Bingtian Guo, Mariah Schwartz, Sri H. Kodati, Kyle M. McNicholas, Hyemin Jung, Seunghyun Lee, Jason Konowitch, Dekang Chen, Junwu Bai, Xiangwen Guo, Theodore J. Ronningen, Christoph H. Grein, Joe C. Campbell, Sanjay Krishna
High-sensitivity avalanche photodiodes (APDs) are used to amplify weak optical signals in a wide range of applications, including telecommunications, data centers, spectroscopy, imaging, light detection and ranging, medical diagnostics, and quantum applications. This paper reports antimony-based separate absorption, charge, and multiplication structure APDs on InP substrates. Al0.7In0.3As0.79Sb0.21 is used for the multiplier region, and InGaAs is used as the absorber. The excess noise is comparable to that of silicon APDs; the k-value is more than one order of magnitude lower than that of APDs that use InP or InAlAs for the gain region. The external quantum efficiency without an anti-reflection coating at 1550 nm is 57%. The gradient of the temperature coefficient of avalanche breakdown voltage is 6.7 mV/K/μm, which is less than one-sixth that of InP APDs, presenting the potential to reduce the cost and complexity of receiver circuits. Semi-insulating InP substrates make high-speed operation practical for widely reported AlxIn1−xAsySb1−y-based APDs.
{"title":"InGaAs/AlInAsSb avalanche photodiodes with low noise and strong temperature stability","authors":"Bingtian Guo, Mariah Schwartz, Sri H. Kodati, Kyle M. McNicholas, Hyemin Jung, Seunghyun Lee, Jason Konowitch, Dekang Chen, Junwu Bai, Xiangwen Guo, Theodore J. Ronningen, Christoph H. Grein, Joe C. Campbell, Sanjay Krishna","doi":"10.1063/5.0168134","DOIUrl":"https://doi.org/10.1063/5.0168134","url":null,"abstract":"High-sensitivity avalanche photodiodes (APDs) are used to amplify weak optical signals in a wide range of applications, including telecommunications, data centers, spectroscopy, imaging, light detection and ranging, medical diagnostics, and quantum applications. This paper reports antimony-based separate absorption, charge, and multiplication structure APDs on InP substrates. Al0.7In0.3As0.79Sb0.21 is used for the multiplier region, and InGaAs is used as the absorber. The excess noise is comparable to that of silicon APDs; the k-value is more than one order of magnitude lower than that of APDs that use InP or InAlAs for the gain region. The external quantum efficiency without an anti-reflection coating at 1550 nm is 57%. The gradient of the temperature coefficient of avalanche breakdown voltage is 6.7 mV/K/μm, which is less than one-sixth that of InP APDs, presenting the potential to reduce the cost and complexity of receiver circuits. Semi-insulating InP substrates make high-speed operation practical for widely reported AlxIn1−xAsySb1−y-based APDs.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"47 4","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138523802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pooja Sekhar, Connor Fredrick, David R. Carlson, Zachary L. Newman, Scott A. Diddams
Frequency combs with mode spacing of 10–20 GHz are critical for increasingly important applications such as astronomical spectrograph calibration, high-speed dual-comb spectroscopy, and low-noise microwave generation. While electro-optic modulators and microresonators can provide narrowband comb sources at this repetition rate, a significant remaining challenge is a means to produce pulses with sufficient peak power to initiate nonlinear supercontinuum generation spanning hundreds of terahertz (THz) as required for self-referencing. Here, we provide a simple, robust, and universal solution to this problem using off-the-shelf polarization-maintaining amplification and nonlinear fiber components. This fiber-integrated approach for nonlinear temporal compression and supercontinuum generation is demonstrated with a resonant electro-optic frequency comb at 1550 nm. We show how to readily achieve pulses shorter than 60 fs at a repetition rate of 20 GHz. The same technique can be applied to picosecond pulses at 10 GHz to demonstrate temporal compression by 9× and achieve 50 fs pulses with a peak power of 5.5 kW. These compressed pulses enable flat supercontinuum generation spanning more than 600 nm after propagation through multi-segment dispersion-tailored anomalous-dispersion highly nonlinear fibers or tantala waveguides. The same 10 GHz source can readily achieve an octave-spanning spectrum for self-referencing in dispersion-engineered silicon nitride waveguides. This simple all-fiber approach to nonlinear spectral broadening fills a critical gap for transforming any narrowband 10–20 GHz frequency comb into a broadband spectrum for a wide range of applications that benefit from the high pulse rate and require access to the individual comb modes.
{"title":"20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb","authors":"Pooja Sekhar, Connor Fredrick, David R. Carlson, Zachary L. Newman, Scott A. Diddams","doi":"10.1063/5.0165681","DOIUrl":"https://doi.org/10.1063/5.0165681","url":null,"abstract":"Frequency combs with mode spacing of 10–20 GHz are critical for increasingly important applications such as astronomical spectrograph calibration, high-speed dual-comb spectroscopy, and low-noise microwave generation. While electro-optic modulators and microresonators can provide narrowband comb sources at this repetition rate, a significant remaining challenge is a means to produce pulses with sufficient peak power to initiate nonlinear supercontinuum generation spanning hundreds of terahertz (THz) as required for self-referencing. Here, we provide a simple, robust, and universal solution to this problem using off-the-shelf polarization-maintaining amplification and nonlinear fiber components. This fiber-integrated approach for nonlinear temporal compression and supercontinuum generation is demonstrated with a resonant electro-optic frequency comb at 1550 nm. We show how to readily achieve pulses shorter than 60 fs at a repetition rate of 20 GHz. The same technique can be applied to picosecond pulses at 10 GHz to demonstrate temporal compression by 9× and achieve 50 fs pulses with a peak power of 5.5 kW. These compressed pulses enable flat supercontinuum generation spanning more than 600 nm after propagation through multi-segment dispersion-tailored anomalous-dispersion highly nonlinear fibers or tantala waveguides. The same 10 GHz source can readily achieve an octave-spanning spectrum for self-referencing in dispersion-engineered silicon nitride waveguides. This simple all-fiber approach to nonlinear spectral broadening fills a critical gap for transforming any narrowband 10–20 GHz frequency comb into a broadband spectrum for a wide range of applications that benefit from the high pulse rate and require access to the individual comb modes.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"121 2","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138523792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robin Löscher, Victor Moreno, Dionysis Adamou, Denizhan K. Kesim, Malte C. Schroeder, Matteo Clerici, Jean-Pierre Wolf, Clara J. Saraceno
Filamentation has extensively been explored and is well understood at repetition rates <1 kHz due to the typical availability of multi-mJ laser systems at a moderate average power. The advent of high-power Yb-lasers opened new possibilities for filamentation research. However, so far, high average power Yb systems have mostly been explored to increase the driving pulse energy to several hundreds of mJ and not at significantly higher repetition rates. In this paper, we study, for the first time, long filaments at unprecedented high repetition rates of 10, 40, and 100 kHz using a 500-W Yb-doped thin-disk amplifier driver operating with sub-700 fs pulses. We compare the filament length, density hole, and fluorescence at a constant peak power but different repetition rates and find a strong dependence on filament length and density depletion with repetition rate. Our analysis reveals the emergence of a significant stationary density depletion at repetition rates of 40 and 100 kHz. The corresponding reduction in the breakdown threshold by increasing the laser repetition rate observed in our study signifies a promising avenue for enhancing the efficiency and reliability of electric discharge triggering in various scenarios. Using capacitive plasma probe measurements, we address the limitations of fluorescence imaging-based measurements and demonstrate a systematic underestimation of filament length. This work contributes to a deeper understanding of the interplay between laser repetition rates, filamentation, and heat-driven density depletion effects from high-repetition-rate high-power laser systems and will contribute to guiding future research, making use of filaments at high repetition rates.
{"title":"High-power sub-picosecond filamentation at 1.03 µ m with high repetition rates between 10 and 100 kHz","authors":"Robin Löscher, Victor Moreno, Dionysis Adamou, Denizhan K. Kesim, Malte C. Schroeder, Matteo Clerici, Jean-Pierre Wolf, Clara J. Saraceno","doi":"10.1063/5.0175100","DOIUrl":"https://doi.org/10.1063/5.0175100","url":null,"abstract":"Filamentation has extensively been explored and is well understood at repetition rates &lt;1 kHz due to the typical availability of multi-mJ laser systems at a moderate average power. The advent of high-power Yb-lasers opened new possibilities for filamentation research. However, so far, high average power Yb systems have mostly been explored to increase the driving pulse energy to several hundreds of mJ and not at significantly higher repetition rates. In this paper, we study, for the first time, long filaments at unprecedented high repetition rates of 10, 40, and 100 kHz using a 500-W Yb-doped thin-disk amplifier driver operating with sub-700 fs pulses. We compare the filament length, density hole, and fluorescence at a constant peak power but different repetition rates and find a strong dependence on filament length and density depletion with repetition rate. Our analysis reveals the emergence of a significant stationary density depletion at repetition rates of 40 and 100 kHz. The corresponding reduction in the breakdown threshold by increasing the laser repetition rate observed in our study signifies a promising avenue for enhancing the efficiency and reliability of electric discharge triggering in various scenarios. Using capacitive plasma probe measurements, we address the limitations of fluorescence imaging-based measurements and demonstrate a systematic underestimation of filament length. This work contributes to a deeper understanding of the interplay between laser repetition rates, filamentation, and heat-driven density depletion effects from high-repetition-rate high-power laser systems and will contribute to guiding future research, making use of filaments at high repetition rates.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"26 4","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138523787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chahat Kaushik, A. Aadhi, Anirban Ghosh, R. P. Singh, S. Dutta Gupta, M. Ebrahim-Zadeh, G. K. Samanta
We present a uniquely versatile and efficient mirror system capable of real-time fine-tuning in reflection and transmission properties across a broad wavelength range and at a high optical power. Leveraging the principles of the non-cyclic geometric phase (GP) acquired by the clockwise and counterclockwise beams of the Sagnac interferometer satisfying the anti-resonant condition on propagation through the quarter-wave plate, half-wave plate, and quarter-wave plate combination having fast axes oriented at 45° (fixed), θ (variable), and −45° (fixed) with respect to the vertical, respectively, our mirror system offers dynamic transmission control across 0–100% without the need for realignment. Notably, the GP-based mirror (GP-mirror) preserves the polarization state of the reflected beam, making it ideal for polarization-sensitive applications. The wavelength insensitivity of the GP enables seamless operation of the mirror across a wide wavelength range. As a proof-of-principle, we use the GP-mirror as the output coupler of a continuous-wave, green-pumped, doubly resonant optical parametric oscillator (DRO) based on a 30-mm-long MgO:sPPLT crystal and obtain stable operation at high powers over a wide wavelength tuning range. For a pump power of 5 W, the DRO provides an output power of 2.45 W at an extraction efficiency as high as 49% when operated at optimum output coupling. The DRO shows a maximum pump depletion of 89% and delivers an optimum output power across a tuning range ≥90 nm. The demonstrated concept offers a promising approach for advancing the capabilities and control of coherent optical sources tunable across different spectral regions and in all time scales from continuous-wave to ultrafast femtosecond domain.
{"title":"Dynamically tunable broadband output coupling of optical oscillators based on non-cyclic geometric phase mirror","authors":"Chahat Kaushik, A. Aadhi, Anirban Ghosh, R. P. Singh, S. Dutta Gupta, M. Ebrahim-Zadeh, G. K. Samanta","doi":"10.1063/5.0170602","DOIUrl":"https://doi.org/10.1063/5.0170602","url":null,"abstract":"We present a uniquely versatile and efficient mirror system capable of real-time fine-tuning in reflection and transmission properties across a broad wavelength range and at a high optical power. Leveraging the principles of the non-cyclic geometric phase (GP) acquired by the clockwise and counterclockwise beams of the Sagnac interferometer satisfying the anti-resonant condition on propagation through the quarter-wave plate, half-wave plate, and quarter-wave plate combination having fast axes oriented at 45° (fixed), θ (variable), and −45° (fixed) with respect to the vertical, respectively, our mirror system offers dynamic transmission control across 0–100% without the need for realignment. Notably, the GP-based mirror (GP-mirror) preserves the polarization state of the reflected beam, making it ideal for polarization-sensitive applications. The wavelength insensitivity of the GP enables seamless operation of the mirror across a wide wavelength range. As a proof-of-principle, we use the GP-mirror as the output coupler of a continuous-wave, green-pumped, doubly resonant optical parametric oscillator (DRO) based on a 30-mm-long MgO:sPPLT crystal and obtain stable operation at high powers over a wide wavelength tuning range. For a pump power of 5 W, the DRO provides an output power of 2.45 W at an extraction efficiency as high as 49% when operated at optimum output coupling. The DRO shows a maximum pump depletion of 89% and delivers an optimum output power across a tuning range ≥90 nm. The demonstrated concept offers a promising approach for advancing the capabilities and control of coherent optical sources tunable across different spectral regions and in all time scales from continuous-wave to ultrafast femtosecond domain.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"24 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138523791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduard Prat, Alexander Malyzhenkov, Christopher Arrell, Paolo Craievich, Sven Reiche, Thomas Schietinger, Guanglei Wang
We demonstrate the generation of coherent soft x-ray free-electron laser (FEL) pulses with a duration below 1 fs using nonlinear compression with a low-charge electron beam (10 pC). The approach is simple, and it does not require any special hardware, so it can be readily implemented at any x-ray FEL facility. We present temporal and spectral diagnostics confirming the production of single-spike sub-femtosecond pulses for photon energies of 642 and 1111 eV. Our work will be important for ultrafast FEL applications requiring soft x-rays.
{"title":"Coherent sub-femtosecond soft x-ray free-electron laser pulses with nonlinear compression","authors":"Eduard Prat, Alexander Malyzhenkov, Christopher Arrell, Paolo Craievich, Sven Reiche, Thomas Schietinger, Guanglei Wang","doi":"10.1063/5.0164666","DOIUrl":"https://doi.org/10.1063/5.0164666","url":null,"abstract":"We demonstrate the generation of coherent soft x-ray free-electron laser (FEL) pulses with a duration below 1 fs using nonlinear compression with a low-charge electron beam (10 pC). The approach is simple, and it does not require any special hardware, so it can be readily implemented at any x-ray FEL facility. We present temporal and spectral diagnostics confirming the production of single-spike sub-femtosecond pulses for photon energies of 642 and 1111 eV. Our work will be important for ultrafast FEL applications requiring soft x-rays.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"26 1-3","pages":""},"PeriodicalIF":5.6,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138523789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Jankowski, Carsten Langrock, Boris Desiatov, Marko Lončar, M. M. Fejer
We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.
{"title":"Supercontinuum generation by saturated second-order nonlinear interactions","authors":"Marc Jankowski, Carsten Langrock, Boris Desiatov, Marko Lončar, M. M. Fejer","doi":"10.1063/5.0158926","DOIUrl":"https://doi.org/10.1063/5.0158926","url":null,"abstract":"We propose a new approach to supercontinuum generation and carrier-envelope-offset detection based on saturated second-order nonlinear interactions in dispersion-engineered nanowaveguides. The technique developed here broadens the interacting harmonics by forming stable bifurcations of the pulse envelopes due to an interplay between phase-mismatch and pump depletion. We first present an intuitive heuristic model for spectral broadening by second-harmonic generation of femtosecond pulses and show that this model agrees well with experiments. Then, having established strong agreement between theory and experiment, we develop scaling laws that determine the energy required to generate an octave of bandwidth as a function of input pulse duration, device length, and input pulse chirp. These scaling laws suggest that future realization based on this approach could enable supercontinuum generation with orders of magnitude less energy than current state-of-the-art devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"17 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Absolute distance measurement for multiple targets is required in industrial and scientific fields such as machine monitoring, detection of distortion in large structures, wafer alignment in semiconductor manufacturing, and the formation flying of satellites. Furthermore, the expansion of measurement channels is essential for the effective application of multi-target measurement. However, because measurement channels' expansion requires high power, it is difficult due to the low conversion efficiency of conventional systems that use a non-linear crystal for optical cross-correlation. In this study, for measurement channel expansion, time-of-flight based absolute laser ranging via high-efficiency dual-comb cross-correlation using a semiconductor optical amplifier is developed. The semiconductor optical amplifier acts as a cross-correlator, and it can produce a cross-correlation signal with a laser’s power of 50 µW because of its very high conversion efficiency. This method is suitable for expanding the measurement channels and measuring non-cooperative targets as it can detect low-power signals. The repeatability of the distance measurement is 4 µm at a single shot (37 µs) and 120 nm for 5 ms. The linearity is assessed by evaluating the R-square, which is equal to 1 within the range of significant figures. Moreover, the distance measurement of targets lying on the two axes was demonstrated to ensure the measurement channels' expansion. This measurement system has the potential to determine multiple distances, making it applicable to diverse fields such as semiconductor manufacturing, smart factories, plant engineering, and satellite formation flying.
{"title":"Dual-comb-based multi-axis time-of-flight measurement via high-efficiency optical cross-correlation in a semiconductor optical amplifier","authors":"Jaeyoung Jang, Seung-Woo Kim, Young-Jin Kim","doi":"10.1063/5.0165560","DOIUrl":"https://doi.org/10.1063/5.0165560","url":null,"abstract":"Absolute distance measurement for multiple targets is required in industrial and scientific fields such as machine monitoring, detection of distortion in large structures, wafer alignment in semiconductor manufacturing, and the formation flying of satellites. Furthermore, the expansion of measurement channels is essential for the effective application of multi-target measurement. However, because measurement channels' expansion requires high power, it is difficult due to the low conversion efficiency of conventional systems that use a non-linear crystal for optical cross-correlation. In this study, for measurement channel expansion, time-of-flight based absolute laser ranging via high-efficiency dual-comb cross-correlation using a semiconductor optical amplifier is developed. The semiconductor optical amplifier acts as a cross-correlator, and it can produce a cross-correlation signal with a laser’s power of 50 µW because of its very high conversion efficiency. This method is suitable for expanding the measurement channels and measuring non-cooperative targets as it can detect low-power signals. The repeatability of the distance measurement is 4 µm at a single shot (37 µs) and 120 nm for 5 ms. The linearity is assessed by evaluating the R-square, which is equal to 1 within the range of significant figures. Moreover, the distance measurement of targets lying on the two axes was demonstrated to ensure the measurement channels' expansion. This measurement system has the potential to determine multiple distances, making it applicable to diverse fields such as semiconductor manufacturing, smart factories, plant engineering, and satellite formation flying.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"102 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terahertz (THz) technology has seen significant advancements in the past decades, encompassing both fundamental scientific research, such as THz quantum optics, and highly applied areas like sixth-generation communications, medical imaging, and biosensing. However, the progress of on-chip THz integrated waveguides still lags behind that of THz sources and detectors. This is attributed to issues such as ohmic losses in microstrip lines, coplanar and hollow waveguides, bulky footprints, and reflection and scattering losses occurring at sharp bends or defects in conventional dielectric waveguides. Inspired by the quantum Hall effects and topological insulators in condensed matter systems, recent discoveries of topological phases of light have led to the development of topological waveguides. These waveguides exhibit remarkable phenomena, such as robust unidirectional propagation and reflectionless behavior against impurities or defects. As a result, they hold tremendous promise for THz on-chip applications. While THz photonic topological insulators (PTIs), including wave division, multiport couplers, and resonant cavities, have been demonstrated to cover a wavelength range of 800–2500 nm, research on tunable THz PTIs remains limited. In this perspective, we briefly reviewed a few examples of tunable PTIs, primarily concentrated in the infrared range. Furthermore, we proposed how these designs could benefit the development of THz on-chip PTIs. We explore the potential methods for achieving tunable THz PTIs through optical, electrical, and thermal means. Additionally, we present a design of THz PTIs for potential on-chip sensing applications. To support our speculation, several simulations were performed, providing valuable insights for future THz on-chip PTI designs.
{"title":"The perspective of topological photonics for on-chip terahertz modulation and sensing","authors":"Yiwen Sun, Zhijie Mei, Xuejiao Xu, Qingxuan Xie, Shuting Fan, Zhengfang Qian, Xudong Liu","doi":"10.1063/5.0170233","DOIUrl":"https://doi.org/10.1063/5.0170233","url":null,"abstract":"Terahertz (THz) technology has seen significant advancements in the past decades, encompassing both fundamental scientific research, such as THz quantum optics, and highly applied areas like sixth-generation communications, medical imaging, and biosensing. However, the progress of on-chip THz integrated waveguides still lags behind that of THz sources and detectors. This is attributed to issues such as ohmic losses in microstrip lines, coplanar and hollow waveguides, bulky footprints, and reflection and scattering losses occurring at sharp bends or defects in conventional dielectric waveguides. Inspired by the quantum Hall effects and topological insulators in condensed matter systems, recent discoveries of topological phases of light have led to the development of topological waveguides. These waveguides exhibit remarkable phenomena, such as robust unidirectional propagation and reflectionless behavior against impurities or defects. As a result, they hold tremendous promise for THz on-chip applications. While THz photonic topological insulators (PTIs), including wave division, multiport couplers, and resonant cavities, have been demonstrated to cover a wavelength range of 800–2500 nm, research on tunable THz PTIs remains limited. In this perspective, we briefly reviewed a few examples of tunable PTIs, primarily concentrated in the infrared range. Furthermore, we proposed how these designs could benefit the development of THz on-chip PTIs. We explore the potential methods for achieving tunable THz PTIs through optical, electrical, and thermal means. Additionally, we present a design of THz PTIs for potential on-chip sensing applications. To support our speculation, several simulations were performed, providing valuable insights for future THz on-chip PTI designs.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"102 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maksim Makarenko, Qizhou Wang, Arturo Burguete-Lopez, Andrea Fratalocchi
Photonic accelerators for Artificial Intelligence (AI) are rapidly advancing, promising to provide revolutionary computational speed for modern AI architectures. By leveraging photons with a bandwidth higher than 100 THz, photonic accelerators tackle the computational demands of AI tasks that GHz electronics alone cannot meet. Photonics accelerators integrate circuitry for matrix–vector operators and ultra-fast feature extractors, enabling energy-efficient and parallel computations that prove crucial for the training and inference of AI models in various applications, including classification, segmentation, and feature extraction. This Perspective discusses modern challenges and opportunities that optical computations open in AI for research and industry.
{"title":"Photonic optical accelerators: The future engine for the era of modern AI?","authors":"Maksim Makarenko, Qizhou Wang, Arturo Burguete-Lopez, Andrea Fratalocchi","doi":"10.1063/5.0174044","DOIUrl":"https://doi.org/10.1063/5.0174044","url":null,"abstract":"Photonic accelerators for Artificial Intelligence (AI) are rapidly advancing, promising to provide revolutionary computational speed for modern AI architectures. By leveraging photons with a bandwidth higher than 100 THz, photonic accelerators tackle the computational demands of AI tasks that GHz electronics alone cannot meet. Photonics accelerators integrate circuitry for matrix–vector operators and ultra-fast feature extractors, enabling energy-efficient and parallel computations that prove crucial for the training and inference of AI models in various applications, including classification, segmentation, and feature extraction. This Perspective discusses modern challenges and opportunities that optical computations open in AI for research and industry.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"44 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135615320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guilhem Madiot, Marcus Albrechtsen, Søren Stobbe, Clivia M. Sotomayor-Torres, Guillermo Arregui
Chip-scale multimode optomechanical systems have unique benefits for sensing, metrology, and quantum technologies relative to their single-mode counterparts. Slot-mode optomechanical crystals enable sideband resolution and large optomechanical couplings of a single optical cavity to two microwave-frequency mechanical modes. Still, previous implementations have been limited to nanobeam geometries, whose effective quantum cooperativity at ultralow temperatures is limited by their low thermal conductance. In this work, we design and experimentally demonstrate a two-dimensional mechanical–optical–mechanical (MOM) platform that dispersively couples a slow-light slot-guided photonic-crystal waveguide mode and two slow-sound ∼ 7 GHz phononic wire modes localized in physically distinct regions. We first demonstrate optomechanical interactions in long waveguide sections, unveiling acoustic group velocities below 800 m/s, and then move on to mode-gap adiabatic heterostructure cavities with a tailored mechanical frequency difference. Through optomechanical spectroscopy, we demonstrate optical quality factors Q ∼ 105, vacuum optomechanical coupling rates, go/2π, of 1.5 MHz, and dynamical back-action effects beyond the single-mode picture. At a larger power and adequate laser-cavity detuning, we demonstrate regenerative optomechanical oscillations involving a single mechanical mode, extending to both mechanical modes through modulation of the input laser drive at their frequency difference. This work constitutes an important advance toward engineering MOM systems with nearly degenerate mechanical modes as part of hybrid multipartite quantum systems.
{"title":"Multimode optomechanics with a two-dimensional optomechanical crystal","authors":"Guilhem Madiot, Marcus Albrechtsen, Søren Stobbe, Clivia M. Sotomayor-Torres, Guillermo Arregui","doi":"10.1063/5.0170883","DOIUrl":"https://doi.org/10.1063/5.0170883","url":null,"abstract":"Chip-scale multimode optomechanical systems have unique benefits for sensing, metrology, and quantum technologies relative to their single-mode counterparts. Slot-mode optomechanical crystals enable sideband resolution and large optomechanical couplings of a single optical cavity to two microwave-frequency mechanical modes. Still, previous implementations have been limited to nanobeam geometries, whose effective quantum cooperativity at ultralow temperatures is limited by their low thermal conductance. In this work, we design and experimentally demonstrate a two-dimensional mechanical–optical–mechanical (MOM) platform that dispersively couples a slow-light slot-guided photonic-crystal waveguide mode and two slow-sound ∼ 7 GHz phononic wire modes localized in physically distinct regions. We first demonstrate optomechanical interactions in long waveguide sections, unveiling acoustic group velocities below 800 m/s, and then move on to mode-gap adiabatic heterostructure cavities with a tailored mechanical frequency difference. Through optomechanical spectroscopy, we demonstrate optical quality factors Q ∼ 105, vacuum optomechanical coupling rates, go/2π, of 1.5 MHz, and dynamical back-action effects beyond the single-mode picture. At a larger power and adequate laser-cavity detuning, we demonstrate regenerative optomechanical oscillations involving a single mechanical mode, extending to both mechanical modes through modulation of the input laser drive at their frequency difference. This work constitutes an important advance toward engineering MOM systems with nearly degenerate mechanical modes as part of hybrid multipartite quantum systems.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"39 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}