We introduce a broadband tunable femtosecond laser source in the long-wave infrared (LWIR) band, covering the range of 5–13.5 μm, based on the integration of optical parametric amplification and difference frequency generation techniques. We utilize a dual-stage tuning method, combined with the high nonlinear coefficient and broadband phase matching range of the BaGa4Se7 crystal, to facilitate significant improvements in spectral coverage and energy efficiency. The laser yields a peak output energy of 43 μJ and maintains energies above 10 μJ across the entire tuning range, with an average power output exceeding 10 mW. The pulse duration at the central wavelength of 8.3 μm is measured at 72 fs full width at half-maximum using the electro-optic sampling method. This LWIR femtosecond laser can be used in many applications, such as molecular fingerprint spectral analysis, ultrafast chemical reaction spectral analysis, materials science, and ultrafast physics research, providing an important research basis for the generation and application of mid-infrared ultrafast laser sources.
{"title":"5–13.5 μm broadband tunable long-wave infrared femtosecond laser","authors":"Yunpeng Liu, Junyu Qian, Renyu Feng, Wenkai Li, Yanyan Li, Yujie Peng, Yuxin Leng","doi":"10.1063/5.0221273","DOIUrl":"https://doi.org/10.1063/5.0221273","url":null,"abstract":"We introduce a broadband tunable femtosecond laser source in the long-wave infrared (LWIR) band, covering the range of 5–13.5 μm, based on the integration of optical parametric amplification and difference frequency generation techniques. We utilize a dual-stage tuning method, combined with the high nonlinear coefficient and broadband phase matching range of the BaGa4Se7 crystal, to facilitate significant improvements in spectral coverage and energy efficiency. The laser yields a peak output energy of 43 μJ and maintains energies above 10 μJ across the entire tuning range, with an average power output exceeding 10 mW. The pulse duration at the central wavelength of 8.3 μm is measured at 72 fs full width at half-maximum using the electro-optic sampling method. This LWIR femtosecond laser can be used in many applications, such as molecular fingerprint spectral analysis, ultrafast chemical reaction spectral analysis, materials science, and ultrafast physics research, providing an important research basis for the generation and application of mid-infrared ultrafast laser sources.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"34 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photonic crystal (PhC) structures with subwavelength periods are widely used for diffractive optics, including high reflectivity membranes with nanoscale thickness. Here, we report on a design procedure for 2D PhC silicon nitride membrane mirrors providing optimal crystal geometry using simulation results obtained with rigorous coupled-wave analysis. The Downhill Simplex algorithm, a robust numerical approach to finding local extrema of a function of multiple variables, is used to optimize the period and hole radius of PhCs with both hexagonal and square lattices, as the membrane thickness is varied. Following these design principles, nanofabricated PhC membranes made from silicon nitride have been used as input couplers for an optical cavity, resulting in a maximum cavity finesse of 33 000, corresponding to a reflectivity of 0.999 82. The role played by the spot size of the cavity mode on the PhC was investigated, demonstrating the existence of an optimal spot size that agrees well with predictions. We find that, compared to the square lattice, the hexagonal lattice exhibits a spectrally wider reflective range, less sensitivity to fabrication tolerances, and higher reflectivity for membranes thinner than 200 nm, which may be advantageous in cavity optomechanical experiments. Finally, we find that all of the cavities that we have constructed exhibit well-resolved polarization mode splitting, which we expect is due primarily to a small amount of anisotropic stress in the silicon nitride and PhC asymmetry arising during fabrication.
{"title":"Ultrahigh reflectivity photonic crystal membranes with optimal geometry","authors":"F. Zhou, Y. Bao, J. J. Gorman, J. R. Lawall","doi":"10.1063/5.0204067","DOIUrl":"https://doi.org/10.1063/5.0204067","url":null,"abstract":"Photonic crystal (PhC) structures with subwavelength periods are widely used for diffractive optics, including high reflectivity membranes with nanoscale thickness. Here, we report on a design procedure for 2D PhC silicon nitride membrane mirrors providing optimal crystal geometry using simulation results obtained with rigorous coupled-wave analysis. The Downhill Simplex algorithm, a robust numerical approach to finding local extrema of a function of multiple variables, is used to optimize the period and hole radius of PhCs with both hexagonal and square lattices, as the membrane thickness is varied. Following these design principles, nanofabricated PhC membranes made from silicon nitride have been used as input couplers for an optical cavity, resulting in a maximum cavity finesse of 33 000, corresponding to a reflectivity of 0.999 82. The role played by the spot size of the cavity mode on the PhC was investigated, demonstrating the existence of an optimal spot size that agrees well with predictions. We find that, compared to the square lattice, the hexagonal lattice exhibits a spectrally wider reflective range, less sensitivity to fabrication tolerances, and higher reflectivity for membranes thinner than 200 nm, which may be advantageous in cavity optomechanical experiments. Finally, we find that all of the cavities that we have constructed exhibit well-resolved polarization mode splitting, which we expect is due primarily to a small amount of anisotropic stress in the silicon nitride and PhC asymmetry arising during fabrication.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"213 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlo Silvestri, Massimo Brambilla, Paolo Bardella, Lorenzo Luigi Columbo
We present a unified model to describe the dynamics of optical frequency combs in quantum cascade lasers (QCLs), incorporating both ring and Fabry–Pérot (FP) cavity configurations. The model derives a modified complex Ginzburg–Landau equation (CGLE), leveraging an order parameter approach, and is capable of capturing the dynamics of both configurations, thus enabling a comparative analysis. This result demonstrates that FP QCLs, in addition to ring QCLs, belong to the same universality class of physical systems described by the CGLE, which includes, among others, systems in the fields of superconductivity and hydrodynamics. In the modified CGLE, a nonlinear integral term appears that is associated with the coupling between counterpropagating fields in the FP cavity and whose suppression yields the ring model, which is known to be properly described by a conventional CGLE. We show that this crucial term holds a key role in inhibiting the formation of harmonic frequency combs (HFCs), associated with multi-peaked localized structures, due to its anti-patterning effect. We provide support for a comprehensive campaign of numerical simulations in which we observe a higher occurrence of HFCs in the ring configuration compared to the FP case. Furthermore, the simulations demonstrate the model’s capability to reproduce experimental observations, including the coexistence of amplitude and frequency modulation, linear chirp, and typical dynamic scenarios observed in QCLs. Finally, we perform a linear stability analysis of the single-mode solution for the ring case, confirming its consistency with numerical simulations and highlighting its predictive power regarding the formation of harmonic combs.
{"title":"Unified theory for frequency combs in ring and Fabry–Perot quantum cascade lasers: An order-parameter equation approach","authors":"Carlo Silvestri, Massimo Brambilla, Paolo Bardella, Lorenzo Luigi Columbo","doi":"10.1063/5.0213323","DOIUrl":"https://doi.org/10.1063/5.0213323","url":null,"abstract":"We present a unified model to describe the dynamics of optical frequency combs in quantum cascade lasers (QCLs), incorporating both ring and Fabry–Pérot (FP) cavity configurations. The model derives a modified complex Ginzburg–Landau equation (CGLE), leveraging an order parameter approach, and is capable of capturing the dynamics of both configurations, thus enabling a comparative analysis. This result demonstrates that FP QCLs, in addition to ring QCLs, belong to the same universality class of physical systems described by the CGLE, which includes, among others, systems in the fields of superconductivity and hydrodynamics. In the modified CGLE, a nonlinear integral term appears that is associated with the coupling between counterpropagating fields in the FP cavity and whose suppression yields the ring model, which is known to be properly described by a conventional CGLE. We show that this crucial term holds a key role in inhibiting the formation of harmonic frequency combs (HFCs), associated with multi-peaked localized structures, due to its anti-patterning effect. We provide support for a comprehensive campaign of numerical simulations in which we observe a higher occurrence of HFCs in the ring configuration compared to the FP case. Furthermore, the simulations demonstrate the model’s capability to reproduce experimental observations, including the coexistence of amplitude and frequency modulation, linear chirp, and typical dynamic scenarios observed in QCLs. Finally, we perform a linear stability analysis of the single-mode solution for the ring case, confirming its consistency with numerical simulations and highlighting its predictive power regarding the formation of harmonic combs.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"45 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Topological boundary modes, which are localized at the edge of topological materials, have received significant attention for their various applications in robust waveguides, optical cavities, and topological lasers. To envision their further applications in tunable devices, we propose and demonstrate a scheme to dynamically manipulate topological boundary modes by exploiting the two translation parameters of photonic crystals. We find that the translation not only transports the Wannier state similar to conventional Thouless pumping but also induces a nonzero Chern number in the two-dimensional synthetic space while preserving the time-reversal symmetry in the real space. Through changing the translation, gapless and tunable topological boundary modes are demonstrated. As a specific application, we show a dynamic bandpass filter with real-time tuning over 100% bandgap, a capability that cannot be achieved with only one translation parameter. Our design opens a venue for the development of tunable topological devices based on synthetic parameter dimension and can be generalized to other bosonic systems.
{"title":"Tunable topological boundary modes enabled by synthetic translation dimension","authors":"Zheng Guan, Xiao-Dong Chen, Hao-Chang Mo, Jian-Wei Liu, Qian-Yu Shu, Yuan Cao, Wen-Jie Chen, Jian-Wen Dong","doi":"10.1063/5.0211778","DOIUrl":"https://doi.org/10.1063/5.0211778","url":null,"abstract":"Topological boundary modes, which are localized at the edge of topological materials, have received significant attention for their various applications in robust waveguides, optical cavities, and topological lasers. To envision their further applications in tunable devices, we propose and demonstrate a scheme to dynamically manipulate topological boundary modes by exploiting the two translation parameters of photonic crystals. We find that the translation not only transports the Wannier state similar to conventional Thouless pumping but also induces a nonzero Chern number in the two-dimensional synthetic space while preserving the time-reversal symmetry in the real space. Through changing the translation, gapless and tunable topological boundary modes are demonstrated. As a specific application, we show a dynamic bandpass filter with real-time tuning over 100% bandgap, a capability that cannot be achieved with only one translation parameter. Our design opens a venue for the development of tunable topological devices based on synthetic parameter dimension and can be generalized to other bosonic systems.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"412 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
After decades of research, there are almost half a dozen efficiently pumped rare earth laser transitions in a fiber laser format capable of Watt-level output. These systems use near-IR laser diodes for excitation and have developed into reliable sources of high beam quality light with some commercially available. This maturation of the mid-IR fiber laser is entirely based on a high quality fluoride glass fiber, which has emerged as the primary fiber gain material for emission up to 4 µm. The other major mid-IR transparent glass families, the heavy metal oxides, and chalcogenides have always been challenged by consistent hydrogen diffusion into the glass that creates strong absorption features in the high-frequency portions of the mid-IR. This problem along with challenges to sufficiently concentrate the rare earth doping level has historically stifled progress preventing fiber laser emission in the mid-IR. In recent years, great efforts in precursor purification and reducing contamination during fabrication have resulted in pioneering demonstrations of mid-IR lasing using these glasses with emission now extending beyond 5 µm. As a result, mid-IR fiber laser research has entered a new era with more breakthroughs and applications to benefit from the efficiency potential, reliability, and relatively simple architecture of the optical fiber.
{"title":"Mid-infrared fiber laser research: Tasks completed and the tasks ahead","authors":"S. D. Jackson","doi":"10.1063/5.0220406","DOIUrl":"https://doi.org/10.1063/5.0220406","url":null,"abstract":"After decades of research, there are almost half a dozen efficiently pumped rare earth laser transitions in a fiber laser format capable of Watt-level output. These systems use near-IR laser diodes for excitation and have developed into reliable sources of high beam quality light with some commercially available. This maturation of the mid-IR fiber laser is entirely based on a high quality fluoride glass fiber, which has emerged as the primary fiber gain material for emission up to 4 µm. The other major mid-IR transparent glass families, the heavy metal oxides, and chalcogenides have always been challenged by consistent hydrogen diffusion into the glass that creates strong absorption features in the high-frequency portions of the mid-IR. This problem along with challenges to sufficiently concentrate the rare earth doping level has historically stifled progress preventing fiber laser emission in the mid-IR. In recent years, great efforts in precursor purification and reducing contamination during fabrication have resulted in pioneering demonstrations of mid-IR lasing using these glasses with emission now extending beyond 5 µm. As a result, mid-IR fiber laser research has entered a new era with more breakthroughs and applications to benefit from the efficiency potential, reliability, and relatively simple architecture of the optical fiber.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"62 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal
Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.
{"title":"Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating","authors":"Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal","doi":"10.1063/5.0212591","DOIUrl":"https://doi.org/10.1063/5.0212591","url":null,"abstract":"Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we establish the theoretical framework for understanding the sensing capabilities of megameter-long submarine optical cables. We show the distinct advantage of polarization over phase in detecting sub-hertz environmental processes. Subsequently, we propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical signal reconstructed by the receiver of a transoceanic cable, obtained from an online database [Z. Zhan, “Curie Data - Zhan et al. (2021)” (2020)]. Finally, we provide the analytical expression for the cross correlation of the polarization perturbations of two wavelength division multiplexed channels and show that the analysis of the polarization correlations between adjacent channels can provide valuable insights into the localization of earthquakes.
{"title":"Sensing with submarine optical cables","authors":"Antonio Mecozzi","doi":"10.1063/5.0210825","DOIUrl":"https://doi.org/10.1063/5.0210825","url":null,"abstract":"In this paper, we establish the theoretical framework for understanding the sensing capabilities of megameter-long submarine optical cables. We show the distinct advantage of polarization over phase in detecting sub-hertz environmental processes. Subsequently, we propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical signal reconstructed by the receiver of a transoceanic cable, obtained from an online database [Z. Zhan, “Curie Data - Zhan et al. (2021)” (2020)]. Finally, we provide the analytical expression for the cross correlation of the polarization perturbations of two wavelength division multiplexed channels and show that the analysis of the polarization correlations between adjacent channels can provide valuable insights into the localization of earthquakes.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frederik Thiele, Niklas Lamberty, Thomas Hummel, Tim Bartley
Cryogenic opto-electronic interconnects are gaining increasing interest as a means to control and readout cryogenic electronic components. The challenge is to achieve sufficient signal integrity with low heat load processing. In this context, we demonstrate the opto-electronic bias and readout of a commercial four-pixel superconducting nanowire single-photon detector array using a cryogenic photodiode and laser. We show that this approach has a similar system detection efficiency to a conventional bias. Furthermore, multi-pixel detection events are faithfully converted between the optical and electrical domains, which allows reliable extraction of amplitude multiplexed photon statistics. Our device has a latent heat load of 2.6 mW, maintains a signal rise time of 3 ns, and operates in free-running (self-resetting) mode at a repetition rate of 600 kHz. This demonstrates the potential of high-bandwidth, low noise, and low heat load opto-electronic interconnects for scalable cryogenic signal processing and transmission.
{"title":"Optical bias and cryogenic laser readout of a multipixel superconducting nanowire single photon detector","authors":"Frederik Thiele, Niklas Lamberty, Thomas Hummel, Tim Bartley","doi":"10.1063/5.0209458","DOIUrl":"https://doi.org/10.1063/5.0209458","url":null,"abstract":"Cryogenic opto-electronic interconnects are gaining increasing interest as a means to control and readout cryogenic electronic components. The challenge is to achieve sufficient signal integrity with low heat load processing. In this context, we demonstrate the opto-electronic bias and readout of a commercial four-pixel superconducting nanowire single-photon detector array using a cryogenic photodiode and laser. We show that this approach has a similar system detection efficiency to a conventional bias. Furthermore, multi-pixel detection events are faithfully converted between the optical and electrical domains, which allows reliable extraction of amplitude multiplexed photon statistics. Our device has a latent heat load of 2.6 mW, maintains a signal rise time of 3 ns, and operates in free-running (self-resetting) mode at a repetition rate of 600 kHz. This demonstrates the potential of high-bandwidth, low noise, and low heat load opto-electronic interconnects for scalable cryogenic signal processing and transmission.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"63 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rishyashring R. Iyer, Lingxiao Yang, Janet E. Sorrells, Eric J. Chaney, Darold R. Spillman, Stephen A. Boppart
The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.
近年来,超快光学在生物医学显微镜方面的应用迅速扩大,其中包括光学相干断层扫描和显微镜(OCT/OCM)等干涉测量技术。超高分辨率 OCT 的发展以及将 OCT/OCM 纳入与多光子显微镜相结合的多模态系统,标志着从使用伪连续宽带光源(如超发光二极管)到超快超连续光学光源的过渡。我们报告了低相干超快脉冲在通过迈克尔逊干涉仪的非相同长臂时的色散曲线异常现象,这种异常现象远远超出了群延迟或三阶色散。这种色度异常会降低观察到的轴向分辨率,并在使用传统算法的 OCT/OCM 重建断层图中造成条纹伪影。我们提出了针对明显色度异常的色散补偿技术(DISCOTECA),作为解决干涉测量(尤其是超快光源)中色散失配问题的通用解决方案。首先,我们通过光束路径中的聚焦元件引起的超快脉冲自相位调制,证明了这些伪影的起源。接下来,我们介绍了 DISCOTECA 的三种解决范例:光学、光电和计算,并与传统方法进行了定量比较,以突出动态范围和轴向剖面的改进。我们解释了光谱域干涉仪两臂之间相位失配的分片重建,使用的是受光谱 OCT 启发而改进的短期傅立叶变换算法。最后,我们提出了一个决策指南,用于评估 DISCOTECA 在干涉测量中的实用性,以及在生物医学应用中使用超快超连续光源对 OCT 图像进行无伪影重建。
{"title":"Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry","authors":"Rishyashring R. Iyer, Lingxiao Yang, Janet E. Sorrells, Eric J. Chaney, Darold R. Spillman, Stephen A. Boppart","doi":"10.1063/5.0207414","DOIUrl":"https://doi.org/10.1063/5.0207414","url":null,"abstract":"The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optoelectronic oscillators (OEOs), which have attracted extensive studies in the past decades, are high quality-factor optoelectronic feedback loops for generating various ultra-pure microwave signals. In essence, OEOs are also dissipative nonlinear systems with multiple timescale characteristics and abundant nonlinearities, which open the possibilities for exploring localized dissipative solitary waves. In this paper, we demonstrate a new-class temporal dissipative soliton, i.e., dissipative microwave photonic soliton molecule (DMPSM), in a dual-bandpass OEO. Both the numerical simulation and experiment are conducted to reveal the physical mechanism of DMPSM generation and to evaluate the characteristics of the generated DMPSM sequences. Unlike optical soliton molecules in mode-locked lasers, the formation of DMPSMs arises from the combined action of multiple timescale coupling, nonlinear bistability, and time-delayed feedback in the OEO cavity, where the soliton interval and number in a DMPSM can be well-controlled through varying the multiple timescale variables in the OEO cavity, and the repetition frequency of the DMPSMs can be tuned through changing that of the initially injected perturbation signal. Meanwhile, the generated DMPSM sequence performs with high stability and excellent coherence, which shows enormous application potentials in pulse radar detection, dense microwave comb generation, and neuromorphology.
{"title":"Discovery of dissipative microwave photonic soliton molecules in dual-bandpass optoelectronic oscillator","authors":"Huan Tian, Junwen Li, Weiqiang Lyu, Lingjie Zhang, Zhen Zeng, Yaowen Zhang, Zhiyao Zhang, Shangjian Zhang, Heping Li, Yong Liu","doi":"10.1063/5.0205357","DOIUrl":"https://doi.org/10.1063/5.0205357","url":null,"abstract":"Optoelectronic oscillators (OEOs), which have attracted extensive studies in the past decades, are high quality-factor optoelectronic feedback loops for generating various ultra-pure microwave signals. In essence, OEOs are also dissipative nonlinear systems with multiple timescale characteristics and abundant nonlinearities, which open the possibilities for exploring localized dissipative solitary waves. In this paper, we demonstrate a new-class temporal dissipative soliton, i.e., dissipative microwave photonic soliton molecule (DMPSM), in a dual-bandpass OEO. Both the numerical simulation and experiment are conducted to reveal the physical mechanism of DMPSM generation and to evaluate the characteristics of the generated DMPSM sequences. Unlike optical soliton molecules in mode-locked lasers, the formation of DMPSMs arises from the combined action of multiple timescale coupling, nonlinear bistability, and time-delayed feedback in the OEO cavity, where the soliton interval and number in a DMPSM can be well-controlled through varying the multiple timescale variables in the OEO cavity, and the repetition frequency of the DMPSMs can be tuned through changing that of the initially injected perturbation signal. Meanwhile, the generated DMPSM sequence performs with high stability and excellent coherence, which shows enormous application potentials in pulse radar detection, dense microwave comb generation, and neuromorphology.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"41 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}