Siyuan Wang, Hongxuan Liu, Mai Wang, Hao Chen, Zhi Ma, Bingcheng Pan, Yishu Huang, Yaqi Shi, Chenlei Li, He Gao, Yeyu Tong, Zongyin Yang, Zejie Yu, Liu Liu, Daoxin Dai
Group velocity and impedance matches are prerequisites for high-speed Mach–Zehnder electro-optic (EO) modulators. However, not all platforms can realize matching conditions, restricting high-speed modulation in many practical conditions. Here, we propose and demonstrate a quasi-matching scheme to satisfy the group velocity and characteristic impedance matches by cascading fast-wave and slow-wave traveling wave electrodes. The effective group velocity can be flexibly adjusted by changing the ratio of fast-wave and slow-wave traveling wave electrodes. Moreover, the quasi-matching scheme is experimentally verified by demonstrating a 6 mm long EO modulator on a thin-film lithium-niobate-on-insulator platform with a silica cladding. The radio frequency signal insertion loss at the boundary of the slow-wave and fast-wave electrodes is less than 0.12 dB. The measured small signal EO response of the quasi-matched EO modulator drops less than 2 dB at 67 GHz, while the measured small-signal EO responses of conventional slow and fast traveling wave EO modulators drop 4 dB at 67 GHz. The measured 100 Gb/s on–off key signal eye-diagrams of the quasi-matched EO modulator also exhibit an overwhelming advantage over conventional schemes. Therefore, our results will open many opportunities for high-speed EO modulators in various platforms.
群速度和阻抗匹配是高速马赫-泽恩德光电(EO)调制器的先决条件。然而,并非所有平台都能实现匹配条件,这限制了许多实际条件下的高速调制。在此,我们提出并演示了一种准匹配方案,通过级联快波和慢波行波电极来满足群速度和特性阻抗的匹配。通过改变快波和慢波行波电极的比例,可以灵活调整有效群速度。此外,通过在带有二氧化硅包层的绝缘体铌酸锂薄膜平台上演示 6 毫米长的 EO 调制器,实验验证了准匹配方案。慢波电极和快波电极边界处的射频信号插入损耗小于 0.12 dB。准匹配 EO 调制器的测量小信号 EO 响应在 67 GHz 时下降不到 2 dB,而传统慢速和快速行波 EO 调制器的测量小信号 EO 响应在 67 GHz 时下降了 4 dB。准匹配 EO 调制器的 100 Gb/s 开关关键信号眼图测量结果也比传统方案具有压倒性优势。因此,我们的研究成果将为各种平台中的高速环氧乙烷调制器带来许多机遇。
{"title":"A quasi-matching scheme for arbitrary group velocity match in electro-optic modulation","authors":"Siyuan Wang, Hongxuan Liu, Mai Wang, Hao Chen, Zhi Ma, Bingcheng Pan, Yishu Huang, Yaqi Shi, Chenlei Li, He Gao, Yeyu Tong, Zongyin Yang, Zejie Yu, Liu Liu, Daoxin Dai","doi":"10.1063/5.0220022","DOIUrl":"https://doi.org/10.1063/5.0220022","url":null,"abstract":"Group velocity and impedance matches are prerequisites for high-speed Mach–Zehnder electro-optic (EO) modulators. However, not all platforms can realize matching conditions, restricting high-speed modulation in many practical conditions. Here, we propose and demonstrate a quasi-matching scheme to satisfy the group velocity and characteristic impedance matches by cascading fast-wave and slow-wave traveling wave electrodes. The effective group velocity can be flexibly adjusted by changing the ratio of fast-wave and slow-wave traveling wave electrodes. Moreover, the quasi-matching scheme is experimentally verified by demonstrating a 6 mm long EO modulator on a thin-film lithium-niobate-on-insulator platform with a silica cladding. The radio frequency signal insertion loss at the boundary of the slow-wave and fast-wave electrodes is less than 0.12 dB. The measured small signal EO response of the quasi-matched EO modulator drops less than 2 dB at 67 GHz, while the measured small-signal EO responses of conventional slow and fast traveling wave EO modulators drop 4 dB at 67 GHz. The measured 100 Gb/s on–off key signal eye-diagrams of the quasi-matched EO modulator also exhibit an overwhelming advantage over conventional schemes. Therefore, our results will open many opportunities for high-speed EO modulators in various platforms.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"29 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominykas Gudavičius, Lukas Kontenis, Wolfgang Langbein
We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy with 1089 foci, enabled by a high repetition rate amplified oscillator and an optical parametric amplifier. We employ a camera as a multichannel detector to acquire and separate the signals from the foci, rather than using the camera image itself. This allows us to retain the insensitivity of the imaging to scattering afforded by the non-linear excitation point-spread function, which is the hallmark of point-scanning techniques. We show frame rates of 0.3 Hz for a megapixel CARS image, limited by the camera used. The laser source and corresponding CARS signal allows for at least 1000 times higher speed, and using faster cameras would allow acquiring at that speed, opening a perspective to megapixel CARS imaging with a frame rate of more than 100 Hz.
{"title":"Thousand foci coherent anti-Stokes Raman scattering microscopy","authors":"Dominykas Gudavičius, Lukas Kontenis, Wolfgang Langbein","doi":"10.1063/5.0220474","DOIUrl":"https://doi.org/10.1063/5.0220474","url":null,"abstract":"We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy with 1089 foci, enabled by a high repetition rate amplified oscillator and an optical parametric amplifier. We employ a camera as a multichannel detector to acquire and separate the signals from the foci, rather than using the camera image itself. This allows us to retain the insensitivity of the imaging to scattering afforded by the non-linear excitation point-spread function, which is the hallmark of point-scanning techniques. We show frame rates of 0.3 Hz for a megapixel CARS image, limited by the camera used. The laser source and corresponding CARS signal allows for at least 1000 times higher speed, and using faster cameras would allow acquiring at that speed, opening a perspective to megapixel CARS imaging with a frame rate of more than 100 Hz.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"35 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-performance alloy thin films and large-sized thin film wafers for infrared applications are the focus of international researchers. In this study, doped Ge1−xSnx and Ge1−yBiy semiconductor alloy films were grown on a 5-in. silicon (Si) wafer using high-quality Ge films as buffer layers. An efficient technique is presented to reduce the dark current density of near-infrared photoelectric devices. By using boron for p-type doping in Ge1−xSnx films and bismuth (Bi) for n-type doping in Ge1−yBiy films, an all-thin film planar nano-p-i-n optoelectronic device with the structure n-Ge1−yBiy/i-GeSn/p-Ge1−xSnx/Ge buffer/Si substrate has been successfully fabricated. The photoelectric performance of the device was tested, and it was found that the insertion of p-Ge1−xSnx/Ge films reduced the dark current density by 1–2 orders of magnitude. The maximum photoresponsivity reached up to 0.8 A/W, and the infrared photocurrent density ranged from 904 to 935 μA/cm2 under a +1 V bias voltage. Furthermore, the device is capable of modulating a terahertz wave using a voltage signal with a modulation bandwidth of 1.2 THz and a modulation depth of ∼83%, while the modulation rate is 0.5 MHz. This not only provides a clear demonstration of how doped alloy films and the development of nano-p-i-n heterojunctions will improve photoelectric devices’ performance in the near-infrared and terahertz bands, but it also raises the possibility of optoelectronic interconnection applications being achieved through a single device.
{"title":"All-thin film nano-optoelectronic p-GeSn/i-GeSn/n-GeBi heterojunction for near-infrared photodetection and terahertz modulation","authors":"Dainan Zhang, Youbin Zheng, Yulong Liao, Cheng Liu, Huaiwu Zhang","doi":"10.1063/5.0225536","DOIUrl":"https://doi.org/10.1063/5.0225536","url":null,"abstract":"High-performance alloy thin films and large-sized thin film wafers for infrared applications are the focus of international researchers. In this study, doped Ge1−xSnx and Ge1−yBiy semiconductor alloy films were grown on a 5-in. silicon (Si) wafer using high-quality Ge films as buffer layers. An efficient technique is presented to reduce the dark current density of near-infrared photoelectric devices. By using boron for p-type doping in Ge1−xSnx films and bismuth (Bi) for n-type doping in Ge1−yBiy films, an all-thin film planar nano-p-i-n optoelectronic device with the structure n-Ge1−yBiy/i-GeSn/p-Ge1−xSnx/Ge buffer/Si substrate has been successfully fabricated. The photoelectric performance of the device was tested, and it was found that the insertion of p-Ge1−xSnx/Ge films reduced the dark current density by 1–2 orders of magnitude. The maximum photoresponsivity reached up to 0.8 A/W, and the infrared photocurrent density ranged from 904 to 935 μA/cm2 under a +1 V bias voltage. Furthermore, the device is capable of modulating a terahertz wave using a voltage signal with a modulation bandwidth of 1.2 THz and a modulation depth of ∼83%, while the modulation rate is 0.5 MHz. This not only provides a clear demonstration of how doped alloy films and the development of nano-p-i-n heterojunctions will improve photoelectric devices’ performance in the near-infrared and terahertz bands, but it also raises the possibility of optoelectronic interconnection applications being achieved through a single device.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"45 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optical refrigeration using anti-Stokes photoluminescence is now well established, especially for rare-earth-doped solids where cooling to cryogenic temperatures has recently been achieved. The cooling efficiency of optical refrigeration is constrained by the requirement that the increase in the entropy of the photon field must be greater than the decrease in the entropy of the sample. Laser radiation has been used in all demonstrated cases of optical refrigeration with the intention of minimizing the entropy of the absorbed photons. Here, we show that as long as the incident radiation is unidirectional, the loss of coherence does not significantly affect the cooling efficiency. Using a general formulation of radiation entropy as the von Neumann entropy of the photon field, we show how the cooling efficiency depends on the properties of the light source, such as wavelength, coherence, and directionality. Our results suggest that the laws of thermodynamics permit optical cooling of materials with incoherent sources, such as light emitting diodes and filtered sunlight, almost as efficiently as with lasers. Our findings have significant and immediate implications for design of compact all-solid-state devices cooled via optical refrigeration.
{"title":"Photoluminescent cooling with incoherent light","authors":"Sushrut Ghonge, Masaru Kuno, Boldizsár Jankó","doi":"10.1063/5.0217272","DOIUrl":"https://doi.org/10.1063/5.0217272","url":null,"abstract":"Optical refrigeration using anti-Stokes photoluminescence is now well established, especially for rare-earth-doped solids where cooling to cryogenic temperatures has recently been achieved. The cooling efficiency of optical refrigeration is constrained by the requirement that the increase in the entropy of the photon field must be greater than the decrease in the entropy of the sample. Laser radiation has been used in all demonstrated cases of optical refrigeration with the intention of minimizing the entropy of the absorbed photons. Here, we show that as long as the incident radiation is unidirectional, the loss of coherence does not significantly affect the cooling efficiency. Using a general formulation of radiation entropy as the von Neumann entropy of the photon field, we show how the cooling efficiency depends on the properties of the light source, such as wavelength, coherence, and directionality. Our results suggest that the laws of thermodynamics permit optical cooling of materials with incoherent sources, such as light emitting diodes and filtered sunlight, almost as efficiently as with lasers. Our findings have significant and immediate implications for design of compact all-solid-state devices cooled via optical refrigeration.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2013 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seong Cheol Lee, Soobong Park, Daewon Suk, Joonhyuk Hwang, Kiyoung Ko, Won Bae Cho, Duk-Yong Choi, Kwang-Hoon Ko, Fabian Rotermund, Hansuek Lee
The mid-infrared wavelength region is one of the most important spectral ranges for a variety of applications in monitoring and controlling molecules due to the presence of strong characteristic absorption modes of many molecules. Among various mid-infrared light sources, on-chip supercontinuum sources have garnered significant attention for their high spatial coherence, broad spectral bandwidth, compact size, and dispersion controllability. However, generating a supercontinuum that extends into the molecular fingerprint region typically requires high-energy mid-infrared pump pulses from complex optical systems. In contrast, supercontinuum generated with 1550 nm pump sources, which are generally more compact, has shown limited access to the molecular fingerprint region. In this study, we developed an on-chip supercontinuum source with a dispersive wave generated at a targeted wavelength of up to 4800 nm using a coupled pump energy of about 25 pJ. The pump pulses at a wavelength of 2340 nm were generated from a relatively compact Cr:ZnS laser oscillator. The wavelengths of the generated dispersive waves closely matched the numerically predicted wavelengths. To demonstrate the applicability of the generated dispersive waves for spectroscopic purposes, molecular absorption spectroscopy was performed on the fundamental vibrational modes of 12CO2, 13CO2, and N2O. In addition, their pressures were quantitatively estimated using cepstrum analysis on the measured absorption spectra. The uncertainty in the measured pressure was close to the theoretical limit determined by the uncertainties in the absorption line shape parameters in the HITRAN database, demonstrating the potential of this mid-infrared light source for advanced spectroscopic applications.
{"title":"On-chip mid-infrared dispersive wave generation at targeted molecular absorption wavelengths","authors":"Seong Cheol Lee, Soobong Park, Daewon Suk, Joonhyuk Hwang, Kiyoung Ko, Won Bae Cho, Duk-Yong Choi, Kwang-Hoon Ko, Fabian Rotermund, Hansuek Lee","doi":"10.1063/5.0221176","DOIUrl":"https://doi.org/10.1063/5.0221176","url":null,"abstract":"The mid-infrared wavelength region is one of the most important spectral ranges for a variety of applications in monitoring and controlling molecules due to the presence of strong characteristic absorption modes of many molecules. Among various mid-infrared light sources, on-chip supercontinuum sources have garnered significant attention for their high spatial coherence, broad spectral bandwidth, compact size, and dispersion controllability. However, generating a supercontinuum that extends into the molecular fingerprint region typically requires high-energy mid-infrared pump pulses from complex optical systems. In contrast, supercontinuum generated with 1550 nm pump sources, which are generally more compact, has shown limited access to the molecular fingerprint region. In this study, we developed an on-chip supercontinuum source with a dispersive wave generated at a targeted wavelength of up to 4800 nm using a coupled pump energy of about 25 pJ. The pump pulses at a wavelength of 2340 nm were generated from a relatively compact Cr:ZnS laser oscillator. The wavelengths of the generated dispersive waves closely matched the numerically predicted wavelengths. To demonstrate the applicability of the generated dispersive waves for spectroscopic purposes, molecular absorption spectroscopy was performed on the fundamental vibrational modes of 12CO2, 13CO2, and N2O. In addition, their pressures were quantitatively estimated using cepstrum analysis on the measured absorption spectra. The uncertainty in the measured pressure was close to the theoretical limit determined by the uncertainties in the absorption line shape parameters in the HITRAN database, demonstrating the potential of this mid-infrared light source for advanced spectroscopic applications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"73 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingyi Zhou, Yuta Goto, Takeshi Makino, Callen MacPhee, Yiming Zhou, Asad M. Madni, Hideaki Furukawa, Naoya Wada, Bahram Jalali
Ultrafast single-shot measurement techniques with high throughput are needed for capturing rare events that occur over short time scales. Such instruments unveil non-repetitive dynamics in complex systems and enable new types of spectrometers, cameras, light scattering, and lidar systems. Photonic time stretch stands out as the most effective method for such applications. However, practical uses have been challenged by the reliance of current time stretch instruments on costly supercontinuum lasers and their fixed spectrum. The challenge is further exacerbated by such a laser’s rigid self-pulsating characteristic, which offers no ability to control the pulse timing. The latter hinders the synchronization of the optical source with the incoming signal—a crucial requirement for the detection of single-shot events. Here, we report the first demonstration of time stretch using electro-optically modulated continuous wave lasers. We do this using diode lasers and modulators commonly used in wavelength-division-multiplexing optical communication systems. This approach offers more cost-effective and compact time stretch instruments and sensors and enables the synchronization of the laser source with the incoming signal. Limitations of this new approach are also discussed, and applications in time stretch microscopy and light scattering are explored.
{"title":"Time stretch with continuous-wave lasers","authors":"Tingyi Zhou, Yuta Goto, Takeshi Makino, Callen MacPhee, Yiming Zhou, Asad M. Madni, Hideaki Furukawa, Naoya Wada, Bahram Jalali","doi":"10.1063/5.0212958","DOIUrl":"https://doi.org/10.1063/5.0212958","url":null,"abstract":"Ultrafast single-shot measurement techniques with high throughput are needed for capturing rare events that occur over short time scales. Such instruments unveil non-repetitive dynamics in complex systems and enable new types of spectrometers, cameras, light scattering, and lidar systems. Photonic time stretch stands out as the most effective method for such applications. However, practical uses have been challenged by the reliance of current time stretch instruments on costly supercontinuum lasers and their fixed spectrum. The challenge is further exacerbated by such a laser’s rigid self-pulsating characteristic, which offers no ability to control the pulse timing. The latter hinders the synchronization of the optical source with the incoming signal—a crucial requirement for the detection of single-shot events. Here, we report the first demonstration of time stretch using electro-optically modulated continuous wave lasers. We do this using diode lasers and modulators commonly used in wavelength-division-multiplexing optical communication systems. This approach offers more cost-effective and compact time stretch instruments and sensors and enables the synchronization of the laser source with the incoming signal. Limitations of this new approach are also discussed, and applications in time stretch microscopy and light scattering are explored.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"42 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we demonstrate the fabrication of waveguide resonators using nanoimprint technology. Without relying on traditionally costly lithography methods, such as electron-beam lithography or stepper lithography, silicon nitride (Si3N4) resonators with high-quality factors up to the order of 105 can be realized at C-band by nanoimprint lithography. In addition, by properly designing the waveguide geometry, a low-dispersive waveguide can be achieved with waveguide dispersion at around −35 ps/nm/km in the normal dispersion regime, and the waveguide dispersion can be further tuned to be 29 ps/nm/km in the anomalous dispersion regime with the polymer cladding. The tunability of nanoimprinted devices is demonstrated by the aid of microheaters, realizing on-chip optical functionalities. This work offers the potential to fabricate low-dispersive waveguide resonators for integrated modulators and filters in a significantly cost-effective and process-friendly scheme.
在这项研究中,我们展示了利用纳米压印技术制造波导谐振器的方法。在不依赖电子束光刻或步进光刻等传统昂贵光刻方法的情况下,通过纳米压印光刻技术可以在 C 波段实现质量系数高达 105 的氮化硅(Si3N4)谐振器。此外,通过适当设计波导几何形状,还可实现低色散波导,在正常色散机制下,波导色散约为-35 ps/nm/km,而在反常色散机制下,利用聚合物包层可将波导色散进一步调整为 29 ps/nm/km。借助微加热器,纳米压印器件的可调性得到了验证,从而实现了片上光学功能。这项工作为以一种极具成本效益且工艺友好的方案制造用于集成调制器和滤波器的低色散波导谐振器提供了可能性。
{"title":"Low-dispersive silicon nitride waveguide resonators by nanoimprint lithography","authors":"Pei-Hsun Wang, He-Yuan Zheng, Yuan-Hsiu Liu, Nien-Lin Hou, Chien-Hung Chen, Hung-Wen Chen, Chih-Ming Wang","doi":"10.1063/5.0204857","DOIUrl":"https://doi.org/10.1063/5.0204857","url":null,"abstract":"In this study, we demonstrate the fabrication of waveguide resonators using nanoimprint technology. Without relying on traditionally costly lithography methods, such as electron-beam lithography or stepper lithography, silicon nitride (Si3N4) resonators with high-quality factors up to the order of 105 can be realized at C-band by nanoimprint lithography. In addition, by properly designing the waveguide geometry, a low-dispersive waveguide can be achieved with waveguide dispersion at around −35 ps/nm/km in the normal dispersion regime, and the waveguide dispersion can be further tuned to be 29 ps/nm/km in the anomalous dispersion regime with the polymer cladding. The tunability of nanoimprinted devices is demonstrated by the aid of microheaters, realizing on-chip optical functionalities. This work offers the potential to fabricate low-dispersive waveguide resonators for integrated modulators and filters in a significantly cost-effective and process-friendly scheme.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"58 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This Tutorial introduces structural color in fruits as a phenomenon of diverse optical materials. Originally best known in abiotic materials and animals, structural colors are being increasingly described in plants. Structural colors have already inspired a variety of useful products, and plants are especially attractive as models to develop new bioinspired technologies thanks to the comparative ease of working with them compared with animal systems. Already, human-engineered structural colors modeled after plant cellulose-based architectures have shown promising applications in colorants and sensors. However, structural colors include a far broader group of materials and architectures beyond cellulose. Understanding the new and diverse structures that have recently been described in plants should provoke research into new bioinspired products based on plant optical structures and biomaterials. In this Tutorial, we focus on fruits as new structures have recently been discovered, leading to new opportunities for bioinspired technologies. We bring together a review of optical structures found in fruits from a physical optics perspective, with a consideration of each structure as an opportunity in bioinspired and biomimetic design.
{"title":"Structural color in fruits: Biomaterials to inspire physical optics","authors":"R. Middleton, M. Sinnott-Armstrong","doi":"10.1063/5.0208528","DOIUrl":"https://doi.org/10.1063/5.0208528","url":null,"abstract":"This Tutorial introduces structural color in fruits as a phenomenon of diverse optical materials. Originally best known in abiotic materials and animals, structural colors are being increasingly described in plants. Structural colors have already inspired a variety of useful products, and plants are especially attractive as models to develop new bioinspired technologies thanks to the comparative ease of working with them compared with animal systems. Already, human-engineered structural colors modeled after plant cellulose-based architectures have shown promising applications in colorants and sensors. However, structural colors include a far broader group of materials and architectures beyond cellulose. Understanding the new and diverse structures that have recently been described in plants should provoke research into new bioinspired products based on plant optical structures and biomaterials. In this Tutorial, we focus on fruits as new structures have recently been discovered, leading to new opportunities for bioinspired technologies. We bring together a review of optical structures found in fruits from a physical optics perspective, with a consideration of each structure as an opportunity in bioinspired and biomimetic design.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"144 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colin J. Mitchell, Tianhui Hu, Shiyu Sun, Callum J. Stirling, Milos Nedeljkovic, Anna C. Peacock, Graham T. Reed, Goran Z. Mashanovich, David J. Rowe
Silicon photonics is one of the most dynamic fields within photonics, and it has seen huge progress in the last 20 years, addressing applications in data centers, autonomous cars, and sensing. It is mostly focused on the telecommunications wavelength range (1.3 and 1.55 µm), where silicon becomes transparent. In this range, there are excellent light sources and photodetectors, as well as optical fibers operating with extremely low losses and dispersion. It is a technology that hugely benefits from the availability of complementary metal–oxide–semiconductor (CMOS) fabrication infrastructure and techniques used for microelectronics. Silicon and germanium, as another CMOS compatible group IV material, are transparent beyond the wavelength of 2 µm. The mid-IR wavelength range (2–20 µm) is of particular importance as it contains strong absorption signatures of many molecules. Therefore, Si- and Ge-based platforms open up the possibility of small and cost-effective sensing in the fingerprint region for medical and environmental monitoring. In this paper, we discuss the current mid-IR silicon photonics landscape, future directions, and potential applications of the field.
{"title":"Mid-infrared silicon photonics: From benchtop to real-world applications","authors":"Colin J. Mitchell, Tianhui Hu, Shiyu Sun, Callum J. Stirling, Milos Nedeljkovic, Anna C. Peacock, Graham T. Reed, Goran Z. Mashanovich, David J. Rowe","doi":"10.1063/5.0222890","DOIUrl":"https://doi.org/10.1063/5.0222890","url":null,"abstract":"Silicon photonics is one of the most dynamic fields within photonics, and it has seen huge progress in the last 20 years, addressing applications in data centers, autonomous cars, and sensing. It is mostly focused on the telecommunications wavelength range (1.3 and 1.55 µm), where silicon becomes transparent. In this range, there are excellent light sources and photodetectors, as well as optical fibers operating with extremely low losses and dispersion. It is a technology that hugely benefits from the availability of complementary metal–oxide–semiconductor (CMOS) fabrication infrastructure and techniques used for microelectronics. Silicon and germanium, as another CMOS compatible group IV material, are transparent beyond the wavelength of 2 µm. The mid-IR wavelength range (2–20 µm) is of particular importance as it contains strong absorption signatures of many molecules. Therefore, Si- and Ge-based platforms open up the possibility of small and cost-effective sensing in the fingerprint region for medical and environmental monitoring. In this paper, we discuss the current mid-IR silicon photonics landscape, future directions, and potential applications of the field.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"6 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem Prokoshin, Weng W. Chow, Bozhang Dong, Frederic Grillot, John Bowers, Yating Wan
This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement. The theoretical approach includes (a) multimode laser interaction to treat mode competition and wave mixing, (b) quantum-optical contributions from spontaneous emission, and (c) composite laser/free-space eigenmodes to describe outcoupling and coupling among components within an extended cavity. For single-cavity lasers, such as distributed feedback lasers, the model reproduces the experimentally observed better linewidth performance of quantum-dot active regions over quantum-well ones. When applied to integrated III–V/SiN lasers, our analysis indicates Hz-level linewidth performance for both quantum-dot and quantum-well gain media due to overcoming the difference in carrier-induced refractive index by incorporating a high-Q SiN passive resonator. Trade-offs are also explored between linewidth, output power, and threshold current.
{"title":"Linewidth narrowing in self-injection locked lasers: Effects of quantum confinement","authors":"Artem Prokoshin, Weng W. Chow, Bozhang Dong, Frederic Grillot, John Bowers, Yating Wan","doi":"10.1063/5.0214254","DOIUrl":"https://doi.org/10.1063/5.0214254","url":null,"abstract":"This paper explores the impact of gain medium on linewidth narrowing in integrated self-injection locked III–V/SiN lasers, theoretically and experimentally. We focus on the effects of carrier densities of states in zero- and two-dimensional structures due to quantum-dot and quantum-well confinement. The theoretical approach includes (a) multimode laser interaction to treat mode competition and wave mixing, (b) quantum-optical contributions from spontaneous emission, and (c) composite laser/free-space eigenmodes to describe outcoupling and coupling among components within an extended cavity. For single-cavity lasers, such as distributed feedback lasers, the model reproduces the experimentally observed better linewidth performance of quantum-dot active regions over quantum-well ones. When applied to integrated III–V/SiN lasers, our analysis indicates Hz-level linewidth performance for both quantum-dot and quantum-well gain media due to overcoming the difference in carrier-induced refractive index by incorporating a high-Q SiN passive resonator. Trade-offs are also explored between linewidth, output power, and threshold current.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"144 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}