M. Lemieux-Tanguay, T. Boilard, P. Paradis, R. Vallée, M. Bernier
We report a dual-wavelength-pumped all-fiber continuous-wave laser operating at the extended wavelength of 3.79 µm that reaches a record output power of 2.0 W. This represents, to the best of our knowledge, the highest output power reported at the longest spectral range for a fiber laser. The laser cavity, made of a heavily erbium-doped fluoride fiber and bounded by two photo-inscribed fiber Bragg gratings, reaches a slope efficiency of 46.5% with respect to the absorbed 1976 nm pump power. The system exhibits an absorption dependency of the 1976 nm pump on the launched 976 nm pump and a quenching behavior dependency on the output coupler reflectivity. The all-fiber design of the cavity allows significant power scaling of the laser and ensures its long-term stability.
{"title":"2 W monolithic fiber laser at 3.8 µm","authors":"M. Lemieux-Tanguay, T. Boilard, P. Paradis, R. Vallée, M. Bernier","doi":"10.1063/5.0212455","DOIUrl":"https://doi.org/10.1063/5.0212455","url":null,"abstract":"We report a dual-wavelength-pumped all-fiber continuous-wave laser operating at the extended wavelength of 3.79 µm that reaches a record output power of 2.0 W. This represents, to the best of our knowledge, the highest output power reported at the longest spectral range for a fiber laser. The laser cavity, made of a heavily erbium-doped fluoride fiber and bounded by two photo-inscribed fiber Bragg gratings, reaches a slope efficiency of 46.5% with respect to the absorbed 1976 nm pump power. The system exhibits an absorption dependency of the 1976 nm pump on the launched 976 nm pump and a quenching behavior dependency on the output coupler reflectivity. The all-fiber design of the cavity allows significant power scaling of the laser and ensures its long-term stability.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"30 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochen Zhang, Yuan Li, Weikang Dong, Qinghua Liang, Haozhe Sun, Yang Wang, Xiaowei Li, Lan Jiang, Xinping Zhang, He Ma, Jiafang Li
Optically spatial displacement and material modification hold great potential for the appealing applications in nanofabrication and reconfiguration of functional optical devices. Here, we propose and demonstrate a scheme to achieve simultaneous deformation and phase change in vanadium dioxide (VO2)/Si3N4/Au hybrid nanostructures by laser stimuli. Low triggering threshold and significant deformation characteristics of VO2, based on controllable phase transition, are demonstrated in microscale cantilevers. The plasmonic properties of the nanostructure array are further utilized to achieve a polarization-selective dynamic response. The persistence of deformation and dynamical optical modulation are further demonstrated. Such high-precision fabrication methods and non-contact reconfiguration methods are useful for future applications in dynamic optical manipulation.
{"title":"Optically controllable deformation and phase change in VO2/Si3N4/Au hybrid nanostructures with polarization selectivity","authors":"Xiaochen Zhang, Yuan Li, Weikang Dong, Qinghua Liang, Haozhe Sun, Yang Wang, Xiaowei Li, Lan Jiang, Xinping Zhang, He Ma, Jiafang Li","doi":"10.1063/5.0213410","DOIUrl":"https://doi.org/10.1063/5.0213410","url":null,"abstract":"Optically spatial displacement and material modification hold great potential for the appealing applications in nanofabrication and reconfiguration of functional optical devices. Here, we propose and demonstrate a scheme to achieve simultaneous deformation and phase change in vanadium dioxide (VO2)/Si3N4/Au hybrid nanostructures by laser stimuli. Low triggering threshold and significant deformation characteristics of VO2, based on controllable phase transition, are demonstrated in microscale cantilevers. The plasmonic properties of the nanostructure array are further utilized to achieve a polarization-selective dynamic response. The persistence of deformation and dynamical optical modulation are further demonstrated. Such high-precision fabrication methods and non-contact reconfiguration methods are useful for future applications in dynamic optical manipulation.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"12 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The monolithically integrated self-driven photoelectric detector (PD) with the light-emitting diode (LED) epitaxial structure completely relies on the built-in electric field in the multi-quantum wells region to separate the photogenerated carriers. Here, we propose a novel superlattices–electron barrier layer structure to expand the potential field region and enhance the detection capability of the integrated PD. The PD exhibits a record-breaking photo-to-dark current ratio of 5.14 × 107, responsivity of 110.3 A/W, and specific detectivity of 2.2 × 1013 Jones at 0 V bias, respectively. A clear open-eyed diagram of the monolithically integrated chip, including the PD, LED, and waveguide, is realized under a high-speed communication rate of 150 Mbps. The obtained transient response (rise/decay) time of 2.16/2.28 ns also illustrates the outstanding transient response capability of the integrated chip. The on-chip optical communication system is built to achieve the practical video signals transmission application, which is a formidable contender for the core module of future large-scale photonic integrated circuits.
{"title":"Solar-blind photonic integrated chips for real-time on-chip communication","authors":"Rui He, Yijian Song, Naixin Liu, Renfeng Chen, Jin Wu, Yufeng Wang, Qiang Hu, Xiongbin Chen, Junxi Wang, Jinmin Li, Tongbo Wei","doi":"10.1063/5.0206657","DOIUrl":"https://doi.org/10.1063/5.0206657","url":null,"abstract":"The monolithically integrated self-driven photoelectric detector (PD) with the light-emitting diode (LED) epitaxial structure completely relies on the built-in electric field in the multi-quantum wells region to separate the photogenerated carriers. Here, we propose a novel superlattices–electron barrier layer structure to expand the potential field region and enhance the detection capability of the integrated PD. The PD exhibits a record-breaking photo-to-dark current ratio of 5.14 × 107, responsivity of 110.3 A/W, and specific detectivity of 2.2 × 1013 Jones at 0 V bias, respectively. A clear open-eyed diagram of the monolithically integrated chip, including the PD, LED, and waveguide, is realized under a high-speed communication rate of 150 Mbps. The obtained transient response (rise/decay) time of 2.16/2.28 ns also illustrates the outstanding transient response capability of the integrated chip. The on-chip optical communication system is built to achieve the practical video signals transmission application, which is a formidable contender for the core module of future large-scale photonic integrated circuits.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"129 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett
Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.
{"title":"Laser-written waveguide-integrated coherent spins in diamond","authors":"Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett","doi":"10.1063/5.0209294","DOIUrl":"https://doi.org/10.1063/5.0209294","url":null,"abstract":"Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"15 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parametric x-ray radiation (PXR) is a prospective mechanism for producing directional, tunable, and quasi-coherent x-rays in laboratory-scale dimensions, yet it is limited by heat dissipation and self-absorption. Resolving these limits, we show the PXR source flux is suitable for medical imaging and x-ray spectroscopy. We discuss the experimental feasibility of these findings for a compact commercial PXR source.
参量 X 射线辐射(PXR)是在实验室规模内产生定向、可调谐和准相干 X 射线的一种前瞻性机制,但它受到散热和自吸收的限制。解决了这些限制后,我们发现 PXR 源流量适用于医学成像和 X 射线光谱学。我们讨论了这些发现对于紧凑型商用 PXR 源的实验可行性。
{"title":"Breaking the barriers of electron-driven x-ray radiation in crystals","authors":"Amnon Balanov, Alexey Gorlach, Ido Kaminer","doi":"10.1063/5.0206819","DOIUrl":"https://doi.org/10.1063/5.0206819","url":null,"abstract":"Parametric x-ray radiation (PXR) is a prospective mechanism for producing directional, tunable, and quasi-coherent x-rays in laboratory-scale dimensions, yet it is limited by heat dissipation and self-absorption. Resolving these limits, we show the PXR source flux is suitable for medical imaging and x-ray spectroscopy. We discuss the experimental feasibility of these findings for a compact commercial PXR source.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"45 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Fumero, Giovanni Batignani, Edoardo Cassetta, Carino Ferrante, Stefano Giagu, Tullio Scopigno
Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depending on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components. We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of filters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral features combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.
{"title":"Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning","authors":"Giuseppe Fumero, Giovanni Batignani, Edoardo Cassetta, Carino Ferrante, Stefano Giagu, Tullio Scopigno","doi":"10.1063/5.0198013","DOIUrl":"https://doi.org/10.1063/5.0198013","url":null,"abstract":"Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depending on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components. We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of filters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral features combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"30 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. R. Bowman, J. Ma, F. Kiani, G. García Martínez, G. Tagliabue
The fraction of light absorbed in a material is a key parameter for a wide range of optoelectronic and energy devices, including solar cells, light emitting diodes, and photo(electro)chemical devices. It can reveal detailed performance information and establish a material’s theoretical efficiency limits. However, measuring absorption accurately is challenging, especially due to scattering effects at the macroscale and achieving perpendicular illumination over a small area at the microscale. In this tutorial, we present concepts and best practices in measuring absorption at both the macro- and micro-scale. We also give examples of using absorption to reveal critical optoelectronic information in energy devices. This work aims at standardizing the recording of absorption measurements across a number of fields, allowing for improved microscale understanding of a wide range of samples.
{"title":"Best practices in measuring absorption at the macro- and microscale","authors":"A. R. Bowman, J. Ma, F. Kiani, G. García Martínez, G. Tagliabue","doi":"10.1063/5.0210830","DOIUrl":"https://doi.org/10.1063/5.0210830","url":null,"abstract":"The fraction of light absorbed in a material is a key parameter for a wide range of optoelectronic and energy devices, including solar cells, light emitting diodes, and photo(electro)chemical devices. It can reveal detailed performance information and establish a material’s theoretical efficiency limits. However, measuring absorption accurately is challenging, especially due to scattering effects at the macroscale and achieving perpendicular illumination over a small area at the microscale. In this tutorial, we present concepts and best practices in measuring absorption at both the macro- and micro-scale. We also give examples of using absorption to reveal critical optoelectronic information in energy devices. This work aims at standardizing the recording of absorption measurements across a number of fields, allowing for improved microscale understanding of a wide range of samples.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"46 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark E. Turiansky, Kamyar Parto, Galan Moody, Chris G. Van de Walle
Single-photon emitters are an essential component of quantum networks, and defects or impurities in semiconductors are a promising platform to realize such quantum emitters. Here, we present a model that encapsulates the essential physics of coupling to phonons, which governs the behavior of real single-photon emitters, and critically evaluate several approximations that are commonly utilized. Emission in the telecom wavelength range is highly desirable, but our model shows that nonradiative processes are greatly enhanced at these low photon energies, leading to a decrease in efficiency. Our results suggest that reducing the phonon frequency is a fruitful avenue to enhance the efficiency.
{"title":"Rational design of efficient defect-based quantum emitters","authors":"Mark E. Turiansky, Kamyar Parto, Galan Moody, Chris G. Van de Walle","doi":"10.1063/5.0203366","DOIUrl":"https://doi.org/10.1063/5.0203366","url":null,"abstract":"Single-photon emitters are an essential component of quantum networks, and defects or impurities in semiconductors are a promising platform to realize such quantum emitters. Here, we present a model that encapsulates the essential physics of coupling to phonons, which governs the behavior of real single-photon emitters, and critically evaluate several approximations that are commonly utilized. Emission in the telecom wavelength range is highly desirable, but our model shows that nonradiative processes are greatly enhanced at these low photon energies, leading to a decrease in efficiency. Our results suggest that reducing the phonon frequency is a fruitful avenue to enhance the efficiency.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"13 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peco Myint, Ashish Tripathi, Michael J. Wojcik, Junjing Deng, Mathew J. Cherukara, Nicholas Schwarz, Suresh Narayanan, Jin Wang, Miaoqi Chu, Zhang Jiang
Many nanodevices and quantum devices, with their sizes often spanning from millimeters down to sub-nanometer, have intricate low-dimensional, non-uniform, or hierarchical structures on surfaces and interfaces. Since their functionalities are dependent on these structures, high-resolution surface-sensitive characterization becomes imperative to gain a comprehensive understanding of the function–structure relationship. We thus developed hard x-ray ptychographic reflectometry imaging, a new technique that merges the high-resolution two-dimensional imaging capabilities of hard x-ray ptychography for extended objects, with the high-resolution depth profiling capabilities of x-ray reflectivity for layered structures. The synergy of these two methods fully leverages both amplitude and phase information from ptychography reconstruction to not only reveal surface topography and localized structures, such as shapes and electron densities, but also yields statistical details, such as interfacial roughness that is not readily accessible through coherent imaging solely. The hard x-ray ptychographic reflectometry imaging is well-suited for three-dimensional imaging of mesoscopic samples, particularly those comprising planar or layered nanostructures on opaque supports, and could also offer a high-resolution surface metrology and defect analysis on semiconductor devices, such as integrated nanocircuits and lithographic photomasks for microchip fabrications.
许多纳米器件和量子设备的尺寸通常从毫米到亚纳米不等,其表面和界面具有错综复杂的低维、非均匀或分层结构。由于其功能依赖于这些结构,因此必须进行高分辨率的表面敏感表征,以全面了解功能与结构之间的关系。因此,我们开发了硬 X 射线层析反射成像技术,这种新技术融合了硬 X 射线层析成像技术对延伸物体的高分辨率二维成像能力,以及 X 射线反射成像技术对层状结构的高分辨率深度剖面成像能力。这两种方法的协同作用充分利用了层析成像重建的振幅和相位信息,不仅揭示了表面形貌和局部结构(如形状和电子密度),还产生了统计细节,如仅通过相干成像不易获得的界面粗糙度。硬 X 射线层析反射成像非常适合中观样品的三维成像,特别是那些在不透明支撑物上包含平面或层状纳米结构的样品,还可以对半导体器件(如集成纳米电路和用于微芯片制造的光刻光掩模)进行高分辨率表面计量和缺陷分析。
{"title":"Three-dimensional hard X-ray ptychographic reflectometry imaging on extended mesoscopic surface structures","authors":"Peco Myint, Ashish Tripathi, Michael J. Wojcik, Junjing Deng, Mathew J. Cherukara, Nicholas Schwarz, Suresh Narayanan, Jin Wang, Miaoqi Chu, Zhang Jiang","doi":"10.1063/5.0204240","DOIUrl":"https://doi.org/10.1063/5.0204240","url":null,"abstract":"Many nanodevices and quantum devices, with their sizes often spanning from millimeters down to sub-nanometer, have intricate low-dimensional, non-uniform, or hierarchical structures on surfaces and interfaces. Since their functionalities are dependent on these structures, high-resolution surface-sensitive characterization becomes imperative to gain a comprehensive understanding of the function–structure relationship. We thus developed hard x-ray ptychographic reflectometry imaging, a new technique that merges the high-resolution two-dimensional imaging capabilities of hard x-ray ptychography for extended objects, with the high-resolution depth profiling capabilities of x-ray reflectivity for layered structures. The synergy of these two methods fully leverages both amplitude and phase information from ptychography reconstruction to not only reveal surface topography and localized structures, such as shapes and electron densities, but also yields statistical details, such as interfacial roughness that is not readily accessible through coherent imaging solely. The hard x-ray ptychographic reflectometry imaging is well-suited for three-dimensional imaging of mesoscopic samples, particularly those comprising planar or layered nanostructures on opaque supports, and could also offer a high-resolution surface metrology and defect analysis on semiconductor devices, such as integrated nanocircuits and lithographic photomasks for microchip fabrications.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"67 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Automatic polarization controllers find broad applications in various fields, including optical communication, quantum optics, optical sensing, and biomedicine. Currently, the predominant integrated automatic polarization controllers employ either lithium niobate or silicon platforms. Devices based on lithium niobate platforms exhibit excellent performance; however, their fabrication complexity hinders widespread commercial deployment. In contrast, silicon-based integrated automatic polarization controllers benefit from complementary metal–oxide–semiconductor compatibility and reduced fabrication costs. Nevertheless, these silicon automatic polarization controllers suffer from low tracking speeds, peaking at merely 1.256 krad/s. In this study, we demonstrated a silicon high-speed automatic polarization controller, incorporating innovative thermal tuning units combined with a sophisticated control algorithm. The response time of these thermal tuning units has been markedly decreased to 3.2 µs. In addition, we have implemented a novel automatic polarization control algorithm, utilizing gradient descent techniques, on a field-programmable gate array control board. The synergy of the rapid thermal tuning unit and the advanced control algorithm has enabled us to attain an unprecedented polarization control speed of up to 20 krad/s, with this rate being solely limited by the capabilities of our characterization equipment. To our knowledge, this speed is the fastest yet reported for a silicon-based integrated automatic polarization control chip. The proposed device represents a significant breakthrough in the field of silicon-based automatic polarization controllers, paving the way for the future integration of additional polarization management devices. Such an advancement would mark a substantial leap in the realm of integrated photonics, bridging the gap between performance efficiency, cost-effectiveness, and technological integration.
{"title":"CMOS-compatible high-speed endless automatic polarization controller","authors":"Weiqin Wang, Ziwen Zhou, Yifan Zeng, Jingze Liu, Gengqi Yao, Hao Wu, Yunhong Ding, Siyan Zhou, Siqi Yan, Ming Tang","doi":"10.1063/5.0198227","DOIUrl":"https://doi.org/10.1063/5.0198227","url":null,"abstract":"Automatic polarization controllers find broad applications in various fields, including optical communication, quantum optics, optical sensing, and biomedicine. Currently, the predominant integrated automatic polarization controllers employ either lithium niobate or silicon platforms. Devices based on lithium niobate platforms exhibit excellent performance; however, their fabrication complexity hinders widespread commercial deployment. In contrast, silicon-based integrated automatic polarization controllers benefit from complementary metal–oxide–semiconductor compatibility and reduced fabrication costs. Nevertheless, these silicon automatic polarization controllers suffer from low tracking speeds, peaking at merely 1.256 krad/s. In this study, we demonstrated a silicon high-speed automatic polarization controller, incorporating innovative thermal tuning units combined with a sophisticated control algorithm. The response time of these thermal tuning units has been markedly decreased to 3.2 µs. In addition, we have implemented a novel automatic polarization control algorithm, utilizing gradient descent techniques, on a field-programmable gate array control board. The synergy of the rapid thermal tuning unit and the advanced control algorithm has enabled us to attain an unprecedented polarization control speed of up to 20 krad/s, with this rate being solely limited by the capabilities of our characterization equipment. To our knowledge, this speed is the fastest yet reported for a silicon-based integrated automatic polarization control chip. The proposed device represents a significant breakthrough in the field of silicon-based automatic polarization controllers, paving the way for the future integration of additional polarization management devices. Such an advancement would mark a substantial leap in the realm of integrated photonics, bridging the gap between performance efficiency, cost-effectiveness, and technological integration.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"1 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}