首页 > 最新文献

APL Photonics最新文献

英文 中文
Mid-infrared fiber laser research: Tasks completed and the tasks ahead 中红外光纤激光器研究:已完成的任务和未来的任务
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1063/5.0220406
S. D. Jackson
After decades of research, there are almost half a dozen efficiently pumped rare earth laser transitions in a fiber laser format capable of Watt-level output. These systems use near-IR laser diodes for excitation and have developed into reliable sources of high beam quality light with some commercially available. This maturation of the mid-IR fiber laser is entirely based on a high quality fluoride glass fiber, which has emerged as the primary fiber gain material for emission up to 4 µm. The other major mid-IR transparent glass families, the heavy metal oxides, and chalcogenides have always been challenged by consistent hydrogen diffusion into the glass that creates strong absorption features in the high-frequency portions of the mid-IR. This problem along with challenges to sufficiently concentrate the rare earth doping level has historically stifled progress preventing fiber laser emission in the mid-IR. In recent years, great efforts in precursor purification and reducing contamination during fabrication have resulted in pioneering demonstrations of mid-IR lasing using these glasses with emission now extending beyond 5 µm. As a result, mid-IR fiber laser research has entered a new era with more breakthroughs and applications to benefit from the efficiency potential, reliability, and relatively simple architecture of the optical fiber.
经过数十年的研究,目前已有近半打的高效泵浦稀土激光转换光纤激光器能够实现瓦特级输出。这些系统使用近红外激光二极管进行激励,并已发展成为可靠的高光束质量光源,其中一些已在市场上销售。中红外光纤激光器的成熟完全基于高质量的氟化玻璃光纤,这种光纤已成为发射波长达 4 µm 的主要光纤增益材料。其他主要的中红外透明玻璃系列、重金属氧化物和钙化物一直面临着氢向玻璃中持续扩散的挑战,这在中红外的高频部分产生了强烈的吸收特征。这一问题以及在充分浓缩稀土掺杂水平方面的挑战一直阻碍着光纤激光器在中红外发射方面的进展。近年来,由于在前驱体纯化和减少制造过程中的污染方面做出了巨大努力,使用这些玻璃进行的中红外激光演示取得了突破性进展,其发射波长现已超过 5 µm。因此,中红外光纤激光器研究进入了一个新时代,光纤的效率潜力、可靠性和相对简单的结构将带来更多突破和应用。
{"title":"Mid-infrared fiber laser research: Tasks completed and the tasks ahead","authors":"S. D. Jackson","doi":"10.1063/5.0220406","DOIUrl":"https://doi.org/10.1063/5.0220406","url":null,"abstract":"After decades of research, there are almost half a dozen efficiently pumped rare earth laser transitions in a fiber laser format capable of Watt-level output. These systems use near-IR laser diodes for excitation and have developed into reliable sources of high beam quality light with some commercially available. This maturation of the mid-IR fiber laser is entirely based on a high quality fluoride glass fiber, which has emerged as the primary fiber gain material for emission up to 4 µm. The other major mid-IR transparent glass families, the heavy metal oxides, and chalcogenides have always been challenged by consistent hydrogen diffusion into the glass that creates strong absorption features in the high-frequency portions of the mid-IR. This problem along with challenges to sufficiently concentrate the rare earth doping level has historically stifled progress preventing fiber laser emission in the mid-IR. In recent years, great efforts in precursor purification and reducing contamination during fabrication have resulted in pioneering demonstrations of mid-IR lasing using these glasses with emission now extending beyond 5 µm. As a result, mid-IR fiber laser research has entered a new era with more breakthroughs and applications to benefit from the efficiency potential, reliability, and relatively simple architecture of the optical fiber.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"62 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating 具有自加热功能的硅微环谐振器的低延迟被动热敏脱敏技术
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1063/5.0212591
Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal
Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.
利用波分复用系统可以以较小的芯片面积实现模拟光子信息处理,该系统通常使用微环谐振器来操纵光。微环特别容易受到热串扰的影响,如果不加以解决,会对系统性能产生负面影响。现有的热敏性缓解方法面临着高复杂性、高延迟、高数字和模拟硬件要求以及与 CMOS 不兼容等缺点。在这里,我们展示了一种利用光学吸收产生的自热为硅微环谐振器提供的被动热敏性降低机制。我们的系统不需要专门的微环工程设计,不需要额外的控制硬件,也不需要额外的校准,就能将热串扰灵敏度降低 49%,并实现 1 µs 的适应延迟。我们的理论模型表明,通过优化微环设计,有可能进一步显著提高脱敏效果。自热脱敏技术可与主动热稳定技术相结合,实现响应速度和精确度,也可单独用于大型光子系统的热脱敏,以进行信号处理或神经网络推理。
{"title":"Low-latency passive thermal desensitization of a silicon micro-ring resonator with self-heating","authors":"Joshua C. Lederman, Simon Bilodeau, Eli Doris, Eric C. Blow, Weipeng Zhang, Yusuf Jimoh, Bhavin J. Shastri, Paul R. Prucnal","doi":"10.1063/5.0212591","DOIUrl":"https://doi.org/10.1063/5.0212591","url":null,"abstract":"Analog photonic information processing can be implemented with low chip area using wavelength-division multiplexed systems, which typically manipulate light using micro-ring resonators. Micro-rings are uniquely susceptible to thermal crosstalk, with negative system performance consequences if not addressed. Existing thermal sensitivity mitigation methods face drawbacks including high complexity, high latency, high digital and analog hardware requirements, and CMOS incompatibility. Here, we demonstrate a passive thermal desensitization mechanism for silicon micro-ring resonators exploiting self-heating resulting from optical absorption. We achieve a 49% reduction in thermal crosstalk sensitivity and 1 µs adaptation latency using a system with no specialized micro-ring engineering, no additional control hardware, and no additional calibration. Our theoretical model indicates the potential for significant further desensitization gains with optimized micro-ring designs. Self-heating desensitization can be combined with active thermal stabilization to achieve both responsiveness and accuracy or applied independently to thermally desensitize large photonic systems for signal processing or neural network inference.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing with submarine optical cables 海底光缆传感
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1063/5.0210825
Antonio Mecozzi
In this paper, we establish the theoretical framework for understanding the sensing capabilities of megameter-long submarine optical cables. We show the distinct advantage of polarization over phase in detecting sub-hertz environmental processes. Subsequently, we propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical signal reconstructed by the receiver of a transoceanic cable, obtained from an online database [Z. Zhan, “Curie Data - Zhan et al. (2021)” (2020)]. Finally, we provide the analytical expression for the cross correlation of the polarization perturbations of two wavelength division multiplexed channels and show that the analysis of the polarization correlations between adjacent channels can provide valuable insights into the localization of earthquakes.
在本文中,我们建立了一个理论框架,以了解巨型海底光缆的传感能力。我们展示了偏振相对于相位在探测亚赫兹环境过程中的明显优势。随后,我们提出了一种方案,能够通过检测背向反射光的偏振状态,提取影响光纤任意位置特定部分的扰动频谱。我们通过分析跨洋电缆接收器重建的光信号的偏振状态,讨论了地震探测以及海浪和海洋潮汐探测的两个例子,这些数据来自在线数据库[Z. Zhan,"居里数据 - Zhan 等人 (2021)" (2020)]。最后,我们提供了两个波分复用信道的偏振扰动交叉相关性的分析表达式,并表明分析相邻信道之间的偏振相关性可以为地震定位提供有价值的见解。
{"title":"Sensing with submarine optical cables","authors":"Antonio Mecozzi","doi":"10.1063/5.0210825","DOIUrl":"https://doi.org/10.1063/5.0210825","url":null,"abstract":"In this paper, we establish the theoretical framework for understanding the sensing capabilities of megameter-long submarine optical cables. We show the distinct advantage of polarization over phase in detecting sub-hertz environmental processes. Subsequently, we propose a scheme capable of extracting the spectrum of perturbations affecting a specific section at any position along an optical fiber by detecting the state of polarization of the backreflected light. We discuss two examples of earthquake detection and the detection of sea swells and ocean tides through the analysis of the state of polarization of an optical signal reconstructed by the receiver of a transoceanic cable, obtained from an online database [Z. Zhan, “Curie Data - Zhan et al. (2021)” (2020)]. Finally, we provide the analytical expression for the cross correlation of the polarization perturbations of two wavelength division multiplexed channels and show that the analysis of the polarization correlations between adjacent channels can provide valuable insights into the localization of earthquakes.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical bias and cryogenic laser readout of a multipixel superconducting nanowire single photon detector 多像素超导纳米线单光子探测器的光学偏置和低温激光读出功能
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-25 DOI: 10.1063/5.0209458
Frederik Thiele, Niklas Lamberty, Thomas Hummel, Tim Bartley
Cryogenic opto-electronic interconnects are gaining increasing interest as a means to control and readout cryogenic electronic components. The challenge is to achieve sufficient signal integrity with low heat load processing. In this context, we demonstrate the opto-electronic bias and readout of a commercial four-pixel superconducting nanowire single-photon detector array using a cryogenic photodiode and laser. We show that this approach has a similar system detection efficiency to a conventional bias. Furthermore, multi-pixel detection events are faithfully converted between the optical and electrical domains, which allows reliable extraction of amplitude multiplexed photon statistics. Our device has a latent heat load of 2.6 mW, maintains a signal rise time of 3 ns, and operates in free-running (self-resetting) mode at a repetition rate of 600 kHz. This demonstrates the potential of high-bandwidth, low noise, and low heat load opto-electronic interconnects for scalable cryogenic signal processing and transmission.
低温光电互连作为控制和读出低温电子元件的一种手段,正受到越来越多的关注。挑战在于如何在低热负荷处理过程中实现足够的信号完整性。在此背景下,我们利用低温光电二极管和激光器演示了商用四像素超导纳米线单光子探测器阵列的光电偏置和读出。我们的研究表明,这种方法的系统检测效率与传统偏置方法类似。此外,多像素检测事件可在光域和电域之间进行忠实转换,从而可靠地提取振幅多路复用光子统计数据。我们的设备潜热负荷为 2.6 mW,信号上升时间为 3 ns,以 600 kHz 的重复频率在自由运行(自复位)模式下工作。这证明了高带宽、低噪声、低热负荷光电互连器件在可扩展低温信号处理和传输方面的潜力。
{"title":"Optical bias and cryogenic laser readout of a multipixel superconducting nanowire single photon detector","authors":"Frederik Thiele, Niklas Lamberty, Thomas Hummel, Tim Bartley","doi":"10.1063/5.0209458","DOIUrl":"https://doi.org/10.1063/5.0209458","url":null,"abstract":"Cryogenic opto-electronic interconnects are gaining increasing interest as a means to control and readout cryogenic electronic components. The challenge is to achieve sufficient signal integrity with low heat load processing. In this context, we demonstrate the opto-electronic bias and readout of a commercial four-pixel superconducting nanowire single-photon detector array using a cryogenic photodiode and laser. We show that this approach has a similar system detection efficiency to a conventional bias. Furthermore, multi-pixel detection events are faithfully converted between the optical and electrical domains, which allows reliable extraction of amplitude multiplexed photon statistics. Our device has a latent heat load of 2.6 mW, maintains a signal rise time of 3 ns, and operates in free-running (self-resetting) mode at a repetition rate of 600 kHz. This demonstrates the potential of high-bandwidth, low noise, and low heat load opto-electronic interconnects for scalable cryogenic signal processing and transmission.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"63 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry 针对低相干干涉测量中的明显色度异常进行色散失配校正
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-23 DOI: 10.1063/5.0207414
Rishyashring R. Iyer, Lingxiao Yang, Janet E. Sorrells, Eric J. Chaney, Darold R. Spillman, Stephen A. Boppart
The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.
近年来,超快光学在生物医学显微镜方面的应用迅速扩大,其中包括光学相干断层扫描和显微镜(OCT/OCM)等干涉测量技术。超高分辨率 OCT 的发展以及将 OCT/OCM 纳入与多光子显微镜相结合的多模态系统,标志着从使用伪连续宽带光源(如超发光二极管)到超快超连续光学光源的过渡。我们报告了低相干超快脉冲在通过迈克尔逊干涉仪的非相同长臂时的色散曲线异常现象,这种异常现象远远超出了群延迟或三阶色散。这种色度异常会降低观察到的轴向分辨率,并在使用传统算法的 OCT/OCM 重建断层图中造成条纹伪影。我们提出了针对明显色度异常的色散补偿技术(DISCOTECA),作为解决干涉测量(尤其是超快光源)中色散失配问题的通用解决方案。首先,我们通过光束路径中的聚焦元件引起的超快脉冲自相位调制,证明了这些伪影的起源。接下来,我们介绍了 DISCOTECA 的三种解决范例:光学、光电和计算,并与传统方法进行了定量比较,以突出动态范围和轴向剖面的改进。我们解释了光谱域干涉仪两臂之间相位失配的分片重建,使用的是受光谱 OCT 启发而改进的短期傅立叶变换算法。最后,我们提出了一个决策指南,用于评估 DISCOTECA 在干涉测量中的实用性,以及在生物医学应用中使用超快超连续光源对 OCT 图像进行无伪影重建。
{"title":"Dispersion mismatch correction for evident chromatic anomaly in low coherence interferometry","authors":"Rishyashring R. Iyer, Lingxiao Yang, Janet E. Sorrells, Eric J. Chaney, Darold R. Spillman, Stephen A. Boppart","doi":"10.1063/5.0207414","DOIUrl":"https://doi.org/10.1063/5.0207414","url":null,"abstract":"The applications of ultrafast optics to biomedical microscopy have expanded rapidly in recent years, including interferometric techniques like optical coherence tomography and microscopy (OCT/OCM). The advances of ultra-high resolution OCT and the inclusion of OCT/OCM in multimodal systems combined with multiphoton microscopy have marked a transition from using pseudo-continuous broadband sources, such as superluminescent diodes, to ultrafast supercontinuum optical sources. We report anomalies in the dispersion profiles of low-coherence ultrafast pulses through long and non-identical arms of a Michelson interferometer that are well beyond group delay or third-order dispersions. This chromatic anomaly worsens the observed axial resolution and causes fringe artifacts in the reconstructed tomograms in OCT/OCM using traditional algorithms. We present DISpersion COmpensation Techniques for Evident Chromatic Anomalies (DISCOTECA) as a universal solution to address the problem of chromatic dispersion mismatch in interferometry, especially with ultrafast sources. First, we demonstrate the origin of these artifacts through the self-phase modulation of ultrafast pulses due to focusing elements in the beam path. Next, we present three solution paradigms for DISCOTECA: optical, optoelectronic, and computational, along with quantitative comparisons to traditional methods to highlight the improvements to the dynamic range and axial profile. We explain the piecewise reconstruction of the phase mismatch between the arms of the spectral-domain interferometer using a modified short-term Fourier transform algorithm inspired by spectroscopic OCT. Finally, we present a decision-making guide for evaluating the utility of DISCOTECA in interferometry and for the artifact-free reconstruction of OCT images using an ultrafast supercontinuum source for biomedical applications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of dissipative microwave photonic soliton molecules in dual-bandpass optoelectronic oscillator 在双带通光电振荡器中发现耗散微波光子孤子分子
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-23 DOI: 10.1063/5.0205357
Huan Tian, Junwen Li, Weiqiang Lyu, Lingjie Zhang, Zhen Zeng, Yaowen Zhang, Zhiyao Zhang, Shangjian Zhang, Heping Li, Yong Liu
Optoelectronic oscillators (OEOs), which have attracted extensive studies in the past decades, are high quality-factor optoelectronic feedback loops for generating various ultra-pure microwave signals. In essence, OEOs are also dissipative nonlinear systems with multiple timescale characteristics and abundant nonlinearities, which open the possibilities for exploring localized dissipative solitary waves. In this paper, we demonstrate a new-class temporal dissipative soliton, i.e., dissipative microwave photonic soliton molecule (DMPSM), in a dual-bandpass OEO. Both the numerical simulation and experiment are conducted to reveal the physical mechanism of DMPSM generation and to evaluate the characteristics of the generated DMPSM sequences. Unlike optical soliton molecules in mode-locked lasers, the formation of DMPSMs arises from the combined action of multiple timescale coupling, nonlinear bistability, and time-delayed feedback in the OEO cavity, where the soliton interval and number in a DMPSM can be well-controlled through varying the multiple timescale variables in the OEO cavity, and the repetition frequency of the DMPSMs can be tuned through changing that of the initially injected perturbation signal. Meanwhile, the generated DMPSM sequence performs with high stability and excellent coherence, which shows enormous application potentials in pulse radar detection, dense microwave comb generation, and neuromorphology.
光电振荡器(OEOs)是一种用于产生各种超纯微波信号的高品质因数光电反馈环路,在过去几十年中吸引了广泛的研究。从本质上讲,OEO 也是耗散非线性系统,具有多时间尺度特性和丰富的非线性,这为探索局部耗散孤波提供了可能。在本文中,我们在双带通 OEO 中演示了一种新的时间耗散孤子,即耗散微波光子孤子分子(DMPSM)。数值模拟和实验揭示了DMPSM产生的物理机制,并评估了产生的DMPSM序列的特性。与锁模激光器中的光孤子分子不同,DMPSM的形成是由OEO腔中的多时标耦合、非线性双稳态和时延反馈共同作用的结果,通过改变OEO腔中的多时标变量可以很好地控制DMPSM中孤子的间隔和数量,通过改变初始注入扰动信号的频率可以调整DMPSM的重复频率。同时,生成的DMPSM序列具有高稳定性和出色的相干性,在脉冲雷达探测、密集微波梳生成和神经形态学等方面具有巨大的应用潜力。
{"title":"Discovery of dissipative microwave photonic soliton molecules in dual-bandpass optoelectronic oscillator","authors":"Huan Tian, Junwen Li, Weiqiang Lyu, Lingjie Zhang, Zhen Zeng, Yaowen Zhang, Zhiyao Zhang, Shangjian Zhang, Heping Li, Yong Liu","doi":"10.1063/5.0205357","DOIUrl":"https://doi.org/10.1063/5.0205357","url":null,"abstract":"Optoelectronic oscillators (OEOs), which have attracted extensive studies in the past decades, are high quality-factor optoelectronic feedback loops for generating various ultra-pure microwave signals. In essence, OEOs are also dissipative nonlinear systems with multiple timescale characteristics and abundant nonlinearities, which open the possibilities for exploring localized dissipative solitary waves. In this paper, we demonstrate a new-class temporal dissipative soliton, i.e., dissipative microwave photonic soliton molecule (DMPSM), in a dual-bandpass OEO. Both the numerical simulation and experiment are conducted to reveal the physical mechanism of DMPSM generation and to evaluate the characteristics of the generated DMPSM sequences. Unlike optical soliton molecules in mode-locked lasers, the formation of DMPSMs arises from the combined action of multiple timescale coupling, nonlinear bistability, and time-delayed feedback in the OEO cavity, where the soliton interval and number in a DMPSM can be well-controlled through varying the multiple timescale variables in the OEO cavity, and the repetition frequency of the DMPSMs can be tuned through changing that of the initially injected perturbation signal. Meanwhile, the generated DMPSM sequence performs with high stability and excellent coherence, which shows enormous application potentials in pulse radar detection, dense microwave comb generation, and neuromorphology.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"41 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor lasers for photonic neuromorphic computing and photonic spiking neural networks: A perspective 用于光子神经形态计算和光子尖峰神经网络的半导体激光器:透视
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-23 DOI: 10.1063/5.0217968
Shuiying Xiang, Yanan Han, Shuang Gao, Ziwei Song, Yahui Zhang, Dianzhuang Zheng, Chengyang Yu, Xingxing Guo, XinTao Zeng, Zhiquan Huang, Yue Hao
Photonic neuromorphic computing has emerged as a promising avenue toward building a high-speed, low-latency, and energy-efficient non-von-Neumann computing system. Photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. Linear weighting and nonlinear spiking activation are two fundamental functions of a SNN. However, the nonlinear computation of PSNN remains a significant challenge. Therefore, this perspective focuses on the nonlinear computation of photonic spiking neurons, including numerical simulation, device fabrication, and experimental demonstration. Different photonic spiking neurons are considered, such as vertical-cavity surface-emitting lasers, distributed feedback (DFB) lasers, Fabry–Pérot (FP) lasers, or semiconductor lasers embedded with saturable absorbers (SAs) (e.g., FP-SA and DFB-SA). PSNN architectures, including fully connected and convolutional structures, are developed, and supervised and unsupervised learning algorithms that take into account optical constraints are introduced to accomplish specific applications. This work covers devices, architectures, learning algorithms, and applications for photonic and optoelectronic neuromorphic computing and provides our perspective on the challenges and prospects of photonic neuromorphic computing based on semiconductor lasers.
光子神经形态计算已成为构建高速、低延迟和高能效非冯-诺伊曼计算系统的一条大有可为的途径。光子尖峰神经网络(PSNN)利用类脑时空处理来实现高性能神经形态计算。线性加权和非线性尖峰激活是光子尖峰神经网络的两个基本功能。然而,PSNN 的非线性计算仍然是一个重大挑战。因此,本视角侧重于光子尖峰神经元的非线性计算,包括数值模拟、器件制造和实验演示。本文考虑了不同的光子尖峰神经元,如垂直腔表面发射激光器、分布反馈(DFB)激光器、法布里-佩罗(FP)激光器或嵌入可饱和吸收体(SA)的半导体激光器(如 FP-SA 和 DFB-SA)。我们开发了 PSNN 架构,包括全连接和卷积结构,并引入了考虑到光学限制的监督和非监督学习算法,以完成特定应用。这项工作涵盖光子和光电神经形态计算的设备、架构、学习算法和应用,并提供了我们对基于半导体激光器的光子神经形态计算的挑战和前景的看法。
{"title":"Semiconductor lasers for photonic neuromorphic computing and photonic spiking neural networks: A perspective","authors":"Shuiying Xiang, Yanan Han, Shuang Gao, Ziwei Song, Yahui Zhang, Dianzhuang Zheng, Chengyang Yu, Xingxing Guo, XinTao Zeng, Zhiquan Huang, Yue Hao","doi":"10.1063/5.0217968","DOIUrl":"https://doi.org/10.1063/5.0217968","url":null,"abstract":"Photonic neuromorphic computing has emerged as a promising avenue toward building a high-speed, low-latency, and energy-efficient non-von-Neumann computing system. Photonic spiking neural network (PSNN) exploits brain-like spatiotemporal processing to realize high-performance neuromorphic computing. Linear weighting and nonlinear spiking activation are two fundamental functions of a SNN. However, the nonlinear computation of PSNN remains a significant challenge. Therefore, this perspective focuses on the nonlinear computation of photonic spiking neurons, including numerical simulation, device fabrication, and experimental demonstration. Different photonic spiking neurons are considered, such as vertical-cavity surface-emitting lasers, distributed feedback (DFB) lasers, Fabry–Pérot (FP) lasers, or semiconductor lasers embedded with saturable absorbers (SAs) (e.g., FP-SA and DFB-SA). PSNN architectures, including fully connected and convolutional structures, are developed, and supervised and unsupervised learning algorithms that take into account optical constraints are introduced to accomplish specific applications. This work covers devices, architectures, learning algorithms, and applications for photonic and optoelectronic neuromorphic computing and provides our perspective on the challenges and prospects of photonic neuromorphic computing based on semiconductor lasers.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"35 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mode distribution impact on photonic crystal surface emitting laser performance 模式分布对光子晶体表面发射激光器性能的影响
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-19 DOI: 10.1063/5.0199361
Chhabindra Gautam, Mingsen Pan, Subhashree Seth, Thomas J. Rotter, Ming Zhou, Bradley J. Thompson, Ricky Gibson, Shanhui Fan, Ganesh Balakrishnan, Weidong Zhou
As a new type of semiconductor laser, photonic crystal surface-emitting lasers (PCSELs) feature large-area single-mode surface emission with high power and high beam quality. The unique features of single-mode lasing over a large area active region are implemented by the in-plane optical feedback from two-dimensional (2D) photonic crystal cavities. In larger PCSEL cavities, the lasing gain threshold becomes similar for the fundamental and high-order modes, which degrades single-mode operation. Here, we investigate the impact of carrier injection on PCSEL modes by controlling the injection area and the gain mode interaction. Optical and electrical simulations are carried out to calculate the gain mode overlapping factor for different p electrode designs. We fabricated 250 × 250 µm2 photonic crystal cavities with different p electrode sizes for injection area control. The PCSEL device characterization results show that devices with an electrode size to cavity side length ratio of 0.6 have the maximum slope efficiency and a lower lasing threshold with a single lobe beam profile. Such selective carrier injection can also provide gain-guided resonance in the PCSEL cavities and enhance optical gain in the fundamental mode while suppressing gain in the high-order modes.
作为一种新型半导体激光器,光子晶体表面发射激光器(PCSEL)具有大面积单模表面发射、高功率和高光束质量的特点。通过二维(2D)光子晶体腔的面内光反馈,实现了大面积有源区单模激光的独特功能。在较大的 PCSEL 腔中,基模和高阶模的激光增益阈值变得相似,从而降低了单模工作性能。在此,我们通过控制注入区域和增益模式相互作用,研究载流子注入对 PCSEL 模式的影响。我们进行了光学和电学模拟,以计算不同 p 电极设计的增益模式重叠系数。我们制作了 250 × 250 µm2 的光子晶体腔,采用不同尺寸的 p 电极来控制注入面积。PCSEL 器件的表征结果表明,电极尺寸与腔体边长比为 0.6 的器件具有最高的斜率效率和较低的激光阈值,并具有单叶光束轮廓。这种选择性载流子注入还能在 PCSEL 腔中产生增益导向共振,并在抑制高阶模式增益的同时提高基阶模式的光学增益。
{"title":"Mode distribution impact on photonic crystal surface emitting laser performance","authors":"Chhabindra Gautam, Mingsen Pan, Subhashree Seth, Thomas J. Rotter, Ming Zhou, Bradley J. Thompson, Ricky Gibson, Shanhui Fan, Ganesh Balakrishnan, Weidong Zhou","doi":"10.1063/5.0199361","DOIUrl":"https://doi.org/10.1063/5.0199361","url":null,"abstract":"As a new type of semiconductor laser, photonic crystal surface-emitting lasers (PCSELs) feature large-area single-mode surface emission with high power and high beam quality. The unique features of single-mode lasing over a large area active region are implemented by the in-plane optical feedback from two-dimensional (2D) photonic crystal cavities. In larger PCSEL cavities, the lasing gain threshold becomes similar for the fundamental and high-order modes, which degrades single-mode operation. Here, we investigate the impact of carrier injection on PCSEL modes by controlling the injection area and the gain mode interaction. Optical and electrical simulations are carried out to calculate the gain mode overlapping factor for different p electrode designs. We fabricated 250 × 250 µm2 photonic crystal cavities with different p electrode sizes for injection area control. The PCSEL device characterization results show that devices with an electrode size to cavity side length ratio of 0.6 have the maximum slope efficiency and a lower lasing threshold with a single lobe beam profile. Such selective carrier injection can also provide gain-guided resonance in the PCSEL cavities and enhance optical gain in the fundamental mode while suppressing gain in the high-order modes.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"16 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas bubbles induced by combined optical and ultrasound energies for high-resolution deep optical microscopy 用于高分辨率深度光学显微镜的光学和超声波联合能量诱导气泡
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-18 DOI: 10.1063/5.0203205
Jinwoo Kim, Juhwan Kim, Haemin Kim, Jin Ho Chang
Ultrasound-induced optical clearing microscopy (US-OCM) addresses limited imaging depth in optical microscopy, caused by light scattering in biological tissues. It uses ultrasound-induced gas bubbles to better image biological samples. However, controlling the bubble location using only ultrasound is challenging. This study introduces a novel method, “optrasound,” combining optical and ultrasound energies for precise bubble control. It presents the ultrasound field and uses a focused laser to trigger bubble formation. Optrasound-induced deep microscopy improves light beam width by 3.39 times at a depth of 350 µm because the gas bubbles reduce light scattering. This technique can precisely localize a bubble cloud while matching the US-OCM performance.
超声诱导光学清除显微镜(US-OCM)解决了光学显微镜成像深度有限的问题,这是由于生物组织中的光散射造成的。它利用超声诱导气泡来更好地成像生物样本。然而,仅使用超声波来控制气泡位置具有挑战性。本研究介绍了一种新方法 "光学超声",它结合了光学和超声能量,可实现精确的气泡控制。它呈现超声场,并使用聚焦激光触发气泡形成。由于气泡减少了光的散射,光学超声诱导的深度显微镜在 350 微米的深度将光束宽度提高了 3.39 倍。这种技术可以精确定位气泡云,同时与 US-OCM 性能相匹配。
{"title":"Gas bubbles induced by combined optical and ultrasound energies for high-resolution deep optical microscopy","authors":"Jinwoo Kim, Juhwan Kim, Haemin Kim, Jin Ho Chang","doi":"10.1063/5.0203205","DOIUrl":"https://doi.org/10.1063/5.0203205","url":null,"abstract":"Ultrasound-induced optical clearing microscopy (US-OCM) addresses limited imaging depth in optical microscopy, caused by light scattering in biological tissues. It uses ultrasound-induced gas bubbles to better image biological samples. However, controlling the bubble location using only ultrasound is challenging. This study introduces a novel method, “optrasound,” combining optical and ultrasound energies for precise bubble control. It presents the ultrasound field and uses a focused laser to trigger bubble formation. Optrasound-induced deep microscopy improves light beam width by 3.39 times at a depth of 350 µm because the gas bubbles reduce light scattering. This technique can precisely localize a bubble cloud while matching the US-OCM performance.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"78 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
True image construction in quantum-secured single-pixel imaging under spoofing attack 欺骗攻击下量子安全单像素成像的真实图像构建
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-18 DOI: 10.1063/5.0209041
Jaesung Heo, Taek Jeong, Nam Hun Park, Yonggi Jo
In this paper, we introduce a quantum-secured single-pixel imaging technique designed to withstand spoofing attacks, wherein adversaries attempt to deceive imaging systems with fake signals. Unlike previous quantum-secured protocols that impose a threshold error rate limiting their operation, even with the existence of true signals, our approach not only identifies spoofing attacks but also facilitates the reconstruction of a true image. Our method involves the analysis of a specific mode correlation of a photon-pair, which is independent of the mode used for image construction, to check security. Through this analysis, we can identify both the targeted image region of the attack and the type of spoofing attack, enabling reconstruction of the true image. A proof-of-principle demonstration employing the polarization-correlation of a photon-pair is provided, showcasing successful image reconstruction even under the condition of spoofing signals that are 2000 times stronger than true signals. We expect our approach to be applied to quantum-secured signal processing, such as quantum target detection or ranging.
在本文中,我们介绍了一种量子安全单像素成像技术,旨在抵御欺骗攻击,即对手试图用假信号欺骗成像系统。以往的量子安全协议即使存在真实信号,也会受到阈值错误率的限制,而我们的方法与之不同,不仅能识别欺骗攻击,还能促进真实图像的重建。我们的方法包括分析光子对的特定模式相关性来检查安全性,这种相关性与构建图像时使用的模式无关。通过这种分析,我们可以确定攻击的目标图像区域和欺骗攻击的类型,从而重建真实图像。我们利用光子对的偏振相关性进行了原理验证,展示了即使在欺骗信号比真实信号强 2000 倍的情况下也能成功重建图像。我们希望我们的方法能应用于量子安全信号处理,如量子目标检测或测距。
{"title":"True image construction in quantum-secured single-pixel imaging under spoofing attack","authors":"Jaesung Heo, Taek Jeong, Nam Hun Park, Yonggi Jo","doi":"10.1063/5.0209041","DOIUrl":"https://doi.org/10.1063/5.0209041","url":null,"abstract":"In this paper, we introduce a quantum-secured single-pixel imaging technique designed to withstand spoofing attacks, wherein adversaries attempt to deceive imaging systems with fake signals. Unlike previous quantum-secured protocols that impose a threshold error rate limiting their operation, even with the existence of true signals, our approach not only identifies spoofing attacks but also facilitates the reconstruction of a true image. Our method involves the analysis of a specific mode correlation of a photon-pair, which is independent of the mode used for image construction, to check security. Through this analysis, we can identify both the targeted image region of the attack and the type of spoofing attack, enabling reconstruction of the true image. A proof-of-principle demonstration employing the polarization-correlation of a photon-pair is provided, showcasing successful image reconstruction even under the condition of spoofing signals that are 2000 times stronger than true signals. We expect our approach to be applied to quantum-secured signal processing, such as quantum target detection or ranging.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"21 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APL Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1