首页 > 最新文献

Applied Ocean Research最新文献

英文 中文
Macro-element modelling for lateral response of monopiles with local scour hole via hyperbolic hardening relation 通过双曲硬化关系为带有局部冲刷孔的单桩横向响应建立宏观要素模型
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-21 DOI: 10.1016/j.apor.2024.104233

Monopile is a popular choice in the foundation supporting offshore wind turbines (OWTs), with local scour significantly impacting their lateral responses. Macro-element model, which encapsulates the response between the monopile and the surrounding seabed soils into a force-displacement relation, has been extensively developed to describe offshore foundations. However, such kind of models specifically targeting monopiles subjected to lateral loading in local scour remain underdeveloped. This work proposes a macro-element model with a succinct hyperbolic hardening relation for laterally loaded monopiles in local scour conditions, using the evolutionary polynomial regression (EPR) machine learning technique for easy and optimal design. First, the finite element model is verified and extended to generate force-displacement responses considering the monopile geometries, soil characteristics, and local scour geometries. These results are then utilised to determine the optimal hyperbolic hardening relation of the macro-element model. Next, the EPR technique is employed to determine the relationship between the hyperbolic hardening relation parameters and the influencing factors. Finally, the macro-element model is successfully evaluated by comparing with measurements from centrifuge tests and numerical solutions by finite element analysis, demonstrating its applicability in practical design and the ability to reproduce FEA results with a significant reduction in computational cost.

单桩是支撑海上风力涡轮机(OWT)的常用基础,局部冲刷对其横向响应有很大影响。宏观元素模型将单桩与周围海床土壤之间的响应囊括到力-位移关系中,已被广泛用于描述海上地基。然而,专门针对承受局部冲刷横向荷载的单桩的此类模型仍未得到充分开发。本研究针对局部冲刷条件下承受横向荷载的单桩,提出了一种具有简洁双曲硬化关系的宏观元素模型,并利用进化多项式回归(EPR)机器学习技术进行了简便的优化设计。首先,对有限元模型进行验证和扩展,以生成考虑到单桩几何形状、土壤特性和局部冲刷几何形状的力-位移响应。然后利用这些结果确定宏观元素模型的最佳双曲硬化关系。接着,利用 EPR 技术确定双曲硬化关系参数与影响因素之间的关系。最后,通过与离心机试验的测量结果和有限元分析的数值解决方案进行比较,成功地评估了宏观元素模型,证明了该模型在实际设计中的适用性,以及在显著降低计算成本的情况下再现有限元分析结果的能力。
{"title":"Macro-element modelling for lateral response of monopiles with local scour hole via hyperbolic hardening relation","authors":"","doi":"10.1016/j.apor.2024.104233","DOIUrl":"10.1016/j.apor.2024.104233","url":null,"abstract":"<div><p>Monopile is a popular choice in the foundation supporting offshore wind turbines (OWTs), with local scour significantly impacting their lateral responses. Macro-element model, which encapsulates the response between the monopile and the surrounding seabed soils into a force-displacement relation, has been extensively developed to describe offshore foundations. However, such kind of models specifically targeting monopiles subjected to lateral loading in local scour remain underdeveloped. This work proposes a macro-element model with a succinct hyperbolic hardening relation for laterally loaded monopiles in local scour conditions, using the evolutionary polynomial regression (EPR) machine learning technique for easy and optimal design. First, the finite element model is verified and extended to generate force-displacement responses considering the monopile geometries, soil characteristics, and local scour geometries. These results are then utilised to determine the optimal hyperbolic hardening relation of the macro-element model. Next, the EPR technique is employed to determine the relationship between the hyperbolic hardening relation parameters and the influencing factors. Finally, the macro-element model is successfully evaluated by comparing with measurements from centrifuge tests and numerical solutions by finite element analysis, demonstrating its applicability in practical design and the ability to reproduce FEA results with a significant reduction in computational cost.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of detuned frequency on Bragg scattering of surface gravity waves over an array of sinusoidal bottom patches: An analytic study 失谐频率对正弦波底斑块阵列上表面重力波布拉格散射的作用:分析研究
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-21 DOI: 10.1016/j.apor.2024.104228

The study uses linearized water wave theory to examine the role of detuned frequency on Bragg scattering of surface gravity waves over an array of bottom-standing submerged sinusoidal patches. Explicit formulae for reflection and transmission coefficients are derived using the matrix transfer method in the case of an array of patches, with each patch having a finite number of ripples. Bragg resonance occurs in the case of more than two patches beyond a certain cutoff frequency corresponding to supercritical detuning, while a monotonic increasing trend is observed below the cut-off frequency which is referred to as subcritical detuning. The number of sub-harmonic peaks between two consecutive harmonic peaks is one less than the number of patches. As the number of patches grows, so does the number of zero reflections, while the number of sub-harmonic peaks is invariant with the number of ripples within a patch. The corrugated length of the submerged sinusoidal patches and the resonator length determine the highly resonating/wave trapping features of wave reflection within the resonator and the corrugated patches. The time-domain simulation of surface displacement reveals the scattering and splitting of wave pulses over the submerged patches.

该研究采用线性化水波理论,考察了失谐频率对表面重力波在底部直立正弦波斑块阵列上的布拉格散射的作用。使用矩阵转移法推导出了贴片阵列情况下反射和透射系数的明确公式,每个贴片都有有限数量的波纹。当两个以上的贴片超过一定的截止频率时,就会出现布拉格共振,这与超临界解谐相对应,而在截止频率以下则会出现单调递增的趋势,这被称为亚临界解谐。两个连续谐波峰之间的次谐波峰数量比补片数量少一个。随着贴片数量的增加,零反射的数量也会增加,而次谐波峰的数量则与贴片内波纹的数量无关。水下正弦波斑块的波纹长度和谐振器长度决定了谐振器和波纹斑块内波反射的高度共振/波捕获特征。表面位移的时域模拟揭示了波脉冲在浸没补丁上的散射和分裂。
{"title":"Role of detuned frequency on Bragg scattering of surface gravity waves over an array of sinusoidal bottom patches: An analytic study","authors":"","doi":"10.1016/j.apor.2024.104228","DOIUrl":"10.1016/j.apor.2024.104228","url":null,"abstract":"<div><p>The study uses linearized water wave theory to examine the role of detuned frequency on Bragg scattering of surface gravity waves over an array of bottom-standing submerged sinusoidal patches. Explicit formulae for reflection and transmission coefficients are derived using the matrix transfer method in the case of an array of patches, with each patch having a finite number of ripples. Bragg resonance occurs in the case of more than two patches beyond a certain cutoff frequency corresponding to supercritical detuning, while a monotonic increasing trend is observed below the cut-off frequency which is referred to as subcritical detuning. The number of sub-harmonic peaks between two consecutive harmonic peaks is one less than the number of patches. As the number of patches grows, so does the number of zero reflections, while the number of sub-harmonic peaks is invariant with the number of ripples within a patch. The corrugated length of the submerged sinusoidal patches and the resonator length determine the highly resonating/wave trapping features of wave reflection within the resonator and the corrugated patches. The time-domain simulation of surface displacement reveals the scattering and splitting of wave pulses over the submerged patches.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning models for ship trajectory prediction in complex scenarios based on AIS data 基于 AIS 数据的复杂场景下船舶轨迹预测混合深度学习模型
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-20 DOI: 10.1016/j.apor.2024.104231
Ship trajectory prediction plays a vital role in situation awareness and maritime safety monitoring systems. Currently, the mainstream ship trajectory methods focus on single ships, and little work has been done to consider the interaction between ships. Therefore, aiming at improving the ship trajectory prediction accuracy and giving a comprehensive perspective of maritime surveillance, we proposed an integrated model with two sub-models. (1) the S-TGP model, combining Time Convolutional Network (TCN) and Gated Recurrent Unit (GRU) for single-ship trajectory with high accuracy and high generalization. The S-TGP model takes advantage of the parallel computing ability of TCN and the ability to estimate long-term correlation in the historical data. (2) the MVS-TGP model, integrating variational autoencoder (VAE) with S-TGP, for multi-ship trajectory prediction in complex scenarios. Our contributions include: (1) enhancing the accuracy of single-ship trajectory prediction with the S-TGP model; (2) improving collaborative prediction capabilities for multiple ships with the MVS-TGP model; and (3) providing real-time prediction and monitoring capabilities for maritime surveillance. Validated on AIS data from three regions, our models demonstrate superior performance and robustness compared to existing methods. The results show that the proposed models are effective in different environments and outperform the other models quantitively and qualitatively.
船舶轨迹预测在态势感知和海上安全监控系统中发挥着重要作用。目前,主流的船舶轨迹预测方法主要针对单艘船舶,很少考虑船舶之间的相互作用。因此,为了提高船舶轨迹预测的准确性,并从全面的角度看待海上监控,我们提出了一个包含两个子模型的综合模型。(1) S-TGP 模型,结合了时间卷积网络(TCN)和门控循环单元(GRU),用于高精度和高泛化的单船轨迹预测。S-TGP 模型利用了 TCN 的并行计算能力和估计历史数据中长期相关性的能力。(2) MVS-TGP 模型将变异自动编码器(VAE)与 S-TGP 相结合,用于复杂情况下的多船轨迹预测。我们的贡献包括(1) 利用 S-TGP 模型提高单船轨迹预测的准确性;(2) 利用 MVS-TGP 模型提高多船协同预测能力;以及 (3) 为海上监视提供实时预测和监控能力。通过对三个地区的 AIS 数据进行验证,与现有方法相比,我们的模型表现出更优越的性能和鲁棒性。结果表明,所提出的模型在不同环境下均有效,并在定量和定性方面优于其他模型。
{"title":"Hybrid deep learning models for ship trajectory prediction in complex scenarios based on AIS data","authors":"","doi":"10.1016/j.apor.2024.104231","DOIUrl":"10.1016/j.apor.2024.104231","url":null,"abstract":"<div><div>Ship trajectory prediction plays a vital role in situation awareness and maritime safety monitoring systems. Currently, the mainstream ship trajectory methods focus on single ships, and little work has been done to consider the interaction between ships. Therefore, aiming at improving the ship trajectory prediction accuracy and giving a comprehensive perspective of maritime surveillance, we proposed an integrated model with two sub-models. (1) the S-TGP model, combining Time Convolutional Network (TCN) and Gated Recurrent Unit (GRU) for single-ship trajectory with high accuracy and high generalization. The S-TGP model takes advantage of the parallel computing ability of TCN and the ability to estimate long-term correlation in the historical data. (2) the MVS-TGP model, integrating variational autoencoder (VAE) with S-TGP, for multi-ship trajectory prediction in complex scenarios. Our contributions include: (1) enhancing the accuracy of single-ship trajectory prediction with the S-TGP model; (2) improving collaborative prediction capabilities for multiple ships with the MVS-TGP model; and (3) providing real-time prediction and monitoring capabilities for maritime surveillance. Validated on AIS data from three regions, our models demonstrate superior performance and robustness compared to existing methods. The results show that the proposed models are effective in different environments and outperform the other models quantitively and qualitatively.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-duration design waves for modelling of extreme second-order surge response with spar substructure test case 用短时设计波模拟极端二阶浪涌响应的下部结构试验案例
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-20 DOI: 10.1016/j.apor.2024.104232

This work aims to determine the wave conditions that generate maximum surge response excited predominantly by second-order difference frequency forces. Standard narrow-band wave conditions have random phase components and obtaining the maximum surge response requires long sea-state durations to cover all combinations and correspondingly long computation times using second-order diffraction–radiation models. Multiple 3-hour random sea-states are typically used to evaluate the expected extreme response. The maximum force may be obtained by shifting phases to be equal between component pairs with a frequency difference equal to the structure’s surge natural frequency. However, this work shows that such an approach gives a highly transient force and the lightly damped surge displacement response does not approach a representative maximum value. The larger motion responses may be achieved by sequential wave groups and here we use a genetic algorithm to optimise the phase distribution to give more regular low-frequency excitation in relatively short sea-state durations, less than 1 h. This is demonstrated with a one degree-of-freedom Fourier model. The method is applied to a lightly-moored spar substructure and compared with an experimentally validated standard six degree-of-freedom time domain model (Orcaflex) showing satisfactory agreement.

这项工作旨在确定主要由二阶差频力激发的产生最大浪涌响应的波浪条件。标准窄带波浪条件具有随机相位成分,要获得最大浪涌响应,需要较长的海况持续时间以涵盖所有组合,使用二阶衍射辐射模型的计算时间也相应较长。通常使用多个 3 小时的随机海况来评估预期的极端响应。通过将频率差等于结构浪涌固有频率的部件对之间的相位相等来获得最大力。然而,这项工作表明,这种方法得到的是一个高度瞬态的力,而轻度阻尼的浪涌位移响应并不接近具有代表性的最大值。较大的运动响应可通过连续波群实现,在此我们使用遗传算法来优化相位分布,以便在相对较短的海况持续时间(小于 1 小时)内获得更有规律的低频激励。将该方法应用于轻型系泊支柱下部结构,并与经过实验验证的标准六自由度时域模型(Orcaflex)进行比较,结果显示两者的一致性令人满意。
{"title":"Short-duration design waves for modelling of extreme second-order surge response with spar substructure test case","authors":"","doi":"10.1016/j.apor.2024.104232","DOIUrl":"10.1016/j.apor.2024.104232","url":null,"abstract":"<div><p>This work aims to determine the wave conditions that generate maximum surge response excited predominantly by second-order difference frequency forces. Standard narrow-band wave conditions have random phase components and obtaining the maximum surge response requires long sea-state durations to cover all combinations and correspondingly long computation times using second-order diffraction–radiation models. Multiple 3-hour random sea-states are typically used to evaluate the expected extreme response. The maximum force may be obtained by shifting phases to be equal between component pairs with a frequency difference equal to the structure’s surge natural frequency. However, this work shows that such an approach gives a highly transient force and the lightly damped surge displacement response does not approach a representative maximum value. The larger motion responses may be achieved by sequential wave groups and here we use a genetic algorithm to optimise the phase distribution to give more regular low-frequency excitation in relatively short sea-state durations, less than 1 h. This is demonstrated with a one degree-of-freedom Fourier model. The method is applied to a lightly-moored spar substructure and compared with an experimentally validated standard six degree-of-freedom time domain model (Orcaflex) showing satisfactory agreement.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141118724003535/pdfft?md5=a644e96828c2b8a4298ea174618821d9&pid=1-s2.0-S0141118724003535-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the stabilization of marine soft clay as subgrade filler using binary blending of calcium carbide residue and fly ash 利用电石渣和粉煤灰二元掺合物稳定海相软粘土作为路基填料的试验研究
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-19 DOI: 10.1016/j.apor.2024.104230

This study endeavors to realize the concurrent utilization of marine soft clay (MSC) and industrial waste, specifically calcium carbide residue (CCR) and fly ash (FA), through a series of experimental investigations. The optimal ratio between CCR and FA, as well as the efficacy of the composite agent (CF–1), were examined, and an empirical equation associating the unconfined compressive strength (qu) of stabilized MSC was developed through unconfined compressive strength (UCS) tests. Microscopic analyses, including X–ray diffraction (XRD), scanning electron microscopy (SEM), and energy–dispersive spectroscopy (EDS), were employed to unveil the intrinsic mechanisms underlying CF–1 stabilized MSC. Subsequently, the suitability of CF–1 solidified MSC as a roadbed filler was ascertained through laboratory tests. Results revealed the optimum CCR:FA ratio for CF–1 to be 4:1, demonstrating superior curing effects compared to individual components such as Portland cement (PC), CCR, and FA, with commendable environmental and economic benefits. The developed empirical equation exhibited effectiveness in predicting the qu of CF–1 solidified MSC under varying curing dates (T) and dosages (Wg) conditions. Characterization through XRD, SEM, and EDS identified the primary products formed within the stabilized MSC matrix with CF–1 as comprising calcium–silicate–hydrate (C–S–H) gel, calcium–aluminate–hydrate (C–A–H) gel, and a minor amount of calcite. As T and Wg increased, the reduction in pores between soil particles enhanced the structural integrity and macro–strength of the cured MSC. The failure pattern of CF–1–solidified MSC elementary samples depended on the CF–1 dosage and curing duration. The solidification mechanism of CF–1 on MSC involved pozzolanic, ion exchange, and carbonation reactions. CF–1 solidified MSC satisfied all the specified requirements for roadbed filler in the relevant code, demonstrating substantial potential for in–situ solidification projects involving MSC.

本研究通过一系列实验研究,努力实现海洋软粘土(MSC)与工业废弃物(特别是电石渣(CCR)和粉煤灰(FA))的同时利用。研究探讨了 CCR 和 FA 的最佳比例以及复合剂(CF-1)的功效,并通过无侧限抗压强度(UCS)测试,建立了与稳定 MSC 的无侧限抗压强度(qu)相关的经验方程。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散光谱(EDS)等显微分析,揭示了 CF-1 稳定 MSC 的内在机理。随后,通过实验室测试确定了 CF-1 固化 MSC 作为路基填料的适用性。结果表明,CF-1 的最佳 CCR:FA 比率为 4:1,与硅酸盐水泥 (PC)、CCR 和 FA 等单个成分相比,其固化效果更佳,具有值得称道的环境和经济效益。所开发的经验方程可有效预测不同固化日期(T)和剂量(Wg)条件下 CF-1 固化 MSC 的质量。通过 XRD、SEM 和 EDS 表征,确定了 CF-1 在稳定的 MSC 基质中形成的主要产物包括硅酸钙水合物(C-S-H)凝胶、铝酸钙水合物(C-A-H)凝胶和少量方解石。随着 T 和 Wg 的增加,土壤颗粒间孔隙的减少增强了固化 MSC 的结构完整性和宏观强度。CF-1 固化 MSC 基本样品的破坏模式取决于 CF-1 的用量和固化时间。CF-1 对 MSC 的固化机理包括胶凝反应、离子交换反应和碳化反应。CF-1 固化的 MSC 满足相关规范中对路基填料的所有规定要求,这表明涉及 MSC 的原位固化项目具有巨大的潜力。
{"title":"Experimental study on the stabilization of marine soft clay as subgrade filler using binary blending of calcium carbide residue and fly ash","authors":"","doi":"10.1016/j.apor.2024.104230","DOIUrl":"10.1016/j.apor.2024.104230","url":null,"abstract":"<div><p>This study endeavors to realize the concurrent utilization of marine soft clay (MSC) and industrial waste, specifically calcium carbide residue (CCR) and fly ash (FA), through a series of experimental investigations. The optimal ratio between CCR and FA, as well as the efficacy of the composite agent (CF–1), were examined, and an empirical equation associating the unconfined compressive strength (<em>q</em><sub>u</sub>) of stabilized MSC was developed through unconfined compressive strength (UCS) tests. Microscopic analyses, including X–ray diffraction (XRD), scanning electron microscopy (SEM), and energy–dispersive spectroscopy (EDS), were employed to unveil the intrinsic mechanisms underlying CF–1 stabilized MSC. Subsequently, the suitability of CF–1 solidified MSC as a roadbed filler was ascertained through laboratory tests. Results revealed the optimum CCR:FA ratio for CF–1 to be 4:1, demonstrating superior curing effects compared to individual components such as Portland cement (PC), CCR, and FA, with commendable environmental and economic benefits. The developed empirical equation exhibited effectiveness in predicting the <em>q</em><sub>u</sub> of CF–1 solidified MSC under varying curing dates (<em>T</em>) and dosages (<em>W</em><sub>g</sub>) conditions. Characterization through XRD, SEM, and EDS identified the primary products formed within the stabilized MSC matrix with CF–1 as comprising calcium–silicate–hydrate (C–S–H) gel, calcium–aluminate–hydrate (C–A–H) gel, and a minor amount of calcite. As <em>T</em> and <em>W</em><sub>g</sub> increased, the reduction in pores between soil particles enhanced the structural integrity and macro–strength of the cured MSC. The failure pattern of CF–1–solidified MSC elementary samples depended on the CF–1 dosage and curing duration. The solidification mechanism of CF–1 on MSC involved pozzolanic, ion exchange, and carbonation reactions. CF–1 solidified MSC satisfied all the specified requirements for roadbed filler in the relevant code, demonstrating substantial potential for in–situ solidification projects involving MSC.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of dynamic behaviour of pipe-in-pipe systems for deepwater J-lay method 深水 J-lay 法管中管系统动态性能评估
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-19 DOI: 10.1016/j.apor.2024.104229

The pipe-in-pipe (PIP) system, with good structural resistance and favourable thermal insulation capacity, has been extensively applied in oil and natural gas exploitation in deep waters. In the present paper, a simplified equivalent numerical model of the PIP system for deepwater J-lay operation was developed to evaluate the dynamic response of the outer pipe and the inner pipe under the combined hydrodynamic load and pipelay vessel motion by the software OrcaFlex. The comparison of mechanical responses between the present equivalent model and other available PIP models was performed to verify its reasonability. Considering vessel motion, pipe-soil interaction, wave and current, the dynamic behaviour of the outer and inner pipes was evaluated on aspects of the bending moment, effective tension, equivalent stress and strain. After that, the influences of key geometric parameters on the dynamic behaviour of PIP systems were systematically studied, including the diameter-to-thickness ratios of the outer pipe and inner pipe as well as the core thickness. The findings would provide good guidance for the structural design and the installation analysis of PIP systems using the deepwater J-lay operation.

管中管(PIP)系统具有良好的结构阻力和有利的隔热能力,已广泛应用于深水石油和天然气开采。本文利用 OrcaFlex 软件开发了用于深水 J-lay 作业的 PIP 系统简化等效数值模型,以评估外管和内管在水动力载荷和铺管船运动共同作用下的动态响应。对本等效模型和其他现有 PIP 模型的机械响应进行了比较,以验证其合理性。考虑到船只运动、管道与土壤相互作用、波浪和水流,从弯矩、有效拉力、等效应力和应变等方面评估了内外管道的动态行为。随后,系统研究了关键几何参数对 PIP 系统动态特性的影响,包括外管和内管的直径与厚度比以及核心厚度。研究结果将为采用深水 J-lay 作业的 PIP 系统的结构设计和安装分析提供很好的指导。
{"title":"Evaluation of dynamic behaviour of pipe-in-pipe systems for deepwater J-lay method","authors":"","doi":"10.1016/j.apor.2024.104229","DOIUrl":"10.1016/j.apor.2024.104229","url":null,"abstract":"<div><p>The pipe-in-pipe (PIP) system, with good structural resistance and favourable thermal insulation capacity, has been extensively applied in oil and natural gas exploitation in deep waters. In the present paper, a simplified equivalent numerical model of the PIP system for deepwater J-lay operation was developed to evaluate the dynamic response of the outer pipe and the inner pipe under the combined hydrodynamic load and pipelay vessel motion by the software OrcaFlex. The comparison of mechanical responses between the present equivalent model and other available PIP models was performed to verify its reasonability. Considering vessel motion, pipe-soil interaction, wave and current, the dynamic behaviour of the outer and inner pipes was evaluated on aspects of the bending moment, effective tension, equivalent stress and strain. After that, the influences of key geometric parameters on the dynamic behaviour of PIP systems were systematically studied, including the diameter-to-thickness ratios of the outer pipe and inner pipe as well as the core thickness. The findings would provide good guidance for the structural design and the installation analysis of PIP systems using the deepwater J-lay operation.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the fluid kinematics of common types of greenwater events: An experimental study 关于常见类型绿水事件的流体运动学:实验研究
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-19 DOI: 10.1016/j.apor.2024.104235

Three common types of greenwater events – plunging dam breaker (PDB), hammer fist (HF) and plunging wave (PW) – are experimentally modeled in a laboratory wave flume on a rectangular structure, with a focus on investigating their fluid kinematics. To ensure high repeatability for type PW and type HF, a specific wave focusing method was employed, while PDB-type events were generated using a regular wave train. Utilizing a combination of PIV (particle image velocimetry) and BIV (bubble image velocimetry) techniques, ensemble-averaged flow fields were obtained from 20 repeated tests for each event type. The flow patterns at high speed, along with corresponding velocity fields, facilitated a comprehensive examination of flow behaviors, particularly for HF-type events which have received limited study. The maximum dominant speed for type PW was measured at up to 2.76C during the run-up phase, where C denotes the celerity of the incoming wave. For type HF and type PDB, the maximum dominant speeds occurred during the greenwater phase, with magnitudes of 1.37C and 0.79C, respectively. The velocity deviation during the greenwater phase is <0.62C for all type events. The greenwater front velocity was measured at 1.36C for type PW and approximately 0.8C for both type HF and type PDB. Moreover, an attempt to evaluating the potential greenwater loads of high spatial resolution is demonstrated by the measured velocity fields for all event types. In this study, the simplest dam break solution is found to effectively capture the horizontal greenwater velocity distribution for all event types. Additionally, other mathematical expressions for the horizontal greenwater velocity have been derived based on flow self-similarity.

在矩形结构的实验室波浪水槽中,对三种常见的绿水事件--跌水破坝(PDB)、锤拳(HF)和跌水波(PW)--进行了实验建模,重点研究其流体运动学。为了确保 PW 型和 HF 型波浪的高重复性,采用了一种特定的波浪聚焦方法,而 PDB 型波浪事件则使用常规波列产生。通过结合使用 PIV(粒子图像测速)和 BIV(气泡图像测速)技术,对每种事件类型进行了 20 次重复测试,获得了集合平均流场。高速下的流动模式以及相应的速度场有助于对流动行为进行全面检查,特别是对研究有限的高频型事件。在上升阶段,测得 PW 型的最大主导速度高达 2.76C,其中 C 表示入射波的速度。对于 HF 型和 PDB 型,最大主导速度出现在绿水阶段,分别为 1.37C 和 0.79C。所有类型事件在绿水阶段的速度偏差均为 0.62 摄氏度。PW 型的绿水前沿速度为 1.36 摄氏度,HF 型和 PDB 型的绿水前沿速度约为 0.8 摄氏度。此外,所有类型事件的速度场测量结果都证明了对潜在绿水负荷进行高空间分辨率评估的尝试。本研究发现,最简单的溃坝解决方案可有效捕捉所有事件类型的水平绿水速度分布。此外,还根据水流自相似性推导出了水平绿水速度的其他数学表达式。
{"title":"On the fluid kinematics of common types of greenwater events: An experimental study","authors":"","doi":"10.1016/j.apor.2024.104235","DOIUrl":"10.1016/j.apor.2024.104235","url":null,"abstract":"<div><p>Three common types of greenwater events – plunging dam breaker (PDB), hammer fist (HF) and plunging wave (PW) – are experimentally modeled in a laboratory wave flume on a rectangular structure, with a focus on investigating their fluid kinematics. To ensure high repeatability for type PW and type HF, a specific wave focusing method was employed, while PDB-type events were generated using a regular wave train. Utilizing a combination of PIV (particle image velocimetry) and BIV (bubble image velocimetry) techniques, ensemble-averaged flow fields were obtained from 20 repeated tests for each event type. The flow patterns at high speed, along with corresponding velocity fields, facilitated a comprehensive examination of flow behaviors, particularly for HF-type events which have received limited study. The maximum dominant speed for type PW was measured at up to 2.76<span><math><mi>C</mi></math></span> during the run-up phase, where <span><math><mi>C</mi></math></span> denotes the celerity of the incoming wave. For type HF and type PDB, the maximum dominant speeds occurred during the greenwater phase, with magnitudes of 1.37<span><math><mi>C</mi></math></span> and 0.79<span><math><mi>C</mi></math></span>, respectively. The velocity deviation during the greenwater phase is &lt;0.62<em>C</em> for all type events. The greenwater front velocity was measured at 1.36<span><math><mi>C</mi></math></span> for type PW and approximately 0.8<span><math><mi>C</mi></math></span> for both type HF and type PDB. Moreover, an attempt to evaluating the potential greenwater loads of high spatial resolution is demonstrated by the measured velocity fields for all event types. In this study, the simplest dam break solution is found to effectively capture the horizontal greenwater velocity distribution for all event types. Additionally, other mathematical expressions for the horizontal greenwater velocity have been derived based on flow self-similarity.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing submerged vortices in a closed pump sump: A novel approach using joint anti-vortex devices 抑制封闭泵槽中的水下涡流:使用联合防涡装置的新方法
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-17 DOI: 10.1016/j.apor.2024.104226

The closed sump is a vital inlet structure for low-head tidal pumping stations in coastal regions. The flow instability caused by roof-attached vortices (RAVs) and floor-attached vortices (FAVs) within the sump significantly affects the reliability of the unit operation. Mitigating and eradicating these detrimental vortices is deemed imperative in the realm of engineering applications. Reducing the sources of vortices, improving operating modes, and adding anti-vortex devices (AVDs) are the general ways to suppress the occurrence of vortices. However, few reports exist on the closed pump sumps' joint vortex elimination methods for RAVs and FAVs. Based on a deep understanding of the dynamic evolution behavior of the RAVs and FAVs, a hybrid RANS-LES numerical prediction method is adopted to comprehensively compare the suppression effects of different AVDs on the vortex structure. An effective "elliptical line anti-vortex cone combined with underwater cover plate" joint anti-vortex device (JAVD) is proposed and verified through model experiments. The research results provide analytical ideas for improving the flow field of the pump sump and optimizing hydraulic design.

封闭式底盘是沿海地区低扬程潮汐泵站的重要入口结构。底盘内的顶附涡流(RAV)和底附涡流(FAV)造成的流动不稳定性严重影响了设备运行的可靠性。在工程应用领域,缓解和消除这些有害涡流被认为是当务之急。减少涡流源、改进运行模式和增加防涡装置 (AVD) 是抑制涡流发生的一般方法。然而,关于 RAV 和 FAV 的闭式泵集水池联合消除涡流方法的报道却很少。在深入理解 RAV 和 FAV 动态演化行为的基础上,采用 RANS-LES 混合数值预测方法综合比较了不同 AVD 对涡流结构的抑制效果。提出了一种有效的 "椭圆线防涡锥与水下盖板相结合 "的联合防涡装置(JAVD),并通过模型试验进行了验证。研究成果为改善泵底壳流场和优化水力设计提供了分析思路。
{"title":"Suppressing submerged vortices in a closed pump sump: A novel approach using joint anti-vortex devices","authors":"","doi":"10.1016/j.apor.2024.104226","DOIUrl":"10.1016/j.apor.2024.104226","url":null,"abstract":"<div><p>The closed sump is a vital inlet structure for low-head tidal pumping stations in coastal regions. The flow instability caused by roof-attached vortices (RAVs) and floor-attached vortices (FAVs) within the sump significantly affects the reliability of the unit operation. Mitigating and eradicating these detrimental vortices is deemed imperative in the realm of engineering applications. Reducing the sources of vortices, improving operating modes, and adding anti-vortex devices (AVDs) are the general ways to suppress the occurrence of vortices. However, few reports exist on the closed pump sumps' joint vortex elimination methods for RAVs and FAVs. Based on a deep understanding of the dynamic evolution behavior of the RAVs and FAVs, a hybrid RANS-LES numerical prediction method is adopted to comprehensively compare the suppression effects of different AVDs on the vortex structure. An effective \"elliptical line anti-vortex cone combined with underwater cover plate\" joint anti-vortex device (JAVD) is proposed and verified through model experiments. The research results provide analytical ideas for improving the flow field of the pump sump and optimizing hydraulic design.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel large stroke, heavy duty, high response (2P(nR)+PPR)P actuator mechanism for parallel wave motion simulator platform 用于平行波运动模拟器平台的新型大冲程、重载、高响应 (2P(nR)+PPR)P 推杆机构
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-17 DOI: 10.1016/j.apor.2024.104227

Wave motion simulators have various applications in the development of marine industrial products. The main factor limiting its performance to meet the needs for extreme sea states simulation is the lack of large stroke, heavy duty, and high response actuators. Therefore, a novel actuator mechanism is proposed in this paper to realize the dynamic output of large stroke, heavy duty and high response. In this paper, a (2P(nR)+PPR)P actuator mechanism composed of 2P(nR)P and PPRP mechanisms is proposed, with the input-output relationship analyzed. Then, this actuator mechanism is applied to a 6-PUS platform. The Newton-Euler method is employed to model and simulate the dynamics of the platform to verify the input-output relationships. Finally, a 6-PUS platform based on (2P(nR)+PPR)P mechanism was designed, built and tested under extreme operating conditions. The results show that the 6-PUS platform with this actuator mechanism can achieve a large stroke of ±45° within 7 s cycle time and a high response motion of ±30° within 3 s under a heavy duty of 10t, which demonstrates that it has the performance of large stroke, heavy duty and high response. This actuator mechanism and its platform are of significant value in wave motion simulators for extreme sea states.

波浪运动模拟器在海洋工业产品开发中有多种应用。限制其性能满足极端海况模拟需求的主要因素是缺乏大行程、重载和高响应的执行器。因此,本文提出了一种新型致动器机构,以实现大行程、重载和高响应的动态输出。本文提出了一种由 2P(nR)P 和 PPRP 机构组成的 (2P(nR)+PPR)P 执行机构,并对其输入输出关系进行了分析。然后,将该传动机构应用于 6-PUS 平台。采用牛顿-欧拉方法对平台的动力学进行建模和仿真,以验证输入输出关系。最后,设计、建造了基于 (2P(nR)+PPR)P 机构的 6-PUS 平台,并在极端运行条件下进行了测试。结果表明,采用该执行机构的 6-PUS 平台可在 7 s 周期时间内实现 ±45° 的大行程,并在 10t 重载条件下实现 3 s 内 ±30° 的高响应运动,证明其具有大行程、重载和高响应的性能。该推杆机构及其平台在极端海况下的波浪运动模拟器中具有重要价值。
{"title":"A novel large stroke, heavy duty, high response (2P(nR)+PPR)P actuator mechanism for parallel wave motion simulator platform","authors":"","doi":"10.1016/j.apor.2024.104227","DOIUrl":"10.1016/j.apor.2024.104227","url":null,"abstract":"<div><p>Wave motion simulators have various applications in the development of marine industrial products. The main factor limiting its performance to meet the needs for extreme sea states simulation is the lack of large stroke, heavy duty, and high response actuators. Therefore, a novel actuator mechanism is proposed in this paper to realize the dynamic output of large stroke, heavy duty and high response. In this paper, a (2P(nR)+PPR)P actuator mechanism composed of 2P(nR)P and PPRP mechanisms is proposed, with the input-output relationship analyzed. Then, this actuator mechanism is applied to a 6-PUS platform. The Newton-Euler method is employed to model and simulate the dynamics of the platform to verify the input-output relationships. Finally, a 6-PUS platform based on (2P(nR)+PPR)P mechanism was designed, built and tested under extreme operating conditions. The results show that the 6-PUS platform with this actuator mechanism can achieve a large stroke of ±45° within 7 s cycle time and a high response motion of ±30° within 3 s under a heavy duty of 10t, which demonstrates that it has the performance of large stroke, heavy duty and high response. This actuator mechanism and its platform are of significant value in wave motion simulators for extreme sea states.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and verification of real-time hybrid model test delay compensation method for monopile-type offshore wind turbines 单桩式海上风力涡轮机实时混合模型试验延迟补偿方法的开发与验证
IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Pub Date : 2024-09-16 DOI: 10.1016/j.apor.2024.104234

The real-time hybrid model (RTHM) test is adept at addressing the scale contradiction, the lack of fidelity in wind modelling in hydrodynamic testing facilities and spatial constraints inherent in conventional monopile-type offshore wind turbine (OWT) model testing methods, thus emerging as an effective avenue for conducting physical model tests of Monopile-type OWTs. This method entails the reproduction of aerodynamic loads or platform motions using loading device or vibration tables. Time delays in the physical attributes of the loading device and signal transmission processes within the system can result in error accumulation, with the potential to impact overall system stability. Moreover, time delay compensation algorithms for hybrid model test systems with force control loading can easily generate excessive noise, leading to system divergence. As a result, time delay has emerged as a technical challenge in the RTHM test. To address this issue, this paper has developed second-order and third-order polynomial extrapolation algorithms, alongside an adaptive compensation algorithm. The adaptive compensation algorithm employs the least squares method to identify parameters of the loading system, enabling it to address variations in the time delay of the experimental system caused by the nonlinearity of the loading system and changes in the physical properties of the model. The feasibility and effects of time delay compensation for various algorithms are validated through numerical simulation. Results indicate that the adaptive compensation algorithm surpasses second and third-order polynomial extrapolation compensation algorithms in terms of accuracy and compensation effectiveness. To validate the applicability of the adaptive compensation algorithm, a RTHM test was conducted. Across rotor thrust force (RotThrust) and tower top displacement, there was an average reduction of approximately 5 % and 9 % in the maximum and minimum synchronization errors, respectively. This highlights the efficacy of the delay compensation algorithm in practical applications, notably diminishing time delay errors within the experimental system. The adaptive compensation algorithm continuously adjusts and updates parameters, enhancing the adaptability of the compensation process to time-varying systems.

实时混合模型试验(RTHM)善于解决传统单桩式海上风力涡轮机(OWT)模型试验方法固有的尺度矛盾、流体力学试验设施中风模型缺乏保真度以及空间限制等问题,因此成为进行单桩式海上风力涡轮机物理模型试验的有效途径。这种方法需要使用加载装置或振动台再现空气动力载荷或平台运动。加载装置的物理属性和系统内信号传输过程中的时间延迟会导致误差累积,并有可能影响整个系统的稳定性。此外,采用力控制加载的混合模型测试系统的时间延迟补偿算法很容易产生过多噪声,导致系统偏离。因此,时间延迟已成为 RTHM 测试中的一项技术挑战。为解决这一问题,本文在开发自适应补偿算法的同时,还开发了二阶和三阶多项式外推算法。自适应补偿算法采用最小二乘法来确定加载系统的参数,使其能够解决由加载系统的非线性和模型物理特性变化引起的实验系统时间延迟的变化。通过数值模拟验证了各种算法的时间延迟补偿的可行性和效果。结果表明,自适应补偿算法在精度和补偿效果方面超过了二阶和三阶多项式外推补偿算法。为了验证自适应补偿算法的适用性,进行了一次 RTHM 试验。在转子推力(RotThrust)和塔顶位移方面,最大和最小同步误差分别平均减少了约 5% 和 9%。这凸显了延迟补偿算法在实际应用中的功效,显著减少了实验系统中的时间延迟误差。自适应补偿算法不断调整和更新参数,增强了补偿过程对时变系统的适应性。
{"title":"Development and verification of real-time hybrid model test delay compensation method for monopile-type offshore wind turbines","authors":"","doi":"10.1016/j.apor.2024.104234","DOIUrl":"10.1016/j.apor.2024.104234","url":null,"abstract":"<div><p>The real-time hybrid model (RTHM) test is adept at addressing the scale contradiction, the lack of fidelity in wind modelling in hydrodynamic testing facilities and spatial constraints inherent in conventional monopile-type offshore wind turbine (OWT) model testing methods, thus emerging as an effective avenue for conducting physical model tests of Monopile-type OWTs. This method entails the reproduction of aerodynamic loads or platform motions using loading device or vibration tables. Time delays in the physical attributes of the loading device and signal transmission processes within the system can result in error accumulation, with the potential to impact overall system stability. Moreover, time delay compensation algorithms for hybrid model test systems with force control loading can easily generate excessive noise, leading to system divergence. As a result, time delay has emerged as a technical challenge in the RTHM test. To address this issue, this paper has developed second-order and third-order polynomial extrapolation algorithms, alongside an adaptive compensation algorithm. The adaptive compensation algorithm employs the least squares method to identify parameters of the loading system, enabling it to address variations in the time delay of the experimental system caused by the nonlinearity of the loading system and changes in the physical properties of the model. The feasibility and effects of time delay compensation for various algorithms are validated through numerical simulation. Results indicate that the adaptive compensation algorithm surpasses second and third-order polynomial extrapolation compensation algorithms in terms of accuracy and compensation effectiveness. To validate the applicability of the adaptive compensation algorithm, a RTHM test was conducted. Across rotor thrust force (RotThrust) and tower top displacement, there was an average reduction of approximately 5 % and 9 % in the maximum and minimum synchronization errors, respectively. This highlights the efficacy of the delay compensation algorithm in practical applications, notably diminishing time delay errors within the experimental system. The adaptive compensation algorithm continuously adjusts and updates parameters, enhancing the adaptability of the compensation process to time-varying systems.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Ocean Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1