Testing full-scale point absorber buoys with enhanced power absorption is challenging and crucial to improving their viability for applications in smart floating cities and marine infrastructure. Bulbous-bottomed (BB) buoys are efficient in hydrodynamics and power absorption for point absorber wave energy converters (PA-WEC). Their experimental validation demands adaptable scaling algorithms to facilitate model-scale tests. This study utilizes a state-of-the-art theoretical algorithm by combining Froude scaling with an isomorphic buoy design approach, facilitating model-scale tests to investigate whether the BB buoys would equally be efficient compared to the reference hemispherical-bottomed (C
HS) buoy when deployed and tested experimentally under identical conditions. Additively manufactured scaled buoy models were tested in a laboratory-scale wave flume in both regular waves (inside and outside resonance) and irregular waves, followed by a similarity analysis for performance prediction on the prototype scale. A feasibility study was also established to justify the BB buoy application in real-time PA-WECs. The BB buoys outperformed the C
HS buoys within and without resonance in regular and irregular waves, justifying that they can replace them for good. Under the same deployment and test settings, the model-scale BB buoy exhibited a 2027 % greater heave motion than the reference without resonance. A full-scale BB buoy could absorb significantly greater wave power than the reference. The case study showed that a C
HS-to-BB transition resulted in a 35 % rise in the capture width ratio of a WEC. The WEC, combined with a 5G-IoT and LSTM network, could facilitate self-powered and self-sensing marine applications in a smart floating city.