness values. This phenomenon can be attributed to either the formation of finer microstructures or the precipitation of brittle IMCs, which were observed in specimens welded with higher currents. Especially near the Ti-alloy interface, it was found that a brazing-type bond took place instead of welding, while high hardness values (up to 800 HV) were also detected.

钛合金和镍基超合金之间的异种金属焊接(DMW)有助于获得轻质、耐热、高效的框架。本研究尝试在镍基超合金和钛合金之间进行焊接,通过析出三元钛-镍-铜金属间化合物(IMC),而不是之前在此类合金焊接中报道的镍-钛金属间化合物,研究铜对焊接金属(WM)微观结构的有利影响。在 Ti-6Al-4V 和 Inconel® X-750 之间进行了气钨弧焊 (GTAW),改变了焊接电流并使用了不同的铜填充焊丝(纯铜和镍铜)。使用扫描电子显微镜(SEM)和能量色散光谱仪(EDS)对焊接件的微观结构进行了表征,并使用透射电子显微镜(TEM)进行了进一步的纳米级检查。通过 X 射线衍射 (XRD) 对 IMC 和沉淀物进行了鉴定,并通过显微硬度维氏硬度测量对机械性能进行了研究。尽管存在由钛-镍、钛-铜和钛-镍-铜组成的 IMC 以及钛碳化物 (TiC),但仍获得了无裂纹接头。铜对接头的微观结构有积极影响。提高焊接电流可加快冷却和凝固速度,从而提高维氏硬度值。这种现象可归因于更精细的微观结构的形成或脆性 IMC 的析出,在用较大电流焊接的试样中均可观察到。特别是在钛合金界面附近,发现发生了钎焊型结合,而不是焊接,同时还检测到了高硬度值(高达 800 HV)。
{"title":"Copper contribution on microstructure and mechanical properties of dissimilar gas tungsten arc welded Ti–6Al–4V to Inconel® X-750","authors":"D. Ioannidou,&nbsp;A. Kaldellis,&nbsp;N. Makris,&nbsp;S. Deligiannis,&nbsp;P. Skarvelis,&nbsp;P. E. Tsakiridis","doi":"10.1007/s40194-024-01803-8","DOIUrl":"10.1007/s40194-024-01803-8","url":null,"abstract":"<div><p>Dissimilar metal welding (DMW) between titanium alloys and nickel-based superalloys can contribute to acquiring light, heat-resistant frameworks of enhanced efficiency. The current study constitutes an attempt to obtain joints between a Ni-superalloy and a Ti-alloy, investigating the beneficial impact of copper on the microstructure of the weld metal (WM), through precipitation of ternary Ti–Ni–Cu intermetallic compounds (IMCs), instead of Ni–Ti ones, previously reported in weldments between such alloys. Gas tungsten arc welding (GTAW) was performed between Ti–6Al–4V and Inconel® X-750, varying the welding current and using different copper filler wires (pure Cu and NiCu). The microstructural characterization of weldments was conducted by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and a further nanoscale examination was performed using a transmission electron microscope (TEM). Identification of IMCs and precipitates was achieved by X-ray diffraction (XRD), while the mechanical properties were investigated through microhardness Vickers measurements. Crack-free joints were obtained, albeit with the presence of IMCs comprising Ti–Ni, Ti–Cu, and Ti–Ni–Cu, as well as titanium carbides (TiCs). Cu exhibited a positive influence on the joints’ microstructure. Elevating the welding current led to accelerated cooling and solidification rates, resulting in enhanced Vickers microhardness values. This phenomenon can be attributed to either the formation of finer microstructures or the precipitation of brittle IMCs, which were observed in specimens welded with higher currents. Especially near the Ti-alloy interface, it was found that a brazing-type bond took place instead of welding, while high hardness values (up to 800 HV) were also detected.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Intermetallic Compound (IMC) in dissimilar joining of steel and aluminum (Fe-Al) – a review paper 钢和铝(Fe-Al)异种连接中的金属间化合物(IMC)研究 - 综述论文
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-24 DOI: 10.1007/s40194-024-01784-8
Syahril Azli Abdul Rahman, Sarizam Mamat, Muhammad Iqbal Ahmad, Narong Mungkung, Toshifumi Yuji, Shinichi Tashiro, Manabu Tanaka

Dissimilar metal joints, particularly those involving aluminum and iron (Al–Fe), are widely employed in engineering due to their exceptional mechanical properties and unique microstructures. The purpose of this literature review is to assess the extent and depth of research related to dissimilar metal joint research, with a specific focus on microstructure analysis and the reported findings. The review identified three key themes for improving the quality of these joints: welding techniques, parametric optimization, and material treatment. Three themes were identified, namely, the welding techniques (i.e., Friction Stir Welding, TIG-MIG Hybrid welding, etc.), parameter optimization (e.g., Taguchi method, Response Surface Method etc.), and the material treatment (pre-heating, Backing Plate, etc.). This systematic and comprehensive literature review highlights the importance of microstructural analysis in Dissimilar Metal Joint research, providing a foundation for understanding the nuances of different welding methods and their effects on joint quality. Additionally, strategies to mitigate the challenges posed by thick Fe2Al5 formation are discussed, ultimately contributing to advancements in dissimilar material joint technology and joint strength enhancement.

异种金属接头,尤其是涉及铝和铁(Al-Fe)的接头,因其优异的机械性能和独特的微观结构而广泛应用于工程领域。本文献综述旨在评估与异种金属接头研究相关的研究范围和深度,尤其侧重于微观结构分析和报告结果。综述确定了提高这些接头质量的三个关键主题:焊接技术、参数优化和材料处理。确定了三个主题,即焊接技术(如搅拌摩擦焊、TIG-MIG 混合焊等)、参数优化(如田口法、响应面法等)和材料处理(预热、背板等)。这篇系统全面的文献综述强调了微观结构分析在异种金属接头研究中的重要性,为了解不同焊接方法的细微差别及其对接头质量的影响奠定了基础。此外,还讨论了减轻厚 Fe2Al5 形成所带来的挑战的策略,最终促进了异种材料接头技术的进步和接头强度的提高。
{"title":"Study on Intermetallic Compound (IMC) in dissimilar joining of steel and aluminum (Fe-Al) – a review paper","authors":"Syahril Azli Abdul Rahman,&nbsp;Sarizam Mamat,&nbsp;Muhammad Iqbal Ahmad,&nbsp;Narong Mungkung,&nbsp;Toshifumi Yuji,&nbsp;Shinichi Tashiro,&nbsp;Manabu Tanaka","doi":"10.1007/s40194-024-01784-8","DOIUrl":"10.1007/s40194-024-01784-8","url":null,"abstract":"<div><p>Dissimilar metal joints, particularly those involving aluminum and iron (Al–Fe), are widely employed in engineering due to their exceptional mechanical properties and unique microstructures. The purpose of this literature review is to assess the extent and depth of research related to dissimilar metal joint research, with a specific focus on microstructure analysis and the reported findings. The review identified three key themes for improving the quality of these joints: welding techniques, parametric optimization, and material treatment. Three themes were identified, namely, the welding techniques (i.e., Friction Stir Welding, TIG-MIG Hybrid welding, etc.), parameter optimization (e.g., Taguchi method, Response Surface Method etc.), and the material treatment (pre-heating, Backing Plate, etc.). This systematic and comprehensive literature review highlights the importance of microstructural analysis in Dissimilar Metal Joint research, providing a foundation for understanding the nuances of different welding methods and their effects on joint quality. Additionally, strategies to mitigate the challenges posed by thick Fe2Al5 formation are discussed, ultimately contributing to advancements in dissimilar material joint technology and joint strength enhancement.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of laser power on weld microstructure of AA6082 sheets remote laser welded by circular beam wobbling 激光功率对圆光束摆动远程激光焊接 AA6082 板材焊缝微观结构的影响
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-24 DOI: 10.1007/s40194-024-01802-9
Ugur Avci, Pasquale Franciosa

This paper aims to investigate the combined effect of circular beam wobbling and varying laser power on crack formation, weld geometry, microstructure and hardness during remote laser welding of AA6082 alloy. AA6082 sheets of 2 mm thickness were joined in overlap weld configuration using wobbling mode remote laser welding at 4 kW, 3 kW and 2.5 kW. Full penetration was achieved in the joints made at 4 kW and 3 kW, with severe crack formation. Welds at 2.5 kW showed partial penetration and no cracks; however, porosity formation was observed. While no significant change was observed in the dendritic structure and compound contents in fusion zones with full penetration, compound clusters dominated by Cu and Si elements were revealed in the seam root region at 2.5 kW (partial penetration). In full penetration welds (4 and 3 kW), the hardness decreased in the center of the fusion zone but increased from the surface to the root zone. However, for the partial penetration weld (2.5 kW), a limited change in the hardness values determined in the same direction was observed.

本文旨在研究 AA6082 合金远程激光焊接过程中,圆光束摆动和激光功率变化对裂纹形成、焊接几何形状、微观结构和硬度的综合影响。在 4 kW、3 kW 和 2.5 kW 的激光功率下,采用摆动模式远程激光焊接,以搭接焊结构焊接厚度为 2 mm 的 AA6082 板材。在 4 千瓦和 3 千瓦条件下焊接的焊点实现了全熔透,并形成了严重的裂纹。在 2.5 千瓦条件下进行的焊接显示出部分熔透和无裂纹,但观察到气孔的形成。虽然在完全熔透的熔合区内未观察到树枝状结构和化合物含量的明显变化,但在 2.5 千瓦(部分熔透)的焊缝根部区域发现了以铜和硅元素为主的化合物群。在全熔透焊缝(4 千瓦和 3 千瓦)中,熔合区中心的硬度下降,但从表面到根部区域的硬度上升。然而,在部分熔透焊缝(2.5 kW)中,同一方向的硬度值变化有限。
{"title":"Effect of laser power on weld microstructure of AA6082 sheets remote laser welded by circular beam wobbling","authors":"Ugur Avci,&nbsp;Pasquale Franciosa","doi":"10.1007/s40194-024-01802-9","DOIUrl":"10.1007/s40194-024-01802-9","url":null,"abstract":"<div><p>This paper aims to investigate the combined effect of circular beam wobbling and varying laser power on crack formation, weld geometry, microstructure and hardness during remote laser welding of AA6082 alloy. AA6082 sheets of 2 mm thickness were joined in overlap weld configuration using wobbling mode remote laser welding at 4 kW, 3 kW and 2.5 kW. Full penetration was achieved in the joints made at 4 kW and 3 kW, with severe crack formation. Welds at 2.5 kW showed partial penetration and no cracks; however, porosity formation was observed. While no significant change was observed in the dendritic structure and compound contents in fusion zones with full penetration, compound clusters dominated by Cu and Si elements were revealed in the seam root region at 2.5 kW (partial penetration). In full penetration welds (4 and 3 kW), the hardness decreased in the center of the fusion zone but increased from the surface to the root zone. However, for the partial penetration weld (2.5 kW), a limited change in the hardness values determined in the same direction was observed.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01802-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodology for the development of functionally graded powder spreading in laser powder bed fusion process using discrete element method 利用离散元素法开发激光粉末床熔融工艺中功能分级粉末铺展的方法学
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-18 DOI: 10.1007/s40194-024-01796-4
Shakti Swaroop Choudhury, Ratna Kumar Annabattula, Murugaiyan Amirthalingam

The use of multi-material components offers customization of physical properties, weight reduction, effective thermal management, and the creation of material-compatible buffer components to join two material with ease. These features surpass the capabilities of single-material compositions. When the multiple materials are used with sharp interfaces, failure often occurs at the interfaces due to the presence of sharp stress concentration gradients under service loading conditions. Failure can be delayed, if the multi-material compositions across the interface can be varied smoothly. To prevent this, functionally graded materials with diffuse interfaces can be employed. Functionally graded materials (FGM) possess preferred spatial variation of properties aligned in specific directions. However, producing complex FGM components through conventional methods is challenging, as the conventional manufacturing methods are part and tool-specific. Components made using additive manufacturing, such as powder bed fusion (PBF), can create FGM with intricate geometric features and precision at the micron scale. This opens up new avenues for innovative design possibilities with FGM components. The methodologies developed to create FGM by PBF are still in their infancy and require further attention to realize defect-free components. By employing high-fidelity mathematical models, new methodologies can be developed and minimize expensive trial-and-error experimental development strategies. The discrete element method (DEM) is a suitable numerical approach for modelling discontinuous media, such as powder particles in PBF. In this study, a spreading procedure in a powder bed fusion process is developed so that the desired distribution of material composition can be obtained before laser melting. A partition-based approach is adapted to achieve functional gradation along the spreading direction. The role of recoater speed on the evolution of the distribution of the material was studied through a parameter called gradation index (GI). A unique experimental setup was developed to analyze the prediction of the developed model. Results show that an angular partition at the dispenser can generate a customized functionally graded spreading in the build platform, and the obtained graded spreading is found to vary as a function of the recoater speed, partition angle, and spread layer thickness.

使用多材料元件可以定制物理特性、减轻重量、实现有效的热管理,还可以创建材料兼容的缓冲元件,轻松连接两种材料。这些特性超越了单一材料组件的能力。当使用具有尖锐界面的多种材料时,由于在使用负载条件下存在尖锐的应力集中梯度,通常会在界面处发生故障。如果界面上的多种材料成分能够平滑变化,则可以延缓失效。为了避免这种情况,可以采用具有扩散界面的功能分级材料。功能分级材料(FGM)在特定方向上具有优先的空间特性变化。然而,通过传统方法生产复杂的 FGM 组件具有挑战性,因为传统制造方法是针对特定部件和工具的。使用粉末床熔融(PBF)等增材制造技术制造的部件可以制造出具有复杂几何特征和微米级精度的 FGM。这为利用 FGM 组件进行创新设计开辟了新途径。利用 PBF 制造 FGM 的方法仍处于起步阶段,需要进一步关注以实现无缺陷组件。通过采用高保真数学模型,可以开发出新的方法,并最大限度地减少昂贵的试错实验开发策略。离散元素法 (DEM) 是一种适合于对不连续介质(如 PBF 中的粉末颗粒)进行建模的数值方法。本研究开发了粉末床熔化过程中的铺展程序,以便在激光熔化前获得所需的材料成分分布。采用基于分区的方法实现了沿铺展方向的功能分级。通过一个名为 "分级指数"(GI)的参数,研究了重涂速度对材料分布演变的作用。开发了一种独特的实验装置来分析所开发模型的预测结果。结果表明,在涂布机上的角度分区可在构建平台上产生定制的功能分级铺展,所获得的分级铺展随重涂机速度、分区角度和铺展层厚度的变化而变化。
{"title":"A methodology for the development of functionally graded powder spreading in laser powder bed fusion process using discrete element method","authors":"Shakti Swaroop Choudhury,&nbsp;Ratna Kumar Annabattula,&nbsp;Murugaiyan Amirthalingam","doi":"10.1007/s40194-024-01796-4","DOIUrl":"10.1007/s40194-024-01796-4","url":null,"abstract":"<div><p>The use of multi-material components offers customization of physical properties, weight reduction, effective thermal management, and the creation of material-compatible buffer components to join two material with ease. These features surpass the capabilities of single-material compositions. When the multiple materials are used with sharp interfaces, failure often occurs at the interfaces due to the presence of sharp stress concentration gradients under service loading conditions. Failure can be delayed, if the multi-material compositions across the interface can be varied smoothly. To prevent this, functionally graded materials with diffuse interfaces can be employed. Functionally graded materials (FGM) possess preferred spatial variation of properties aligned in specific directions. However, producing complex FGM components through conventional methods is challenging, as the conventional manufacturing methods are part and tool-specific. Components made using additive manufacturing, such as powder bed fusion (PBF), can create FGM with intricate geometric features and precision at the micron scale. This opens up new avenues for innovative design possibilities with FGM components. The methodologies developed to create FGM by PBF are still in their infancy and require further attention to realize defect-free components. By employing high-fidelity mathematical models, new methodologies can be developed and minimize expensive trial-and-error experimental development strategies. The discrete element method (DEM) is a suitable numerical approach for modelling discontinuous media, such as powder particles in PBF. In this study, a spreading procedure in a powder bed fusion process is developed so that the desired distribution of material composition can be obtained before laser melting. A partition-based approach is adapted to achieve functional gradation along the spreading direction. The role of recoater speed on the evolution of the distribution of the material was studied through a parameter called gradation index (GI). A unique experimental setup was developed to analyze the prediction of the developed model. Results show that an angular partition at the dispenser can generate a customized functionally graded spreading in the build platform, and the obtained graded spreading is found to vary as a function of the recoater speed, partition angle, and spread layer thickness.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal fatigue cracks in WC-10Ni + AgCuTi composite coatings WC-10Ni + AgCuTi 复合涂层中的热疲劳裂纹
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-16 DOI: 10.1007/s40194-024-01801-w
Jintian Shi, Yizheng Feng, Jiawei Zhu, Xiangping Xu, Chunzhi Xia, Li Chen

In this study, a WC-10Ni + AgCuTi/Cu composite coating was applied to a copper substrate using vacuum brazing. The initiation and propagation of thermal fatigue cracks in the composite coating were investigated under various upper limit temperatures of thermal fatigue, and the law governing crack initiation was explored. Additionally, the mechanism of thermal fatigue behaviour was also analysed. The findings reveal that no cracks are observed in the composite coating when the upper limit temperature of the thermal fatigue test is set at 400 °C and subjected to 50 cycles. However, as the upper limit temperature and the number of cycles increase, the rate of crack initiation and propagation significantly accelerates, eventually leading to macroscopic cracking and coating failure. The behaviour of thermal fatigue cracks in composite coatings is characterized by the coating undergoing alternating tensile and compressive stresses during the thermal fatigue process. This stress cycle causes the hard layer to develop longitudinal cracks that propagate inward. Moreover, transverse cracks initiate near the interface layer of the hard layer and extend along the interface direction. The study identifies four primary modes of crack propagation.

在这项研究中,使用真空钎焊将 WC-10Ni + AgCuTi/Cu 复合涂层涂覆到铜基体上。在不同的热疲劳上限温度下,研究了复合涂层中热疲劳裂纹的萌发和扩展,并探讨了裂纹萌发的规律。此外,还分析了热疲劳行为的机理。研究结果表明,当热疲劳试验的上限温度设定为 400 ℃ 并进行 50 次循环试验时,复合涂层不会出现裂纹。然而,随着上限温度和循环次数的增加,裂纹萌生和扩展的速度明显加快,最终导致宏观裂纹和涂层失效。复合涂层中热疲劳裂纹的行为特征是涂层在热疲劳过程中交替承受拉伸和压缩应力。这种应力循环导致硬层产生向内扩展的纵向裂纹。此外,横向裂纹在硬质层的界面层附近产生,并沿界面方向延伸。研究确定了裂纹扩展的四种主要模式。
{"title":"Thermal fatigue cracks in WC-10Ni + AgCuTi composite coatings","authors":"Jintian Shi,&nbsp;Yizheng Feng,&nbsp;Jiawei Zhu,&nbsp;Xiangping Xu,&nbsp;Chunzhi Xia,&nbsp;Li Chen","doi":"10.1007/s40194-024-01801-w","DOIUrl":"10.1007/s40194-024-01801-w","url":null,"abstract":"<div><p>In this study, a WC-10Ni + AgCuTi/Cu composite coating was applied to a copper substrate using vacuum brazing. The initiation and propagation of thermal fatigue cracks in the composite coating were investigated under various upper limit temperatures of thermal fatigue, and the law governing crack initiation was explored. Additionally, the mechanism of thermal fatigue behaviour was also analysed. The findings reveal that no cracks are observed in the composite coating when the upper limit temperature of the thermal fatigue test is set at 400 °C and subjected to 50 cycles. However, as the upper limit temperature and the number of cycles increase, the rate of crack initiation and propagation significantly accelerates, eventually leading to macroscopic cracking and coating failure. The behaviour of thermal fatigue cracks in composite coatings is characterized by the coating undergoing alternating tensile and compressive stresses during the thermal fatigue process. This stress cycle causes the hard layer to develop longitudinal cracks that propagate inward. Moreover, transverse cracks initiate near the interface layer of the hard layer and extend along the interface direction. The study identifies four primary modes of crack propagation.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A realization of Al/Ti dissimilar friction stir welding via bottom dynamic support using a Co-based alloy welding tool 使用 Co 基合金焊接工具,通过底部动态支撑实现 Al/Ti 异种摩擦搅拌焊接
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-12 DOI: 10.1007/s40194-024-01800-x
Yingying Zuo, Huijie Liu, Dongrui Li, Yisong Gao, Xuanmo Li

The dissimilar Al/Ti joints were tentatively welded under different welding tools via dynamic support friction stir welding (FSW). The joint formation, intermetallic compounds (IMCs) layer, and mechanical properties of Al/Ti joint were investigated. The results showed that a Co-based alloy welding tool with a 15-mm shoulder diameter achieved the good external appearance and internal tissue. A diffusion layer with ~ 4 μm existed at the upper interface, while the diffusion layer at the lower layer was ~ 3 μm. Detrimental and continuous IMC layers were not generated at the Al/Ti interface, and root defects were avoided. This joint had the largest tensile strength of 189 MPa and fractured at the heat-affected zone (HAZ). The interface bonding, Ti fragments and hole defects in stirring zone, and the HAZ softening determined the ultimate fracture location. The dynamic support FSW offered a novel approach to achieve high-quality joining of Al/Ti dissimilar metals.

在不同的焊接工具下,通过动态支撑搅拌摩擦焊(FSW)初步焊接了铝/钛异种接头。研究了铝/钛接头的接头形成、金属间化合物(IMC)层和机械性能。结果表明,肩部直径为 15 毫米的 Co 基合金焊接工具获得了良好的外观和内部组织。上层界面存在约 4 μm 的扩散层,而下层的扩散层约为 3 μm。铝/钛界面上没有产生有害的连续 IMC 层,避免了根部缺陷。该接头的最大抗拉强度为 189 兆帕,并在热影响区(HAZ)断裂。界面结合、搅拌区中的钛碎片和孔缺陷以及 HAZ 软化决定了最终的断裂位置。动态支撑 FSW 为实现 Al/Ti 异种金属的高质量连接提供了一种新方法。
{"title":"A realization of Al/Ti dissimilar friction stir welding via bottom dynamic support using a Co-based alloy welding tool","authors":"Yingying Zuo,&nbsp;Huijie Liu,&nbsp;Dongrui Li,&nbsp;Yisong Gao,&nbsp;Xuanmo Li","doi":"10.1007/s40194-024-01800-x","DOIUrl":"10.1007/s40194-024-01800-x","url":null,"abstract":"<div><p>The dissimilar Al/Ti joints were tentatively welded under different welding tools via dynamic support friction stir welding (FSW). The joint formation, intermetallic compounds (IMCs) layer, and mechanical properties of Al/Ti joint were investigated. The results showed that a Co-based alloy welding tool with a 15-mm shoulder diameter achieved the good external appearance and internal tissue. A diffusion layer with ~ 4 μm existed at the upper interface, while the diffusion layer at the lower layer was ~ 3 μm. Detrimental and continuous IMC layers were not generated at the Al/Ti interface, and root defects were avoided. This joint had the largest tensile strength of 189 MPa and fractured at the heat-affected zone (HAZ). The interface bonding, Ti fragments and hole defects in stirring zone, and the HAZ softening determined the ultimate fracture location. The dynamic support FSW offered a novel approach to achieve high-quality joining of Al/Ti dissimilar metals.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141354202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-temperature mechanical properties of slotted and normal terminals using ultrasonic wire harness welding 使用超声波线束焊接的开槽端子和普通端子的低温机械性能
IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-06-11 DOI: 10.1007/s40194-024-01792-8
Wanlu Hong, Zeshan Abbas, Lun Zhao, Long Xu, Kai Ye, Hafiz Abdul Saboor, Md Shafiqul Islam

The ultrasonic metal welding technology is widely promoted as a new connection approach in the field of current energy vehicle wiring harness connection. In the present investigation, low-temperature mechanical properties of slotted and normal terminals were studied. The EVR 25 mm2 copper wires are selected for welding using ultrasonic wire harness welding with two different structures of T2 copper terminals. Then, a more stable joint structure under the same welding parameters is investigated through tensile tests at − 30 °C and 25 °C. The results showed that the ST joint has higher static mechanical properties than the NT joint at 25 °C and the peak load of the joint is increased. In addition, the results investigated that the performance and welded interface texture of ST joints is reliable than NT joints under 25 °C, the maximum joint load is increased by 12.93% under − 30 °C, the joint energy absorption is increased by 87.58%, and ST joint stability is better and safer in actual production applications. At the same welding parameters, the ST joints have less neck contraction at 25 °C and the ligamentous sockets are smaller and densely welded surfaces. The failures of ST joints and NT joints are investigated under the same welding parameters. The energy loss during the ST joint welding process is smaller and the welding effect is better and advantageous. The SEM findings showed that the failure of the ST joint and the NT joint is different and the tensile strength of the ST joint is greater under the same low-temperature conditions.

超声波金属焊接技术作为一种新的连接方法在当前能源汽车线束连接领域得到广泛推广。本研究对开槽端子和普通端子的低温力学性能进行了研究。选取 EVR 25 mm2 铜线,采用超声波线束焊接技术与两种不同结构的 T2 铜端子进行焊接。然后,通过在 - 30 °C 和 25 °C 下进行拉伸试验,研究了在相同焊接参数下更稳定的接头结构。结果表明,在 25 °C 时,ST 接头的静态机械性能高于 NT 接头,接头的峰值载荷也有所增加。此外,研究结果还表明,在 25 ° C 下,ST 接头的性能和焊接界面纹理比 NT 接头可靠,在 - 30 °C 下,接头最大载荷增加了 12.93%,接头能量吸收增加了 87.58%,在实际生产应用中,ST 接头的稳定性更好、更安全。在相同的焊接参数下,ST 接头在 25 ℃ 时的颈部收缩较小,韧带套筒较小,焊接表面致密。在相同的焊接参数下,对 ST 接头和 NT 接头的失效情况进行了研究。ST 接头焊接过程中的能量损失较小,焊接效果更好,具有优势。扫描电镜研究结果表明,在相同的低温条件下,ST 接头和 NT 接头的失效情况不同,ST 接头的抗拉强度更大。
{"title":"Low-temperature mechanical properties of slotted and normal terminals using ultrasonic wire harness welding","authors":"Wanlu Hong,&nbsp;Zeshan Abbas,&nbsp;Lun Zhao,&nbsp;Long Xu,&nbsp;Kai Ye,&nbsp;Hafiz Abdul Saboor,&nbsp;Md Shafiqul Islam","doi":"10.1007/s40194-024-01792-8","DOIUrl":"10.1007/s40194-024-01792-8","url":null,"abstract":"<div><p>The ultrasonic metal welding technology is widely promoted as a new connection approach in the field of current energy vehicle wiring harness connection. In the present investigation, low-temperature mechanical properties of slotted and normal terminals were studied. The EVR 25 mm<sup>2</sup> copper wires are selected for welding using ultrasonic wire harness welding with two different structures of T2 copper terminals. Then, a more stable joint structure under the same welding parameters is investigated through tensile tests at − 30 °C and 25 °C. The results showed that the ST joint has higher static mechanical properties than the NT joint at 25 °C and the peak load of the joint is increased. In addition, the results investigated that the performance and welded interface texture of ST joints is reliable than NT joints under 25 °C, the maximum joint load is increased by 12.93% under − 30 °C, the joint energy absorption is increased by 87.58%, and ST joint stability is better and safer in actual production applications. At the same welding parameters, the ST joints have less neck contraction at 25 °C and the ligamentous sockets are smaller and densely welded surfaces. The failures of ST joints and NT joints are investigated under the same welding parameters. The energy loss during the ST joint welding process is smaller and the welding effect is better and advantageous. The SEM findings showed that the failure of the ST joint and the NT joint is different and the tensile strength of the ST joint is greater under the same low-temperature conditions.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Welding in the World
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1