首页 > 最新文献

Artificial Cells, Nanomedicine, and Biotechnology最新文献

英文 中文
Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions. 细胞结构植入物的过程结构-生物功能范式:增材制造、生物机械行为和生物功能之间协同作用的概述和展望。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-11-07 DOI: 10.1080/21691401.2023.2278156
R D K Misra, K P Misra

The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys via electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.

概述描述了生物科学和增材制造加工的细胞结构之间的协同作用,以阐明细胞结构植入物在消除应力屏蔽和满足弹性模量、抗冲击性和疲劳强度等生物机械性能要求以及生物功能方面的重要性。增材制造、计算机辅助设计和结构-性能关系的融合有望为当今生物医学领域的挑战提供解决方案。由于微观/微观结构、机械和物理性能与宿主位点不匹配,包括铸造和机械成型在内的生物医学器件的传统制造方法具有局限性。通过电子束熔化和激光粉末床融合的细胞结构合金的增材制造具有制造从缺陷部位的计算机断层扫描获得的患者特定设计的好处。概述中的讨论包括两个方面-第一个方面从最大限度地减少应力屏蔽的角度描述了促使植入物3D打印的根本原因,以及机械性能要求,其中细胞结构植入物的机械性能取决于细胞结构和细胞孔隙率百分比。第二个方面集中于细胞结构设备的生物反应。
{"title":"Process-structure-biofunctional paradigm in cellular structured implants: an overview and perspective on the synergy between additive manufacturing, bio-mechanical behaviour and biological functions.","authors":"R D K Misra, K P Misra","doi":"10.1080/21691401.2023.2278156","DOIUrl":"https://doi.org/10.1080/21691401.2023.2278156","url":null,"abstract":"<p><p>The overview describes the synergy between biological sciences and cellular structures processed by additive manufacturing to elucidate the significance of cellular structured implants in eliminating stress shielding and in meeting the bio-mechanical property requirements of elastic modulus, impact resistance, and fatigue strength in conjunction with the biological functionality. The convergence of additive manufacturing, computer-aided design, and structure-property relationships is envisaged to provide the solution to the current day challenges in the biomedical arena. The traditional methods of fabrication of biomedical devices including casting and mechanical forming have limitations because of the mismatch in micro/microstructure, mechanical, and physical properties with the host site. Additive manufacturing of cellular structured alloys <i>via</i> electron beam melting and laser powder bed fusion has benefits of fabricating patient-specific design that is obtained from the computed tomography scan of the defect site. The discussion in the overview consists of two aspects - the first one describes the underlying reason that motivated 3D printing of implants from the perspective of minimising stress shielding together with the mechanical property requirements, where the mechanical properties of cellular structured implants depend on the cellular architecture and percentage cellular porosity. The second aspect focuses on the biological response of cellular structured devices.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"630-640"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy. 肿瘤细胞衍生的混合外泌体作为达沙替尼纳米载体用于癌症治疗的研究。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-01 Epub Date: 2023-10-05 DOI: 10.1080/21691401.2023.2264358
Xiaofei Zhou, Yuetang Zhuang, Xiaohong Liu, Yaowen Gu, Junting Wang, Yuchen Shi, Li Zhang, Rui Li, Yelin Zhao, Hebing Chen, Jiao Li, Hongjuan Yao, Liang Li

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.

胰腺导管腺癌(PDAC)是导致癌症相关死亡的主要原因之一。因此,我们打算探索针对PDAC的新策略。基于外来体的仿生纳米颗粒由于其遗传能力,是癌症治疗中用作药物载体的一种有吸引力的候选物。在本研究中,我们通过将人癌症细胞来源的外泌体与达沙替尼负载的脂质体融合,设计了达沙替宁负载的混合外泌体,然后对粒径进行表征(119.9 ± 6.10 nm)和ζ电位(-11.45 ± 2.24 mV)。来自蛋白质印迹技术的主要蛋白质分析揭示了外泌体标记蛋白CD9和CD81的存在。PEG化的混合外泌体在酸性条件下表现出对pH敏感的药物释放,有利于药物递送到酸性癌症环境。与游离药物或脂质体制剂相比,通过双样本t检验或单因素方差分析,负载达沙替尼的混合外泌体对亲代PDAC细胞表现出显著更高的摄取率和细胞毒性。我们的计算分析结果表明,达沙替尼的药物相似性、ADMET和蛋白质配体结合亲和力得到了成功验证。癌症衍生的混合外泌体可能是癌症治疗的潜在候选治疗药物。
{"title":"Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy.","authors":"Xiaofei Zhou, Yuetang Zhuang, Xiaohong Liu, Yaowen Gu, Junting Wang, Yuchen Shi, Li Zhang, Rui Li, Yelin Zhao, Hebing Chen, Jiao Li, Hongjuan Yao, Liang Li","doi":"10.1080/21691401.2023.2264358","DOIUrl":"10.1080/21691401.2023.2264358","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"532-546"},"PeriodicalIF":5.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA. 针对幽门螺杆菌粘连蛋白HpaA的鲨鱼VNARs的鉴定与表征。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-09-04 DOI: 10.1080/21691401.2023.2255635
Yanchun Gao, Ruihong Wang, Lin Liu, Shitao Feng, Xiaozhi Xi, Wengong Yu, Yuchao Gu, Ye Wang

Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.

幽门螺杆菌(Helicobacter pylori, H. pylori)被认为是一种与多种胃肠道疾病相关的病原体。目前的治疗方法有许多缺点,包括抗生素耐药性。幽门螺杆菌可通过幽门螺杆菌粘连素A (HpaA)粘附胃黏膜并定植,抗HpaA抗体可能是治疗幽门螺杆菌的有效途径。免疫球蛋白新抗原受体可变结构域(variable domain of immunoglobulin new antigen receptor, VNAR)是一种体积小、稳定性好、易于制造的新型单域抗体。本研究从免疫鲨鱼VNAR噬菌体展示文库中分离出抗HpaA的VNAR。vnas可以结合重组蛋白和天然HpaA蛋白。vnas 2A2和3D6对不同表位的HpaA具有较高的结合亲和力。此外,构建了二价同源二聚体vnas biNb-2A2和biNb-3D6,以增强其结合亲和力。biNb-2A2和biNb-3D6在胃肠道pH条件下具有良好的稳定性。最后,以BiNb-2A2为捕获抗体,BiNb-3D6为检测抗体,建立夹心ELISA法定量HpaA蛋白。本研究为幽门螺杆菌感染的治疗或诊断提供了新的替代方法的潜在基础。
{"title":"Identification and characterization of shark VNARs targeting the <i>Helicobacter pylori</i> adhesin HpaA.","authors":"Yanchun Gao,&nbsp;Ruihong Wang,&nbsp;Lin Liu,&nbsp;Shitao Feng,&nbsp;Xiaozhi Xi,&nbsp;Wengong Yu,&nbsp;Yuchao Gu,&nbsp;Ye Wang","doi":"10.1080/21691401.2023.2255635","DOIUrl":"https://doi.org/10.1080/21691401.2023.2255635","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> (<i>H. pylori</i>) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. <i>H. pylori</i> can adhere to and colonize the gastric mucosa through <i>H. pylori</i> adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of <i>H. pylori</i> infection.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"51 1","pages":"509-519"},"PeriodicalIF":5.8,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10211558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Honeyberry-derived carbon quantum dots ameliorate LPS-induced neuroinflammation and oxidative stress through Nrf2/HO-1 signalling in HMC3 cells 蜂蜜衍生的碳量子点通过Nrf2/HO-1信号传导改善lps诱导的HMC3细胞的神经炎症和氧化应激
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-02-22 DOI: 10.1080/21691401.2023.2179062
Sanjay, Anshul Sharma, Hae-Jeung Lee

Abstract

Carbon quantum dots (CQDs) were synthesized from blue honeysuckle (Lonicera caerulea) berry fruit extracts using a well-known, cost-effective, and environmental friendly hydrothermal process. The material was characterized using UV-vis spectroscopy, photoluminescence (PL), XPS, and TEM studies. The as-synthesized carbon dots exhibit excellent PL properties, with a quantum yield of ∼35.92%. CQDs vary in size from ∼2 nm to 9 nm. This study established the neuroprotective effects of CQDs against lipopolysaccharide (LPS)-induced human microglial cell model. LPS was found to induce cytotoxicity, reactive oxygen species, and pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor-α) and downregulated enzymatic antioxidants such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2), superoxide dismutase, catalase, haem oxygenase (HO)-1, HO-2, and glutathione peroxidase, while CQDs treatment reversed LPS induced cytotoxicity, induced anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor β) and induce enzymatic antioxidants both at transcriptional and translational levels. The study suggested the potential role of CQDs prepared from Lonicera caerulea, as anti-inflammatory and antioxidative agents in neuroinflammatory and neurodegenerative diseases. In addition, CQDs could be exploited in various biomedical applications such as biosensing, drug delivery and tissue engineering.

摘要以蓝金银花(Lonicera caerulea)浆果提取物为原料,采用水热法合成碳量子点(CQDs)。利用紫外可见光谱、光致发光(PL)、XPS和TEM对材料进行了表征。合成的碳点具有优异的PL性能,量子产率为~ 35.92%。cqd的尺寸从~ 2nm到9nm不等。本研究建立了CQDs对脂多糖(LPS)诱导的人小胶质细胞模型的神经保护作用。研究发现,LPS可诱导细胞毒性、活性氧、促炎细胞因子白介素(IL)-1β、IL-6和肿瘤坏死因子-α,并下调核因子-红因子-2相关因子2 (Nrf2)、超氧化物歧化酶、过氧化氢酶、血红素加氧酶(HO)-1、HO-2和谷胱甘肽过氧化物酶等酶促抗氧化剂,而CQDs可逆转LPS诱导的细胞毒性、诱导抗炎细胞因子(IL-4、IL-10、IL-10)。和转化生长因子β),并在转录和翻译水平诱导酶抗氧化剂。提示金银花CQDs在神经炎症和神经退行性疾病中具有抗炎和抗氧化作用。此外,CQDs还可用于生物传感、药物传递和组织工程等多种生物医学应用。
{"title":"Honeyberry-derived carbon quantum dots ameliorate LPS-induced neuroinflammation and oxidative stress through Nrf2/HO-1 signalling in HMC3 cells","authors":"Sanjay, Anshul Sharma, Hae-Jeung Lee","doi":"10.1080/21691401.2023.2179062","DOIUrl":"https://doi.org/10.1080/21691401.2023.2179062","url":null,"abstract":"<p><b>Abstract</b></p><p>Carbon quantum dots (CQDs) were synthesized from blue honeysuckle (<i>Lonicera caerulea</i>) berry fruit extracts using a well-known, cost-effective, and environmental friendly hydrothermal process. The material was characterized using UV-vis spectroscopy, photoluminescence (PL), XPS, and TEM studies. The as-synthesized carbon dots exhibit excellent PL properties, with a quantum yield of ∼35.92%. CQDs vary in size from ∼2 nm to 9 nm. This study established the neuroprotective effects of CQDs against lipopolysaccharide (LPS)-induced human microglial cell model. LPS was found to induce cytotoxicity, reactive oxygen species, and pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor-α) and downregulated enzymatic antioxidants such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2), superoxide dismutase, catalase, haem oxygenase (HO)-1, HO-2, and glutathione peroxidase, while CQDs treatment reversed LPS induced cytotoxicity, induced anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor β) and induce enzymatic antioxidants both at transcriptional and translational levels. The study suggested the potential role of CQDs prepared from <i>Lonicera caerulea</i>, as anti-inflammatory and antioxidative agents in neuroinflammatory and neurodegenerative diseases. In addition, CQDs could be exploited in various biomedical applications such as biosensing, drug delivery and tissue engineering.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"40 5","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Statement of Retraction 撤回声明
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-31 DOI: 10.1080/21691401.2022.2060567
N. Asadi, N. Annabi, E. Mostafavi, Maryam Anzabi, Rovshan Khalilov, Siamak Saghfi, Masoud Mehrizadeh, A. Akbarzadeh
Nahideh Asadi, Nasim Annabi, Ebrahim Mostafavi, Maryam Anzabi, Rovshan Khalilov, Siamak Saghfi, Masoud Mehrizadeh & Abolfazl Akbarzadeh (2018) Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 938–945, DOI: https:// doi.org/10.1080/21691401.2018.1439839
{"title":"Statement of Retraction","authors":"N. Asadi, N. Annabi, E. Mostafavi, Maryam Anzabi, Rovshan Khalilov, Siamak Saghfi, Masoud Mehrizadeh, A. Akbarzadeh","doi":"10.1080/21691401.2022.2060567","DOIUrl":"https://doi.org/10.1080/21691401.2022.2060567","url":null,"abstract":"Nahideh Asadi, Nasim Annabi, Ebrahim Mostafavi, Maryam Anzabi, Rovshan Khalilov, Siamak Saghfi, Masoud Mehrizadeh & Abolfazl Akbarzadeh (2018) Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 938–945, DOI: https:// doi.org/10.1080/21691401.2018.1439839","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"24 3 1","pages":"108 - 108"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80623471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction 撤回声明
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-31 DOI: 10.1080/21691401.2022.2060561
Eommolbanin Ebrahimi, Amir Ahmad Khandaghi, F. Valipour, Soraia Babaie, Fatemeh Asghari, Soheila Motaali, E. Abbasi, A. Akbarzadeh, S. Davaran
The reused images have been described as originating from a new study with no reference to the previous studies. We contacted the corresponding authors, and they acknowledged the similarities in the data published. As this error directly impacts the reported results and conclusions, the Editor and Publisher have agreed to retract the article to ensure correction of the scholarly record. The corresponding author has been informed.
重复使用的图像被描述为来自一项新的研究,没有参考以前的研究。我们联系了通讯作者,他们承认发表的数据有相似之处。由于这个错误直接影响了报告的结果和结论,编辑和出版商同意撤回文章,以确保学术记录的纠正。已通知通讯作者。
{"title":"Statement of Retraction","authors":"Eommolbanin Ebrahimi, Amir Ahmad Khandaghi, F. Valipour, Soraia Babaie, Fatemeh Asghari, Soheila Motaali, E. Abbasi, A. Akbarzadeh, S. Davaran","doi":"10.1080/21691401.2022.2060561","DOIUrl":"https://doi.org/10.1080/21691401.2022.2060561","url":null,"abstract":"The reused images have been described as originating from a new study with no reference to the previous studies. We contacted the corresponding authors, and they acknowledged the similarities in the data published. As this error directly impacts the reported results and conclusions, the Editor and Publisher have agreed to retract the article to ensure correction of the scholarly record. The corresponding author has been informed.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"237 1","pages":"110 - 110"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72905606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction 撤回声明
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-31 DOI: 10.1080/21691401.2022.2060559
Eommolbanin Ebrahimi, A. Akbarzadeh, E. Abbasi, Amir Ahmad Khandaghi, Farhad Abasalizadeh, S. Davaran
Figure 5 appears to have been duplicated with Figure 6 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822). Figure 6 appears to have been duplicated with Figure 7 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822) Figure 6 appears to have been duplicated with Figure 11 from Akbarzadeh et al., 2012 (https://doi.org/10.2147/ IJN.S24326) Figure 7 appears to have been duplicated with Figure 8 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822).
图5似乎与Ebrahimi等人2014年的图6重复(https://doi.org/10.3109/21691401)。2014.968822)。图6似乎与Ebrahimi等人2014年的图7重复(https://doi.org/10.3109/21691401)。2014.968822)图6似乎与Akbarzadeh等人,2012年的图11 (https://doi.org/10.2147/ ijs . s24326)图7似乎与Ebrahimi等人,2014年的图8 (https://doi.org/10.3109/21691401)重复。2014.968822)。
{"title":"Statement of Retraction","authors":"Eommolbanin Ebrahimi, A. Akbarzadeh, E. Abbasi, Amir Ahmad Khandaghi, Farhad Abasalizadeh, S. Davaran","doi":"10.1080/21691401.2022.2060559","DOIUrl":"https://doi.org/10.1080/21691401.2022.2060559","url":null,"abstract":"Figure 5 appears to have been duplicated with Figure 6 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822). Figure 6 appears to have been duplicated with Figure 7 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822) Figure 6 appears to have been duplicated with Figure 11 from Akbarzadeh et al., 2012 (https://doi.org/10.2147/ IJN.S24326) Figure 7 appears to have been duplicated with Figure 8 from Ebrahimi et al., 2014 (https://doi.org/10.3109/21691401. 2014.968822).","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"15 1","pages":"109 - 109"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78788246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction 撤回声明
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-31 DOI: 10.1080/21691401.2022.2054518
Linlin Wang, Xiaonan Zhao, Ye Wang
{"title":"Statement of Retraction","authors":"Linlin Wang, Xiaonan Zhao, Ye Wang","doi":"10.1080/21691401.2022.2054518","DOIUrl":"https://doi.org/10.1080/21691401.2022.2054518","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"10a 1","pages":"82 - 82"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88104941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction 撤回声明
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-31 DOI: 10.1080/21691401.2022.2054515
Sen Wei, Jinghao Liu, Xin Li, Xing Liu
{"title":"Statement of Retraction","authors":"Sen Wei, Jinghao Liu, Xin Li, Xing Liu","doi":"10.1080/21691401.2022.2054515","DOIUrl":"https://doi.org/10.1080/21691401.2022.2054515","url":null,"abstract":"","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"31 1","pages":"81 - 81"},"PeriodicalIF":5.8,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73943165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative stress and histopathological changes in several organs of mice injected with biogenic silver nanoparticles. 生物源性纳米银注射小鼠多个器官的氧化应激和组织病理学改变。
IF 5.8 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-12-01 DOI: 10.1080/21691401.2022.2149931
Shushanik Kazaryan, Lilit Farsiyan, Juleta Tumoyan, Gayane Kirakosyan, Naira Ayvazyan, Hrachik Gasparyan, Sona Buloyan, Lilit Arshakyan, Ara Kirakosyan, Ashkhen Hovhannisyan

The widespread use of silver nanoparticles (AgNPs) requires a study of their safety. The aim of the present study was to assess the levels of oxidative stress markers and histopathological changes in the experimental model of sarcoma S-180 of outbred mice caused by biogenic AgNPs. AgNPs were synthesized using 50% ethanol extract of Ocimum araratum leaves that was standardized for rosmarinic acid content. The effects of AgNPs were tested on chemiluminescence (ChL), malonic dialdehyde (MDA) content and activity of superoxide dismutase (SOD) in healthy and experimental model of sarcoma S-180 mice. It was shown that, under the influence of AgNPs, the intensity of ChL decreased, in contrast with control groups (with the exception of the hepatocytes of animals with transplanted sarcoma). The presence of AgNPs leads to the decrease of MDA in the tissues of healthy mice and to a slight increase of MDA content in the tumour and kidney tissues. AgNPs neutralize the activity of SOD in kidney tissue samples in animals with transplanted sarcoma, and in tumour tissue, they reduce SOD activity by three times. The results of the histological analysis indicate that AgNPs not only cause the destruction of tumour tissue but also lead to structural changes in hepatocytes and nephrons, which can affect the function of these organs. AgNPs are potential agents for antitumor therapy. Future studies are needed using biocompatible non-toxic NPs that meet the requirement for these drugs.

银纳米粒子(AgNPs)的广泛使用需要对其安全性进行研究。本研究的目的是评估生物源性AgNPs引起的远交种小鼠S-180肉瘤实验模型的氧化应激标志物水平和组织病理学变化。以迷迭香酸含量为标准的香木香叶50%乙醇提取物为原料合成AgNPs。研究AgNPs对S-180肉瘤健康小鼠和实验小鼠化学发光(ChL)、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性的影响。结果表明,在AgNPs的影响下,与对照组相比,ChL的强度降低(移植肉瘤动物的肝细胞除外)。AgNPs的存在导致健康小鼠组织中MDA含量降低,肿瘤组织和肾脏组织中MDA含量略有增加。AgNPs中和移植肉瘤动物肾组织样品中SOD的活性,在肿瘤组织中,它们使SOD活性降低三倍。组织学分析结果表明,AgNPs不仅会破坏肿瘤组织,还会导致肝细胞和肾单位的结构改变,从而影响这些器官的功能。AgNPs是抗肿瘤治疗的潜在药物。未来的研究需要使用符合这些药物要求的生物相容性无毒NPs。
{"title":"Oxidative stress and histopathological changes in several organs of mice injected with biogenic silver nanoparticles.","authors":"Shushanik Kazaryan,&nbsp;Lilit Farsiyan,&nbsp;Juleta Tumoyan,&nbsp;Gayane Kirakosyan,&nbsp;Naira Ayvazyan,&nbsp;Hrachik Gasparyan,&nbsp;Sona Buloyan,&nbsp;Lilit Arshakyan,&nbsp;Ara Kirakosyan,&nbsp;Ashkhen Hovhannisyan","doi":"10.1080/21691401.2022.2149931","DOIUrl":"https://doi.org/10.1080/21691401.2022.2149931","url":null,"abstract":"<p><p>The widespread use of silver nanoparticles (AgNPs) requires a study of their safety. The aim of the present study was to assess the levels of oxidative stress markers and histopathological changes in the experimental model of sarcoma S-180 of outbred mice caused by biogenic AgNPs. AgNPs were synthesized using 50% ethanol extract of <i>Ocimum araratum</i> leaves that was standardized for rosmarinic acid content. The effects of AgNPs were tested on chemiluminescence (ChL), malonic dialdehyde (MDA) content and activity of superoxide dismutase (SOD) in healthy and experimental model of sarcoma S-180 mice. It was shown that, under the influence of AgNPs, the intensity of ChL decreased, in contrast with control groups (with the exception of the hepatocytes of animals with transplanted sarcoma). The presence of AgNPs leads to the decrease of MDA in the tissues of healthy mice and to a slight increase of MDA content in the tumour and kidney tissues. AgNPs neutralize the activity of SOD in kidney tissue samples in animals with transplanted sarcoma, and in tumour tissue, they reduce SOD activity by three times. The results of the histological analysis indicate that AgNPs not only cause the destruction of tumour tissue but also lead to structural changes in hepatocytes and nephrons, which can affect the function of these organs. AgNPs are potential agents for antitumor therapy. Future studies are needed using biocompatible non-toxic NPs that meet the requirement for these drugs.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"50 1","pages":"331-342"},"PeriodicalIF":5.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10343413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Artificial Cells, Nanomedicine, and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1