Amine-based absorption has been extensively used for carbon dioxide (CO 2 ) removal processes, such as CO 2 absorption from flue gas as well as from natural gas. As a reactive system in which the chemical reaction, as well as mass transfer, occur simultaneously, an experimental determination of equilibrium reaction constants, e.g. acid dissociation/protonation constant (K a ), is, therefore, necessary to be conducted. This study aims to evaluate the ionic strength effect from 0.06 to 6.0 m (mol/kg water) on the K a value of monoethanolamine (MEA) at temperatures between 313 and 333K. The experimental results indicate that the pK a values tend to be increasing as the ionic strength increases. This is contradicting to the temperature effect where the pK a values tend to be decreasing as the temperature increases. Furthermore, the extended Debye-Huckel formulation was implemented to predict the species activity coefficients.
{"title":"Amine-based Carbon Dioxide Absorption: The Ionic Strength Effect on the Monoethanolamine Protonation Constant at Temperatures from 313 to 333K","authors":"S. Ma’mun, P. K. Setiawan, E. Indrayanto","doi":"10.22146/ajche.51832","DOIUrl":"https://doi.org/10.22146/ajche.51832","url":null,"abstract":"Amine-based absorption has been extensively used for carbon dioxide (CO 2 ) removal processes, such as CO 2 absorption from flue gas as well as from natural gas. As a reactive system in which the chemical reaction, as well as mass transfer, occur simultaneously, an experimental determination of equilibrium reaction constants, e.g. acid dissociation/protonation constant (K a ), is, therefore, necessary to be conducted. This study aims to evaluate the ionic strength effect from 0.06 to 6.0 m (mol/kg water) on the K a value of monoethanolamine (MEA) at temperatures between 313 and 333K. The experimental results indicate that the pK a values tend to be increasing as the ionic strength increases. This is contradicting to the temperature effect where the pK a values tend to be decreasing as the temperature increases. Furthermore, the extended Debye-Huckel formulation was implemented to predict the species activity coefficients.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"19 1","pages":"83-90"},"PeriodicalIF":0.0,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41496289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomass gasification is widely used for converting solid biomass into synthesis gas for energy applications. Raw biomass is commonly used as feedstock for the gasification process but it usually contains high moisture content and low energy value which lowering synthesis gas production. Thus, torrefaction as a pre-treatment process is necessary in order to upgrade the properties of feedstock for producing more synthesis gas production and improving gasification performance. The objective of this work is to study the effect of gasification temperature on the synthesis gas production and gasification performance using raw and torrefied palm mesocarp fibre (PMF). The gasification process is conducted using bubbling fluidized bed using steam as gasifying agent. Based on experimental work, by increasing gasification temperature from 650 – 900 °C, the compositions of hydrogen and carbon monoxide gases were enhanced greatly while carbon dioxide and methane gases were decreased for both raw and torrefied PMF. In terms of gasification performance, synthesis gas yield for raw and torrefied PMF is increased from 0.91 to 1.23 Nm 3 /kg and 1.10 to 1.35 Nm 3 /kg respectively. Besides, lower heating value (LHV) of torrefied PMF is 0.04 MJ/Nm 3 higher than raw PMF at 900 °C. The result showed that the percentage of cold gas efficiency (CGE) reached maximum of 67% for raw PMF while carbon conversion (CC) at 85.6% for torrefied PMF at a gasification temperature of 900 °C. The higher CC obtained by torrefied PMF is because of the increment of carbon content from 45.2% to 53.7% as a result of torrefaction. Gasification temperature of 800 °C showed the best performance of the PMF gasification since the maximum performances of LHV is achieved and started to decrease once the gasification temperature is operated beyond 800 °C.
{"title":"Effect of Gasification Temperature on Synthesis Gas Production and Gasification Performance for Raw and Torrefied Palm Mesocarp Fibre","authors":"Najwa Hayati Abdul Halim, S. Saleh, N. Samad","doi":"10.22146/ajche.51873","DOIUrl":"https://doi.org/10.22146/ajche.51873","url":null,"abstract":"Biomass gasification is widely used for converting solid biomass into synthesis gas for energy applications. Raw biomass is commonly used as feedstock for the gasification process but it usually contains high moisture content and low energy value which lowering synthesis gas production. Thus, torrefaction as a pre-treatment process is necessary in order to upgrade the properties of feedstock for producing more synthesis gas production and improving gasification performance. The objective of this work is to study the effect of gasification temperature on the synthesis gas production and gasification performance using raw and torrefied palm mesocarp fibre (PMF). The gasification process is conducted using bubbling fluidized bed using steam as gasifying agent. Based on experimental work, by increasing gasification temperature from 650 – 900 °C, the compositions of hydrogen and carbon monoxide gases were enhanced greatly while carbon dioxide and methane gases were decreased for both raw and torrefied PMF. In terms of gasification performance, synthesis gas yield for raw and torrefied PMF is increased from 0.91 to 1.23 Nm 3 /kg and 1.10 to 1.35 Nm 3 /kg respectively. Besides, lower heating value (LHV) of torrefied PMF is 0.04 MJ/Nm 3 higher than raw PMF at 900 °C. The result showed that the percentage of cold gas efficiency (CGE) reached maximum of 67% for raw PMF while carbon conversion (CC) at 85.6% for torrefied PMF at a gasification temperature of 900 °C. The higher CC obtained by torrefied PMF is because of the increment of carbon content from 45.2% to 53.7% as a result of torrefaction. Gasification temperature of 800 °C showed the best performance of the PMF gasification since the maximum performances of LHV is achieved and started to decrease once the gasification temperature is operated beyond 800 °C.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"19 1","pages":"120-129"},"PeriodicalIF":0.0,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42552676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samples of superabsorbent polymer (SAP) were treated with corn starch to modify absorption and permeability properties. The process was done by homogenously mixing the superabsorbent polymer particles with starch suspension using starch loading of 0.002-0.20 g of starch per g of SAP. The resulting mixture was then dried at temperature of 150oC. The absorption properties such as Free Swell Capacity (FSC) and Absorption Under Pressure (AUP) of treated SAP were determined at different starch loading using test solution of varying sodium chloride concentrations and compared with the untreated SAP. At starch loading of 0.04 g/g, AUP gave better results than untreated SAP. GLP of treated SAP gave significant improvement which is explained in terms of the controlled swelling of SAP particles and a more porous structure of the SAP gel layer that allows faster liquid flow rate.
{"title":"Surface Treatment of Superabsorbent Polymer with Corn Starch for Improved Properties","authors":"Ariel V. Melendres, L. Carrillo","doi":"10.22146/ajche.50876","DOIUrl":"https://doi.org/10.22146/ajche.50876","url":null,"abstract":"Samples of superabsorbent polymer (SAP) were treated with corn starch to modify absorption and permeability properties. The process was done by homogenously mixing the superabsorbent polymer particles with starch suspension using starch loading of 0.002-0.20 g of starch per g of SAP. The resulting mixture was then dried at temperature of 150oC. The absorption properties such as Free Swell Capacity (FSC) and Absorption Under Pressure (AUP) of treated SAP were determined at different starch loading using test solution of varying sodium chloride concentrations and compared with the untreated SAP. At starch loading of 0.04 g/g, AUP gave better results than untreated SAP. GLP of treated SAP gave significant improvement which is explained in terms of the controlled swelling of SAP particles and a more porous structure of the SAP gel layer that allows faster liquid flow rate.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48480688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kresnowati, L. Turyanto, A. Zaenuddin, K. Trihatmoko
Fermentation of cassava chips prior to drying and milling processes improves cassava flour quality: i.e. lower cyanogenic content, remove specific odour and colour. Composition of microbial starter applied to the fermentation may affect the microbial population during the fermentation and thus directs the process and the produced flour properties. This study mapped the effects of microbial starter composition on the microbial profiles during the fermentation and the corresponding nutritional contents as well as pasting properties of the produced fermented cassava flour (fercaf). Combinations of Lactobacillus plantarum, Bacillus subtilis and Aspergillus oryzae, that were selected based on their enzymatic activities, were evaluated. The addition of microbial starter was shown to affect the dynamics in microbial population during the fermentation. The addition of lactic acid bacteria accelerated the release of cyanogenic glycoside and starch conversion to simpler sugars, the addition of B. subtilis improved the disruption of cassava fibres, whereas the addition of A.oryzae was shown to increase the protein content of fercaf. The different microbial starter added to fermentation system also resulted in different pasting properties of fercaf. Microbial starter composition can be designed as such for the production of a particular flour property.
{"title":"Effects of Microbial Starter Composition on Nutritional Contents and Pasting Properties of Fermented Cassava Flour","authors":"M. Kresnowati, L. Turyanto, A. Zaenuddin, K. Trihatmoko","doi":"10.22146/ajche.50871","DOIUrl":"https://doi.org/10.22146/ajche.50871","url":null,"abstract":"Fermentation of cassava chips prior to drying and milling processes improves cassava flour quality: i.e. lower cyanogenic content, remove specific odour and colour. Composition of microbial starter applied to the fermentation may affect the microbial population during the fermentation and thus directs the process and the produced flour properties. This study mapped the effects of microbial starter composition on the microbial profiles during the fermentation and the corresponding nutritional contents as well as pasting properties of the produced fermented cassava flour (fercaf). Combinations of Lactobacillus plantarum, Bacillus subtilis and Aspergillus oryzae, that were selected based on their enzymatic activities, were evaluated. The addition of microbial starter was shown to affect the dynamics in microbial population during the fermentation. The addition of lactic acid bacteria accelerated the release of cyanogenic glycoside and starch conversion to simpler sugars, the addition of B. subtilis improved the disruption of cassava fibres, whereas the addition of A.oryzae was shown to increase the protein content of fercaf. The different microbial starter added to fermentation system also resulted in different pasting properties of fercaf. Microbial starter composition can be designed as such for the production of a particular flour property.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46029742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kyaw, S. Mori, N. Dugos, S. Roces, A. Beltran, Shunsuke Suzuki
Polyindene (PIn) membrane was fabricated onto a zeolite 5A substrate by using plasma-enhanced chemical vapor deposition (PECVD) at low temperature. Membrane characterization was done by taking Scanning Electron Microscopy (SEM) and FT-IR measurements and the new peak was found in the plasma-derived PIn film. Membrane performance was analyzed by checking permeability of pure gases (H2, N2, and CO2) through the membrane. PECVD-derived PIn membrane showed high gas barrier properties and selectivities of 8.2 and 4.0 for H2/CO2 and H2/N2, respectively, at room temperature
{"title":"Plasma-Enhanced Chemical Vapor Deposition of Indene for Gas Separation Membrane","authors":"M. Kyaw, S. Mori, N. Dugos, S. Roces, A. Beltran, Shunsuke Suzuki","doi":"10.22146/ajche.50874","DOIUrl":"https://doi.org/10.22146/ajche.50874","url":null,"abstract":"Polyindene (PIn) membrane was fabricated onto a zeolite 5A substrate by using plasma-enhanced chemical vapor deposition (PECVD) at low temperature. Membrane characterization was done by taking Scanning Electron Microscopy (SEM) and FT-IR measurements and the new peak was found in the plasma-derived PIn film. Membrane performance was analyzed by checking permeability of pure gases (H2, N2, and CO2) through the membrane. PECVD-derived PIn membrane showed high gas barrier properties and selectivities of 8.2 and 4.0 for H2/CO2 and H2/N2, respectively, at room temperature","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46313842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climacteric fruits naturally can be over-ripened because of ripening hormone composed of ethylene gas. Removal of ethylene gas by potassium permanganate (KMnO4) has successfully preserved the fruit, but there is still a room for improvement through nano-confinement process. This study was conducted to compare the ethylene oxidation rate and fruit preservation ability of KMnO4 and nano-KMnO4. Ethylene oxidation experiment was conducted in a gas-tight vial filled with ethylene gas (~20%v) and either KMnO4 or nano-KMnO4. Ethylene gas concentration inside the vial was periodically measured using gas chromatography (GC). The result revealed that ethylene oxidation rate by nano-KMnO4 is higher than KMnO4. The ethylene oxidation rate kinetic was modeled with a gas-solid reaction model, which is fundamentally more accurate than first-order reaction model. Fruit preservation experiment was conducted in sealed containers filled with banana (Musa acuminata) samples and either KMnO4 or nano- KMnO4, and stored at room temperature. The result revealed that banana preservation duration by nano-KMnO4 is remarkably longer than KMnO4, where unpreserved fruit was ripened after 7 days and fruit preserved by KMnO4 and nano-KMnO4 were ripened after 13 and 16 days respectively.
{"title":"Preserving Climacteric Fruits by Ripening Hormone Oxidation using nano-KMnO4 Confined within Nanoporous Carbon","authors":"A. Hernándo, T. Ariyanto, I. Prasetyo","doi":"10.22146/ajche.50875","DOIUrl":"https://doi.org/10.22146/ajche.50875","url":null,"abstract":"Climacteric fruits naturally can be over-ripened because of ripening hormone composed of ethylene gas. Removal of ethylene gas by potassium permanganate (KMnO4) has successfully preserved the fruit, but there is still a room for improvement through nano-confinement process. This study was conducted to compare the ethylene oxidation rate and fruit preservation ability of KMnO4 and nano-KMnO4. Ethylene oxidation experiment was conducted in a gas-tight vial filled with ethylene gas (~20%v) and either KMnO4 or nano-KMnO4. Ethylene gas concentration inside the vial was periodically measured using gas chromatography (GC). The result revealed that ethylene oxidation rate by nano-KMnO4 is higher than KMnO4. The ethylene oxidation rate kinetic was modeled with a gas-solid reaction model, which is fundamentally more accurate than first-order reaction model. Fruit preservation experiment was conducted in sealed containers filled with banana (Musa acuminata) samples and either KMnO4 or nano- KMnO4, and stored at room temperature. The result revealed that banana preservation duration by nano-KMnO4 is remarkably longer than KMnO4, where unpreserved fruit was ripened after 7 days and fruit preserved by KMnO4 and nano-KMnO4 were ripened after 13 and 16 days respectively.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47642262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brandon Cyril S. Lira, Sophia Bianca A. Dellosa, Casey Irene L. Toh, Al Patrick A. Quintero, Andre Leopold S. Nidoy, Kimmie Dela Cerna, D. Yu, J. Janairo, M. Promentilla
Geopolymers are emerging “green” materials for its low embodied energy and carbon footprint, and its potential to valorize wastes, such as coal fly ash. It is an inorganic cementitious material formed from the polymerization of aluminosilicates in an activating solution such as that of alkali hydroxides or silicates. Their superior mechanical properties, including heat and fire resistance make them an excellent material for diverse applications. Recent studies have also exploited the tunable open porosity and adsorbing properties of geopolymers. Our work thus explores the potential of porous geopolymer spheres for antibacterial applications. These spheres were synthesized using coal fly ash as the geopolymer precursor and the porous surface is coated with either amoxicillin or silver nanoparticles (AgNPs) adsorbed in the matrix. For the AgNP geopolymer spheres, SEM images show spherical nanostructures when using ascorbic acid as a reducing agent, while spherical, cubical, and wire structures were observed when reduced using NaBH4. Indication from UV-Vis results also suggests the gradual release of both amoxicillin and AgNPs in the solution from the functionalized geopolymer spheres. Using E. Coli as the test organism for a modified disk diffusion assay, both showed zones of inhibition against the bacteria. Further tests on antibacterial application of AgNP geopolymer spheres show their effectiveness to kill at least 95% of the E. coli in a water sample initially containing 105 cfu/mL in just 30 minutes.
{"title":"Coal Fly Ash-based Geopolymer Spheres Coated with Amoxicillin and Nanosilver for Potential Antibacterial Applications","authors":"Brandon Cyril S. Lira, Sophia Bianca A. Dellosa, Casey Irene L. Toh, Al Patrick A. Quintero, Andre Leopold S. Nidoy, Kimmie Dela Cerna, D. Yu, J. Janairo, M. Promentilla","doi":"10.22146/ajche.50872","DOIUrl":"https://doi.org/10.22146/ajche.50872","url":null,"abstract":"Geopolymers are emerging “green” materials for its low embodied energy and carbon footprint, and its potential to valorize wastes, such as coal fly ash. It is an inorganic cementitious material formed from the polymerization of aluminosilicates in an activating solution such as that of alkali hydroxides or silicates. Their superior mechanical properties, including heat and fire resistance make them an excellent material for diverse applications. Recent studies have also exploited the tunable open porosity and adsorbing properties of geopolymers. Our work thus explores the potential of porous geopolymer spheres for antibacterial applications. These spheres were synthesized using coal fly ash as the geopolymer precursor and the porous surface is coated with either amoxicillin or silver nanoparticles (AgNPs) adsorbed in the matrix. For the AgNP geopolymer spheres, SEM images show spherical nanostructures when using ascorbic acid as a reducing agent, while spherical, cubical, and wire structures were observed when reduced using NaBH4. Indication from UV-Vis results also suggests the gradual release of both amoxicillin and AgNPs in the solution from the functionalized geopolymer spheres. Using E. Coli as the test organism for a modified disk diffusion assay, both showed zones of inhibition against the bacteria. Further tests on antibacterial application of AgNP geopolymer spheres show their effectiveness to kill at least 95% of the E. coli in a water sample initially containing 105 cfu/mL in just 30 minutes.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49468435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National General Energy Plan of Indonesia 2017 (RUEN 2017) stated that dimethyl ether (DME) is appointed as a blending of LPG to reduce LPG imports. DME can be made with two reaction pathways, namely direct synthesis and indirect synthesis. The objective of this study was to determine the effect of pressure and syngas composition on the direct synthesis of DME using dual fixed bed catalyst. The research was carried out with two types of catalyst: M-xxx as a commercial catalyst for methanol synthesis and γ-Al2O3 as catalyst for dehydration of methanol to DME. The later was prepared in our Laboratory of Chemical Reaction Engineering and Catalysis, ITB. The dual catalyst experiment was carried out at 5 and 7 bars, and a fixed temperature of 240oC. The mass ratio of the M-xxx to γ-Al2O3, so-called M/D ratios, were varied from 1/9 to 9/1. Two type of syngas were used, i.e. SA containing only H2 and CO with a SN of 2,3 and SB containing 4% CO2 with SN of 1,8. The dual bed with a M/D ratio of 1/4 gave a CO conversion up to 62% at 5 bars and 240oC (SA). As pressure increased, the conversion of CO and H2 increases to 85% and 83% at 7 bar and 240oC (SA). The presence of CO2 (SB) decreases catalyst activity, as indicated by the decrease in conversion of CO and H2 to 56% and 54%, at 7 bar and 240oC.
{"title":"Effect of Pressure and Syngas Composition on Direct Synthesis of Dimethyl Ether using Dual Bed Catalyst","authors":"A. Ardy, J. Rizkiana, M. Gunawan, H. Susanto","doi":"10.22146/ajche.50873","DOIUrl":"https://doi.org/10.22146/ajche.50873","url":null,"abstract":"National General Energy Plan of Indonesia 2017 (RUEN 2017) stated that dimethyl ether (DME) is appointed as a blending of LPG to reduce LPG imports. DME can be made with two reaction pathways, namely direct synthesis and indirect synthesis. The objective of this study was to determine the effect of pressure and syngas composition on the direct synthesis of DME using dual fixed bed catalyst. The research was carried out with two types of catalyst: M-xxx as a commercial catalyst for methanol synthesis and γ-Al2O3 as catalyst for dehydration of methanol to DME. The later was prepared in our Laboratory of Chemical Reaction Engineering and Catalysis, ITB. The dual catalyst experiment was carried out at 5 and 7 bars, and a fixed temperature of 240oC. The mass ratio of the M-xxx to γ-Al2O3, so-called M/D ratios, were varied from 1/9 to 9/1. Two type of syngas were used, i.e. SA containing only H2 and CO with a SN of 2,3 and SB containing 4% CO2 with SN of 1,8. The dual bed with a M/D ratio of 1/4 gave a CO conversion up to 62% at 5 bars and 240oC (SA). As pressure increased, the conversion of CO and H2 increases to 85% and 83% at 7 bar and 240oC (SA). The presence of CO2 (SB) decreases catalyst activity, as indicated by the decrease in conversion of CO and H2 to 56% and 54%, at 7 bar and 240oC.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44390516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Hafyan, W. D. Prasetyo, L. Bhullar, Z. Putra, M. Bilad, M. D. H. Wirzal, N. Nordin
Empty Fruit Bunch (EFB) produced in plantation mill activities in Malaysia creates a major disposal problem. On the other hand, sustainability issues have driven industries to overcome the depletion of fossil fuels and reduction of greenhouse gases emissions. Therefore, as a renewable source, EFB can be an attractive option to address the above problems by converting it into fuels and chemicals. Succinic acid, one of 12 chemical building blocks identified by DOE to be used in synthesis of high-value materials, can be produced from biochemical conversion of the EFB. The present study evaluates succinic acid production process using EFB as the raw material from the perspective of three pillars of sustainability, namely economic, environment, and safety. Flowsheet modeling and techno-economic analysis methods are applied, followed by a multi-objective optimization using genetic algorithm method that simultaneously accounts for maximization of Net Present Value (NPV) and minimization of both Global Warming Potential (GWP) and Toxicity Damage Index (TDI). The pareto frontier reveals a trade-off among all objectives that the maximum NPV is 1,619 MMSD at the maximum EFB of 71,900 kg/hour. Meanwhile, the minimum GWP (12.4 kg CO2-eq/kg succinic acid) and TDI (4.5) are acquired at the minimum EFB of 50,000 kg/hour.
{"title":"Multi-objective Optimization of Succinic Acid Production from Empty Fruit Bunch","authors":"R. Hafyan, W. D. Prasetyo, L. Bhullar, Z. Putra, M. Bilad, M. D. H. Wirzal, N. Nordin","doi":"10.22146/ajche.50870","DOIUrl":"https://doi.org/10.22146/ajche.50870","url":null,"abstract":"Empty Fruit Bunch (EFB) produced in plantation mill activities in Malaysia creates a major disposal problem. On the other hand, sustainability issues have driven industries to overcome the depletion of fossil fuels and reduction of greenhouse gases emissions. Therefore, as a renewable source, EFB can be an attractive option to address the above problems by converting it into fuels and chemicals. Succinic acid, one of 12 chemical building blocks identified by DOE to be used in synthesis of high-value materials, can be produced from biochemical conversion of the EFB. The present study evaluates succinic acid production process using EFB as the raw material from the perspective of three pillars of sustainability, namely economic, environment, and safety. Flowsheet modeling and techno-economic analysis methods are applied, followed by a multi-objective optimization using genetic algorithm method that simultaneously accounts for maximization of Net Present Value (NPV) and minimization of both Global Warming Potential (GWP) and Toxicity Damage Index (TDI). The pareto frontier reveals a trade-off among all objectives that the maximum NPV is 1,619 MMSD at the maximum EFB of 71,900 kg/hour. Meanwhile, the minimum GWP (12.4 kg CO2-eq/kg succinic acid) and TDI (4.5) are acquired at the minimum EFB of 50,000 kg/hour.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43107022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modification of sago starch using acid hydrolysis will change some physicochemical and rheological properties. Sago is easy to grow in tropical areas of coastal areas, many found in eastern Indonesia has a simple ergonomic terms. Ingredients of sago starch is consist of 20-30% amylose and 70-80% amylopectin which make sago starch difficult to dissolve in cold water, easy to gelatinize, high viscosity, hard and not expands in baking process. This study will analyse modified sago using lactic acid hydrolysis method and use UV rotary drying for 20 minutes. The properties of modified sago starch were observed i.e. pH, density, solubility, swelling power, and baking expansion. Time variables hydrolysis is 10; 15; 20; 25; and 30 minutes with a rotation speed of 8 rpm at room temperature. The results showed that the solubility, swelling power and baking expansion was increase. The density results showed that the longer acid hydrolysis time can make the smaller in the density. Solubility and swelling power showed increasing significantly compared to native sago starch. Modification by using UV light changes significantly the properties characteristics of product.
{"title":"Physicochemical and Rheological Properties of Sago (MetroxylonSagu) Starch Modified with Lactic Acid Hydrolysis and UV Rotary Drying","authors":"S. Sumardiono, R. Rakhmawati, I. Pudjihastuti","doi":"10.29037/AJCHE.V2I0.608","DOIUrl":"https://doi.org/10.29037/AJCHE.V2I0.608","url":null,"abstract":"Modification of sago starch using acid hydrolysis will change some physicochemical and rheological properties. Sago is easy to grow in tropical areas of coastal areas, many found in eastern Indonesia has a simple ergonomic terms. Ingredients of sago starch is consist of 20-30% amylose and 70-80% amylopectin which make sago starch difficult to dissolve in cold water, easy to gelatinize, high viscosity, hard and not expands in baking process. This study will analyse modified sago using lactic acid hydrolysis method and use UV rotary drying for 20 minutes. The properties of modified sago starch were observed i.e. pH, density, solubility, swelling power, and baking expansion. Time variables hydrolysis is 10; 15; 20; 25; and 30 minutes with a rotation speed of 8 rpm at room temperature. The results showed that the solubility, swelling power and baking expansion was increase. The density results showed that the longer acid hydrolysis time can make the smaller in the density. Solubility and swelling power showed increasing significantly compared to native sago starch. Modification by using UV light changes significantly the properties characteristics of product.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"18 1","pages":"41-53"},"PeriodicalIF":0.0,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47570199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}