Jonas Westberg, Chu C. Teng, Yifeng Chen, Jie Liu, Link Patrick, Linhan Shen, Michael Soskind, Gerard Wysocki
Detection of airborne chemical releases in densely populated urban environments requires precise sensors with high temporal and spatial resolution capable of covering large areas. For this purpose, we present a mobile mid-infrared quantum cascade laser dual-comb spectrometer for identification and quantification of chemical plumes. Field tests with the remote sensor were conducted during daytime in the downtown Boston area over a five day period during which chemical releases were simulated by intermittently emitting non-toxic substances. Open-air sensing was performed with retroreflectors positioned at up to 230 m distance and with sensitivities in the ppm m range for one second of averaging time. The field campaign demonstrates a step toward a semiconductor dual-comb spectroscopic sensor in the mid-infrared fingerprint region, suitable for long-term deployments. These types of sensors will be valuable complements to existing optical sensors for urban hazardous gas leak monitoring, air quality assessments, and localization of clandestine chemical production.
{"title":"Urban open-air chemical sensing using a mobile quantum cascade laser dual-comb spectrometer","authors":"Jonas Westberg, Chu C. Teng, Yifeng Chen, Jie Liu, Link Patrick, Linhan Shen, Michael Soskind, Gerard Wysocki","doi":"10.1063/5.0163308","DOIUrl":"https://doi.org/10.1063/5.0163308","url":null,"abstract":"Detection of airborne chemical releases in densely populated urban environments requires precise sensors with high temporal and spatial resolution capable of covering large areas. For this purpose, we present a mobile mid-infrared quantum cascade laser dual-comb spectrometer for identification and quantification of chemical plumes. Field tests with the remote sensor were conducted during daytime in the downtown Boston area over a five day period during which chemical releases were simulated by intermittently emitting non-toxic substances. Open-air sensing was performed with retroreflectors positioned at up to 230 m distance and with sensitivities in the ppm m range for one second of averaging time. The field campaign demonstrates a step toward a semiconductor dual-comb spectroscopic sensor in the mid-infrared fingerprint region, suitable for long-term deployments. These types of sensors will be valuable complements to existing optical sensors for urban hazardous gas leak monitoring, air quality assessments, and localization of clandestine chemical production.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"265 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advancements in optical wavefront shaping have brought multimode fibers (MMFs) into the spotlight as potential contenders for long-haul communication, positioning them as promising substitutes to single-mode fibers. MMFs offer greater data rates, countering the impending congestion of fiber-based networks. Additionally, their suitability for single fiber endoscope procedures presents them as compelling alternatives for minimally invasive endoscopy, providing information comparable to, if not surpassing, current cutting-edge technology. However, the complex modal behavior of light in MMFs hinders the implementation of these promising applications. Hence, precise modal excitation and control are crucial for improving the transmission of structured light in MMFs. This study introduces a groundbreaking approach that achieves the retrieval of the transmission matrix in a single step, thereby facilitating coherent light propagation through highly dispersive MMFs. By combining iterative phase retrieval algorithms with the measurement of phase shifts between experimentally established focal points, potential arbitrary interference control is enabled, leading to effective phase correction. The efficacy of our method is validated through the successful transmission of diverse structured light beams, including Laguerre–Gauss and Hermite–Gaussian types, as well as handwritten characters via MMF. The examination of structured light is simplified using an off-axis holographic technique that accurately captures both intensity and phase information. These results hold significant potential, paving the way for major advancements in long-distance communication and minimally invasive medical procedures, thereby transforming the telecommunications and healthcare sectors.
{"title":"On the exploration of structured light transmission through a multimode fiber in a reference-less system","authors":"Viet Tran, Tianhong Wang, Nimish P. Nazirkar, Pascal Bassène, Edwin Fohtung, Moussa N’Gom","doi":"10.1063/5.0172284","DOIUrl":"https://doi.org/10.1063/5.0172284","url":null,"abstract":"Recent advancements in optical wavefront shaping have brought multimode fibers (MMFs) into the spotlight as potential contenders for long-haul communication, positioning them as promising substitutes to single-mode fibers. MMFs offer greater data rates, countering the impending congestion of fiber-based networks. Additionally, their suitability for single fiber endoscope procedures presents them as compelling alternatives for minimally invasive endoscopy, providing information comparable to, if not surpassing, current cutting-edge technology. However, the complex modal behavior of light in MMFs hinders the implementation of these promising applications. Hence, precise modal excitation and control are crucial for improving the transmission of structured light in MMFs. This study introduces a groundbreaking approach that achieves the retrieval of the transmission matrix in a single step, thereby facilitating coherent light propagation through highly dispersive MMFs. By combining iterative phase retrieval algorithms with the measurement of phase shifts between experimentally established focal points, potential arbitrary interference control is enabled, leading to effective phase correction. The efficacy of our method is validated through the successful transmission of diverse structured light beams, including Laguerre–Gauss and Hermite–Gaussian types, as well as handwritten characters via MMF. The examination of structured light is simplified using an off-axis holographic technique that accurately captures both intensity and phase information. These results hold significant potential, paving the way for major advancements in long-distance communication and minimally invasive medical procedures, thereby transforming the telecommunications and healthcare sectors.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"46 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heungjoon Kim, Bong-Shik Song, Takashi Asano, Susumu Noda
Photonic crystal waveguide-coupled photonic nanocavities are promising to develop integrated nonlinear nanophotonic devices because of their strong nonlinear optical process in cavities with high quality (Q) factors and small modal volume, multiple-wavelength-channel operation, and efficient and highly dense integration with other optical components. However, the intrinsic features of the standing-wave mode in the photonic crystal resonant cavity cause some waveguided light to pass through the nanocavity without coupling, which remains a significant challenge in achieving high nonlinear optical efficiency in integrated nanophotonic devices. To feed back the uncoupled light into the nanocavity and enhance the nonlinear optical efficiency in a photonic crystal waveguide-coupled nanocavity, we designed and fabricated a wavelength-selective reflector based on a silicon carbide two-dimensional photonic crystal structure and experimentally demonstrated the significant enhancement of second harmonic generation (SHG) using the reflector. The findings suggest that the reflector increases the electric field intensity in the nanocavity and improves Q-matching between the nanocavity and the waveguide. These two effects of the reflector significantly enhance the SHG efficiency by 11.5 compared to that without a reflector. The experimental results agree well with the calculation results obtained using coupled-mode theory. Our study paves the way for developing efficient nonlinear optical devices for high-density integrated nanophotonics and quantum applications.
{"title":"Enhanced second-harmonic generation in a photonic crystal waveguide-coupled nanocavity using a wavelength-selective reflector","authors":"Heungjoon Kim, Bong-Shik Song, Takashi Asano, Susumu Noda","doi":"10.1063/5.0173196","DOIUrl":"https://doi.org/10.1063/5.0173196","url":null,"abstract":"Photonic crystal waveguide-coupled photonic nanocavities are promising to develop integrated nonlinear nanophotonic devices because of their strong nonlinear optical process in cavities with high quality (Q) factors and small modal volume, multiple-wavelength-channel operation, and efficient and highly dense integration with other optical components. However, the intrinsic features of the standing-wave mode in the photonic crystal resonant cavity cause some waveguided light to pass through the nanocavity without coupling, which remains a significant challenge in achieving high nonlinear optical efficiency in integrated nanophotonic devices. To feed back the uncoupled light into the nanocavity and enhance the nonlinear optical efficiency in a photonic crystal waveguide-coupled nanocavity, we designed and fabricated a wavelength-selective reflector based on a silicon carbide two-dimensional photonic crystal structure and experimentally demonstrated the significant enhancement of second harmonic generation (SHG) using the reflector. The findings suggest that the reflector increases the electric field intensity in the nanocavity and improves Q-matching between the nanocavity and the waveguide. These two effects of the reflector significantly enhance the SHG efficiency by 11.5 compared to that without a reflector. The experimental results agree well with the calculation results obtained using coupled-mode theory. Our study paves the way for developing efficient nonlinear optical devices for high-density integrated nanophotonics and quantum applications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"5 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Istiak Khan, Zhenyang Xiao, Sadhvikas J. Addamane, David Burghoff
Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.
{"title":"Frequency combs in optically injected terahertz ring quantum cascade lasers","authors":"Md Istiak Khan, Zhenyang Xiao, Sadhvikas J. Addamane, David Burghoff","doi":"10.1063/5.0173912","DOIUrl":"https://doi.org/10.1063/5.0173912","url":null,"abstract":"Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"20 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138631246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dissipative Kerr solitons formed in high-Q optical microresonators provide a route to miniaturized optical frequency combs that can revolutionize precision measurements, spectroscopy, sensing, and communication. In the past decade, a myriad of integrated material platforms have been extensively studied and developed to create photonic-chip-based soliton combs. However, the photo-thermal effect in integrated optical microresonators has been a major issue preventing simple and reliable soliton generation. Several sophisticated techniques to circumvent the photo-thermal effect have been developed. In addition, instead of the single-soliton state, emerging applications in microwave photonics and frequency metrology prefer multi-soliton states. Here, we demonstrate an approach to manage the photo-thermal effect and facilitate soliton generation. The approach is based on a single phase-modulated pump, where the generated blue-detuned sideband synergizes with the carrier and thermally stabilizes the microresonator. We apply this technique and demonstrate deterministic soliton generation of 19.97 GHz repetition rate in an integrated silicon nitride microresonator. Furthermore, we develop a program to automatically address to the target N-soliton state, in addition to the single-soliton state, with a near 100% success rate and as short as 10 s time consumption. Our method is valuable for soliton generation in essentially any platform, even with strong photo-thermal effects, and can promote wider applications of soliton frequency comb systems for microwave photonics, telecommunications, and frequency metrology.
{"title":"Programmable access to microresonator solitons with modulational sideband heating","authors":"Huamin Zheng, Wei Sun, Xingxing Ding, Haoran Wen, Ruiyang Chen, Baoqi Shi, Yi-Han Luo, Jinbao Long, Chen Shen, Shan Meng, Hairun Guo, Junqiu Liu","doi":"10.1063/5.0173243","DOIUrl":"https://doi.org/10.1063/5.0173243","url":null,"abstract":"Dissipative Kerr solitons formed in high-Q optical microresonators provide a route to miniaturized optical frequency combs that can revolutionize precision measurements, spectroscopy, sensing, and communication. In the past decade, a myriad of integrated material platforms have been extensively studied and developed to create photonic-chip-based soliton combs. However, the photo-thermal effect in integrated optical microresonators has been a major issue preventing simple and reliable soliton generation. Several sophisticated techniques to circumvent the photo-thermal effect have been developed. In addition, instead of the single-soliton state, emerging applications in microwave photonics and frequency metrology prefer multi-soliton states. Here, we demonstrate an approach to manage the photo-thermal effect and facilitate soliton generation. The approach is based on a single phase-modulated pump, where the generated blue-detuned sideband synergizes with the carrier and thermally stabilizes the microresonator. We apply this technique and demonstrate deterministic soliton generation of 19.97 GHz repetition rate in an integrated silicon nitride microresonator. Furthermore, we develop a program to automatically address to the target N-soliton state, in addition to the single-soliton state, with a near 100% success rate and as short as 10 s time consumption. Our method is valuable for soliton generation in essentially any platform, even with strong photo-thermal effects, and can promote wider applications of soliton frequency comb systems for microwave photonics, telecommunications, and frequency metrology.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2019 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Englebert, Carlos Mas Arabí, Simon-Pierre Gorza, François Leo
We demonstrate that the peak-to-background ratio of driven solitons can be greatly improved by harnessing the cavity detuning. We use a driven fiber laser pumped below the lasing threshold to increase the finesse and excite solitons in a very wide range of detuning δ. When driving a 50 m long fiber cavity close to the anti-resonance condition (δ = π), we excite sub-800 fs solitons with a peak-to-background ratio close to 30 000. The experimental results are in good agreement with simple theoretical models describing the soliton peak power and the background power.
{"title":"High peak-to-background-ratio solitons in a coherently driven active fiber cavity","authors":"Nicolas Englebert, Carlos Mas Arabí, Simon-Pierre Gorza, François Leo","doi":"10.1063/5.0159693","DOIUrl":"https://doi.org/10.1063/5.0159693","url":null,"abstract":"We demonstrate that the peak-to-background ratio of driven solitons can be greatly improved by harnessing the cavity detuning. We use a driven fiber laser pumped below the lasing threshold to increase the finesse and excite solitons in a very wide range of detuning δ. When driving a 50 m long fiber cavity close to the anti-resonance condition (δ = π), we excite sub-800 fs solitons with a peak-to-background ratio close to 30 000. The experimental results are in good agreement with simple theoretical models describing the soliton peak power and the background power.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"18 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Becky Lin, Donald Witt, Jeff F. Young, Lukas Chrostowski
The widespread adaptation of systems relying on optically controlled quantum information will require reliable and efficient multi-channel fiber-to-chip connections that function at cryogenic temperatures. Here we demonstrate low loss (2 dB per channel) connections between a single mode fiber array and tapered silicon waveguides down to 5 K using polymer based photonic wire bonds (PWBs). A method is described for assembling the silicon chip and fiber array such that the PWB connections are robust to temperature cycling and cryostat bakeout. The threshold power handling capability of the PWBs is greater than 4 dBm, sufficient to demonstrate optical bistability in silicon microring resonators coupled to the waveguides at 5 K.
要广泛应用依赖光控量子信息的系统,就必须在低温条件下实现可靠、高效的多通道光纤到芯片连接。在此,我们利用聚合物光子线键(PWB)演示了单模光纤阵列与锥形硅波导之间低至 5 K 的低损耗(每通道 2 dB)连接。介绍了一种组装硅芯片和光纤阵列的方法,使 PWB 连接能够承受温度循环和低温恒温器的烘烤。PWB 的阈值功率处理能力大于 4 dBm,足以证明在 5 K 下与波导耦合的硅微振谐振器的光学双稳态性。
{"title":"Cryogenic optical packaging using photonic wire bonds","authors":"Becky Lin, Donald Witt, Jeff F. Young, Lukas Chrostowski","doi":"10.1063/5.0170974","DOIUrl":"https://doi.org/10.1063/5.0170974","url":null,"abstract":"The widespread adaptation of systems relying on optically controlled quantum information will require reliable and efficient multi-channel fiber-to-chip connections that function at cryogenic temperatures. Here we demonstrate low loss (2 dB per channel) connections between a single mode fiber array and tapered silicon waveguides down to 5 K using polymer based photonic wire bonds (PWBs). A method is described for assembling the silicon chip and fiber array such that the PWB connections are robust to temperature cycling and cryostat bakeout. The threshold power handling capability of the PWBs is greater than 4 dBm, sufficient to demonstrate optical bistability in silicon microring resonators coupled to the waveguides at 5 K.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"6 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thibault Wildi, Alexander Ulanov, Nicolas Englebert, Thibault Voumard, Tobias Herr
Frequency combs from continuous-wave-driven Kerr-nonlinear microresonators have evolved into a key photonic technology with applications from optical communication to precision spectroscopy. Essential to many of these applications is the control of the comb’s defining parameters, i.e., carrier-envelope offset frequency and repetition rate. An elegant and all-optical approach to controlling both degrees of freedom is the suitable injection of a secondary continuous-wave laser into the resonator onto which one of the comb lines locks. Here, we experimentally study such sideband injection locking in microresonator soliton combs across a wide optical bandwidth and derive analytic scaling laws for the locking range and repetition rate control. As an application example, we demonstrate optical frequency division and repetition rate phase-noise reduction to three orders of magnitude below the noise of a free-running system. The presented results can guide the design of sideband injection-locked, parametrically generated frequency combs with opportunities for low-noise microwave generation, compact optical clocks with simplified locking schemes, and, more generally, all-optically stabilized frequency combs from Kerr-nonlinear resonators.
{"title":"Sideband injection locking in microresonator frequency combs","authors":"Thibault Wildi, Alexander Ulanov, Nicolas Englebert, Thibault Voumard, Tobias Herr","doi":"10.1063/5.0170224","DOIUrl":"https://doi.org/10.1063/5.0170224","url":null,"abstract":"Frequency combs from continuous-wave-driven Kerr-nonlinear microresonators have evolved into a key photonic technology with applications from optical communication to precision spectroscopy. Essential to many of these applications is the control of the comb’s defining parameters, i.e., carrier-envelope offset frequency and repetition rate. An elegant and all-optical approach to controlling both degrees of freedom is the suitable injection of a secondary continuous-wave laser into the resonator onto which one of the comb lines locks. Here, we experimentally study such sideband injection locking in microresonator soliton combs across a wide optical bandwidth and derive analytic scaling laws for the locking range and repetition rate control. As an application example, we demonstrate optical frequency division and repetition rate phase-noise reduction to three orders of magnitude below the noise of a free-running system. The presented results can guide the design of sideband injection-locked, parametrically generated frequency combs with opportunities for low-noise microwave generation, compact optical clocks with simplified locking schemes, and, more generally, all-optically stabilized frequency combs from Kerr-nonlinear resonators.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"1 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijie Wang, Xiaobei Zhang, Qi Zhang, Yong Yang, Yang Yu, Yang Wang, Tingyun Wang
Whispering gallery mode resonators provide an intriguing platform for precision measurement due to their high responsivity and low detection limit. Here, we propose and demonstrate an optofluidic microbottle resonator (OFMBR) that is utilized to measure droplet gravity-induced mechanical force, realized by establishing a lever model between tapered fiber and OFMBR. The mechanical force can be amplified by adjusting the ratio of the load arm to the effort arm of the lever, which is validated by theoretical simulation. The evolved mechanical force deforms OFMBR morphology and enhances light scattering, resulting in mixed variations in the transmission spectrum, including resonance wavelength, mode linewidth, and signal intensity. Experimentally, the mechanical force is first measured by monitoring resonance wavelength shift, and a responsivity of −56 pm/mN is obtained within the range of 0–0.2 mN. Furthermore, to monitor the mixed variations in the transmission spectrum and obtain the actual mechanical force directly, the optical barcode method is utilized to simultaneously monitor the variations of multimode features. The arbitrary unknown mechanical force is determined by the cross correlation function, and the measurement resolution is about 5 µN. Our scheme provides a thread for characterizing the liquid properties and investigating the dynamics at solid–liquid interfaces.
{"title":"Measurement of droplet gravity-induced mechanical force by optofluidic microbottle resonator with lever model","authors":"Zijie Wang, Xiaobei Zhang, Qi Zhang, Yong Yang, Yang Yu, Yang Wang, Tingyun Wang","doi":"10.1063/5.0164837","DOIUrl":"https://doi.org/10.1063/5.0164837","url":null,"abstract":"Whispering gallery mode resonators provide an intriguing platform for precision measurement due to their high responsivity and low detection limit. Here, we propose and demonstrate an optofluidic microbottle resonator (OFMBR) that is utilized to measure droplet gravity-induced mechanical force, realized by establishing a lever model between tapered fiber and OFMBR. The mechanical force can be amplified by adjusting the ratio of the load arm to the effort arm of the lever, which is validated by theoretical simulation. The evolved mechanical force deforms OFMBR morphology and enhances light scattering, resulting in mixed variations in the transmission spectrum, including resonance wavelength, mode linewidth, and signal intensity. Experimentally, the mechanical force is first measured by monitoring resonance wavelength shift, and a responsivity of −56 pm/mN is obtained within the range of 0–0.2 mN. Furthermore, to monitor the mixed variations in the transmission spectrum and obtain the actual mechanical force directly, the optical barcode method is utilized to simultaneously monitor the variations of multimode features. The arbitrary unknown mechanical force is determined by the cross correlation function, and the measurement resolution is about 5 µN. Our scheme provides a thread for characterizing the liquid properties and investigating the dynamics at solid–liquid interfaces.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"115 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Wei, Enlai Guo, Yan Zhao, Dan Mu, Lianfa Bai, Jing Han
The optical technique of imaging through scattering media based on the optical memory effect (OME) sustains a limited field-of-view (FOV). Therefore, a prior-free imaging method is proposed to reconstruct multiple objects through the scattering media beyond the OME range. Based on the mixed speckle simplex separation strategy designed in this method, separating speckles of sub-objects is simplified as seeking the vertices of the mixed speckle simplex. An effective initial analysis of the mixed speckle simplex constructed by random intensity modulation is provided by vertex component analysis. The exact speckles of sub-objects are then separated by the specially designed non-negative matrix factorization algorithm. The multiple hidden objects can be recovered from the separated speckles respectively. The feasibility and imaging effects of the proposed method have been demonstrated via experiments. Multi-object imaging through the scattering media beyond at least four times the OME range has been realized. This work effectively advances speckle separation strategies to enlarge the limited FOV for imaging through scattering media.
{"title":"Prior-free mixed speckle simplex separation strategy for multi-object imaging through thin scattering media beyond the optical memory effect","authors":"Yi Wei, Enlai Guo, Yan Zhao, Dan Mu, Lianfa Bai, Jing Han","doi":"10.1063/5.0169580","DOIUrl":"https://doi.org/10.1063/5.0169580","url":null,"abstract":"The optical technique of imaging through scattering media based on the optical memory effect (OME) sustains a limited field-of-view (FOV). Therefore, a prior-free imaging method is proposed to reconstruct multiple objects through the scattering media beyond the OME range. Based on the mixed speckle simplex separation strategy designed in this method, separating speckles of sub-objects is simplified as seeking the vertices of the mixed speckle simplex. An effective initial analysis of the mixed speckle simplex constructed by random intensity modulation is provided by vertex component analysis. The exact speckles of sub-objects are then separated by the specially designed non-negative matrix factorization algorithm. The multiple hidden objects can be recovered from the separated speckles respectively. The feasibility and imaging effects of the proposed method have been demonstrated via experiments. Multi-object imaging through the scattering media beyond at least four times the OME range has been realized. This work effectively advances speckle separation strategies to enlarge the limited FOV for imaging through scattering media.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"18 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138564145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}