Pub Date : 2022-06-17DOI: 10.1080/21691401.2022.2088545
Hugo de Rossi, Camila Bortoliero Costa, Luana Teixeira Rodrigues-Rossi, Giovana Barros Nunes, D. Spinosa Chéles, Isabella Maran Pereira, D. F. O. Rocha, E. Feitosa, Ana Valéria Colnaghi Simionato, Gisele Zoccal Mingoti, Pedro Henrique Benites Aoki, M. F. Gouveia Nogueira
Abstract The aim of this study was to evaluate the effect of multilamellar vesicles (MLVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in co-culture with in vitro-produced bovine embryos (IVPEs). The stability of five concentrations of MLVs (1.0, 1.25, 1.5, 1.75, and 2.0 mM) produced using ultrapure water or embryonic culture medium with 24 or 48 h of incubation at 38.5 °C with 5% CO2 was assessed. In addition, the toxicity of MLVs and their modulation of the lipid profile of the plasma membrane of IVPEs were evaluated after 48 h of co-culture. Both media allowed the production of MLVs. Incubation (24 and 48 h) did not impair the MLV structure but affected the average diameter. The rate of blastocyst production was not reduced, demonstrating the nontoxicity of the MLVs even at 2.0 mmol/L. The lipid profile of the embryos was different depending on the MLV concentration. In comparison with control embryos, embryos cultured with MLVs at 2.0 mmol/L had a higher relative abundance of six lipid ions (m/z 720.6, 754.9, 759.0, 779.1, 781.2, and 797.3). This study sheds light on a new culture system in which the MLV concentration could change the lipid profile of the embryonic cell membrane in a dose-dependent manner.
{"title":"Modulating the lipid profile of blastocyst cell membrane with DPPC multilamellar vesicles","authors":"Hugo de Rossi, Camila Bortoliero Costa, Luana Teixeira Rodrigues-Rossi, Giovana Barros Nunes, D. Spinosa Chéles, Isabella Maran Pereira, D. F. O. Rocha, E. Feitosa, Ana Valéria Colnaghi Simionato, Gisele Zoccal Mingoti, Pedro Henrique Benites Aoki, M. F. Gouveia Nogueira","doi":"10.1080/21691401.2022.2088545","DOIUrl":"https://doi.org/10.1080/21691401.2022.2088545","url":null,"abstract":"Abstract The aim of this study was to evaluate the effect of multilamellar vesicles (MLVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in co-culture with in vitro-produced bovine embryos (IVPEs). The stability of five concentrations of MLVs (1.0, 1.25, 1.5, 1.75, and 2.0 mM) produced using ultrapure water or embryonic culture medium with 24 or 48 h of incubation at 38.5 °C with 5% CO2 was assessed. In addition, the toxicity of MLVs and their modulation of the lipid profile of the plasma membrane of IVPEs were evaluated after 48 h of co-culture. Both media allowed the production of MLVs. Incubation (24 and 48 h) did not impair the MLV structure but affected the average diameter. The rate of blastocyst production was not reduced, demonstrating the nontoxicity of the MLVs even at 2.0 mmol/L. The lipid profile of the embryos was different depending on the MLV concentration. In comparison with control embryos, embryos cultured with MLVs at 2.0 mmol/L had a higher relative abundance of six lipid ions (m/z 720.6, 754.9, 759.0, 779.1, 781.2, and 797.3). This study sheds light on a new culture system in which the MLV concentration could change the lipid profile of the embryonic cell membrane in a dose-dependent manner.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"69 1","pages":"158 - 167"},"PeriodicalIF":5.8,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85549725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-30DOI: 10.1080/21691401.2022.2078339
Wooil Choi, Yang-Hoon Kim, Jiho Min
Abstract The vacuoles in Saccharomyces cerevisiae are the key players digesting the waste within the cell. This functional organelle corresponding to the lysosome of mammalians contains acidic hydrolases and specific membrane proteins. Vacuoles have more than 60 hydrolytic enzymes and can easily be modified by genetic engineering. In previous study, we optimised the encapsulation condition with appropriate time and concentration and confirmed the use of vacuole as drug delivery carrier for acute myeloid leukaemia treatment. In this study, recombinant vacuole that could target the acute myeloid leukaemia cell line was constructed. The vacuoles derived from genetic engineered yeast were decorated with targeting peptide that has specific affinity with TLR2 on AML cell membrane. The anti-cancer efficacy of AML targeting vacuoles carriers with encapsulated daunorubicin was shown to be higher than normal vacuole carriers and the crude daunorubicin. The results confirmed that target selective chemotherapy using the vacuole drug delivery system is effective and offers potential for cancer therapy.
{"title":"Surface-modified vacuole-based daunorubicin delivery system for acute myeloid leukaemia (AML) and their selective therapeutics","authors":"Wooil Choi, Yang-Hoon Kim, Jiho Min","doi":"10.1080/21691401.2022.2078339","DOIUrl":"https://doi.org/10.1080/21691401.2022.2078339","url":null,"abstract":"Abstract The vacuoles in Saccharomyces cerevisiae are the key players digesting the waste within the cell. This functional organelle corresponding to the lysosome of mammalians contains acidic hydrolases and specific membrane proteins. Vacuoles have more than 60 hydrolytic enzymes and can easily be modified by genetic engineering. In previous study, we optimised the encapsulation condition with appropriate time and concentration and confirmed the use of vacuole as drug delivery carrier for acute myeloid leukaemia treatment. In this study, recombinant vacuole that could target the acute myeloid leukaemia cell line was constructed. The vacuoles derived from genetic engineered yeast were decorated with targeting peptide that has specific affinity with TLR2 on AML cell membrane. The anti-cancer efficacy of AML targeting vacuoles carriers with encapsulated daunorubicin was shown to be higher than normal vacuole carriers and the crude daunorubicin. The results confirmed that target selective chemotherapy using the vacuole drug delivery system is effective and offers potential for cancer therapy.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"90 1","pages":"147 - 157"},"PeriodicalIF":5.8,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80396272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-12DOI: 10.1080/21691401.2021.2017947
Wentao Zhou, Shen Li, Shasha Hao, Honghui Zhang, Tao Li, Wanjing Li, Jiaxin Liu, Hong Wang, Chengmin Yang
Abstract The protection of the isolated heart is very important in heart transplantation surgery, meanwhile, the ischaemia/reperfusion (I/R) of the isolated heart is the main cause of its damage. A timely supply of oxygen can significantly improve the prevention of myocardial ischaemia, however, the cardioprotective solution does not have an oxygen supply function. Haemoglobin Based on Oxygen Carriers (HBOCs) is a kind of nano-oxygen drug, which can effectively and timely supply oxygen to hypoxic organs and tissues. However, the oxygen-carrying and releasing capacity (P50) is different with different HBOCs. The aim of our study was to investigate whether STS (a kind of cardioprotective solution, St Thomas Solution) +different P50 HBOCs provide superior myocardial protection and decrease myocardial injury compared to only STS in rats Langendorff isolated heart perfusion model. The results showed that STS + HBOCs can improve cardiac function at 37 °C for 35 min and 120 min, and reduce myocardial infarctions, pathological changes, and apoptosis of cardiomyocytes, and the STS + low P50 HBOCs is more effective than the other two higher P50 HBOCs. We further demonstrated the outstanding protective effect of STS + low P50 HBOCs on cardiac function, reducing myocardial infarctions and apoptosis of cardiomyocytes in rat Langendorff isolated heart perfusion model.
{"title":"Protective effect and mechanism of low P50 haemoglobin oxygen carrier on isolated rat heart","authors":"Wentao Zhou, Shen Li, Shasha Hao, Honghui Zhang, Tao Li, Wanjing Li, Jiaxin Liu, Hong Wang, Chengmin Yang","doi":"10.1080/21691401.2021.2017947","DOIUrl":"https://doi.org/10.1080/21691401.2021.2017947","url":null,"abstract":"Abstract The protection of the isolated heart is very important in heart transplantation surgery, meanwhile, the ischaemia/reperfusion (I/R) of the isolated heart is the main cause of its damage. A timely supply of oxygen can significantly improve the prevention of myocardial ischaemia, however, the cardioprotective solution does not have an oxygen supply function. Haemoglobin Based on Oxygen Carriers (HBOCs) is a kind of nano-oxygen drug, which can effectively and timely supply oxygen to hypoxic organs and tissues. However, the oxygen-carrying and releasing capacity (P50) is different with different HBOCs. The aim of our study was to investigate whether STS (a kind of cardioprotective solution, St Thomas Solution) +different P50 HBOCs provide superior myocardial protection and decrease myocardial injury compared to only STS in rats Langendorff isolated heart perfusion model. The results showed that STS + HBOCs can improve cardiac function at 37 °C for 35 min and 120 min, and reduce myocardial infarctions, pathological changes, and apoptosis of cardiomyocytes, and the STS + low P50 HBOCs is more effective than the other two higher P50 HBOCs. We further demonstrated the outstanding protective effect of STS + low P50 HBOCs on cardiac function, reducing myocardial infarctions and apoptosis of cardiomyocytes in rat Langendorff isolated heart perfusion model.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"16 1","pages":"121 - 129"},"PeriodicalIF":5.8,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91133485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-11DOI: 10.1080/21691401.2022.2074439
Nour Alsawaftah, Vinod Paul, Doua Kosaji, Leen Khabbaz, Nahid S Awad, G. Husseini
Abstract Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine–glycine–aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).
{"title":"Ultrasound-sensitive cRGD-modified liposomes as a novel drug delivery system","authors":"Nour Alsawaftah, Vinod Paul, Doua Kosaji, Leen Khabbaz, Nahid S Awad, G. Husseini","doi":"10.1080/21691401.2022.2074439","DOIUrl":"https://doi.org/10.1080/21691401.2022.2074439","url":null,"abstract":"Abstract Targeted liposomes enable the delivery of encapsulated chemotherapeutics to tumours by targeting specific receptors overexpressed on the surfaces of cancer cells; this helps in reducing the systemic side effects associated with the cytotoxic agents. Upon reaching the targeted site, these liposomes can be triggered to release their payloads using internal or external triggers. In this study, we investigate the use of low-frequency ultrasound as an external modality to trigger the release of a model drug (calcein) from non-targeted and targeted pegylated liposomes modified with cyclic arginine–glycine–aspartate (cRGD). Liposomes were exposed to sonication at 20-kHz using three different power densities (6.2, 9, and 10 mW/cm2). Our results showed that increasing the power density increased calcein release from the sonicated liposomes. Moreover, cRGD conjugation to the surface of the liposomes rendered cRGD-liposomes more susceptible to ultrasound compared to the non-targeted liposomes. cRGD conjugation was also found to increase cellular uptake of calcein by human colorectal carcinoma (HCT116) cells which were further enhanced following sonicating the cells with low-frequency ultrasound (LFUS).","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"22 1","pages":"111 - 120"},"PeriodicalIF":5.8,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87264353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.1080/21691401.2022.2056191
B. Alotaibi, W. Negm, E. Elekhnawy, T. El-Masry, M. E. Elharty, A. Saleh, D. Abdelkader, F. A. Mokhtar
Abstract The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity. Graphical Abstract
{"title":"Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: in vitro and in vivo study","authors":"B. Alotaibi, W. Negm, E. Elekhnawy, T. El-Masry, M. E. Elharty, A. Saleh, D. Abdelkader, F. A. Mokhtar","doi":"10.1080/21691401.2022.2056191","DOIUrl":"https://doi.org/10.1080/21691401.2022.2056191","url":null,"abstract":"Abstract The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity. Graphical Abstract","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"118 1","pages":"96 - 106"},"PeriodicalIF":5.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89345081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.1080/21691401.2022.2056609
Thanachai Changcharoen, Thidsanu Apiphatnaphakul, Wasupon Watjanavarreerat, K. Locharoenrat
Abstract This study aimed to elucidate the optical functions of naturally butterfly wing scales via precise control of morphology as an effective photonic sensor and confirm the content of metal oxide nanoparticles in surrounding nicotine. Metal oxide nanoparticles mixed with nicotine were deposited on the wing scales through the spin-coating method and hence investigated using optical microscopy and spectroscopy. Experimental results demonstrated that absorption intensities of ZnO and TiO2 mixed with nicotine on Danaus genutia were remarkably enhanced. Due to the relatively high concentration of zinc found in e-cigarette aerosol, the intensity of ZnO/nicotine modelled as aerosol adsorption on Danaus genutia, further held a certain linear relationship with the concentration of ZnO. The limit of detection of ZnO was as low as 1 nM. The working mechanism of our sensor was explained through the molecular adsorption after H-bond formation of ZnO/nicotine molecules as high-index materials on the wing scales of Danaus genutia without aggregation. This photonic sensor is an alternative to the present-day methods for the rapid test of ZnO content, which is very simple without complicated instrumentation. Furthermore, our method might become a starting point for the advancement of portable instruments for onsite ZnO detection.
{"title":"Effective detection of ZnO in nicotine using butterfly wing scales","authors":"Thanachai Changcharoen, Thidsanu Apiphatnaphakul, Wasupon Watjanavarreerat, K. Locharoenrat","doi":"10.1080/21691401.2022.2056609","DOIUrl":"https://doi.org/10.1080/21691401.2022.2056609","url":null,"abstract":"Abstract This study aimed to elucidate the optical functions of naturally butterfly wing scales via precise control of morphology as an effective photonic sensor and confirm the content of metal oxide nanoparticles in surrounding nicotine. Metal oxide nanoparticles mixed with nicotine were deposited on the wing scales through the spin-coating method and hence investigated using optical microscopy and spectroscopy. Experimental results demonstrated that absorption intensities of ZnO and TiO2 mixed with nicotine on Danaus genutia were remarkably enhanced. Due to the relatively high concentration of zinc found in e-cigarette aerosol, the intensity of ZnO/nicotine modelled as aerosol adsorption on Danaus genutia, further held a certain linear relationship with the concentration of ZnO. The limit of detection of ZnO was as low as 1 nM. The working mechanism of our sensor was explained through the molecular adsorption after H-bond formation of ZnO/nicotine molecules as high-index materials on the wing scales of Danaus genutia without aggregation. This photonic sensor is an alternative to the present-day methods for the rapid test of ZnO content, which is very simple without complicated instrumentation. Furthermore, our method might become a starting point for the advancement of portable instruments for onsite ZnO detection.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"60 1","pages":"87 - 95"},"PeriodicalIF":5.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82961087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-27DOI: 10.1080/21691401.2022.2042009
S. O. Olojede, S. Lawal, A. Dare, E. C. Naidu, C. Rennie, O. Azu
Abstract Reproductive derangement and metabolic disorders in human immunodeficiency virus (HIV) infected persons require a nanoparticle delivery system to convey antiretroviral drugs to the anatomical sanctuary such as testis. This study investigated the effects of tenofovir disoproxil fumarate (TDF) loaded silver nanoparticles (AgNPs) on the testicular oxidative stress, inflammatory cytokines and histology in male diabetic rats. Thirty-six Sprague-Dawley rats weighing 230 ± 20 g were randomly divided into diabetic and non-diabetic groups (n = 18). Diabetes was induced using the fructose-streptozotocin (Frt-STZ) rat model. Both groups were further divided into three (n = 6) and administered distilled water, TDF, or TDF-AgNP. Results obtained with the TDF-AgNP administration showed a significant increase (p < .05) in the reduced glutathione and catalase levels. Tumour necrosis factor-alpha and interleukin 6 were reduced in diabetic rats administered TDF-AgNP. More so, administration of TDF-AgNP to diabetic rats improved testicular histoarchitecture in diabetic rats. In addition, diabetic rats administered TDF-AgNP showed a significant reduction (p < .05) in blood glucose levels. TDF-AgNP to diabetic rats enhanced testicular antioxidant enzyme, reduced testicular inflammation, and alleviated structural derangements in the testis. Thus, the application of AgNP to deliver TDF may alleviate testicular toxicity and subsequently cater for neglected reproductive dysfunction during the management of HIV infection.
{"title":"Evaluation of tenofovir disoproxil fumarate loaded silver nanoparticle on testicular morphology in experimental type-2 diabetic rats","authors":"S. O. Olojede, S. Lawal, A. Dare, E. C. Naidu, C. Rennie, O. Azu","doi":"10.1080/21691401.2022.2042009","DOIUrl":"https://doi.org/10.1080/21691401.2022.2042009","url":null,"abstract":"Abstract Reproductive derangement and metabolic disorders in human immunodeficiency virus (HIV) infected persons require a nanoparticle delivery system to convey antiretroviral drugs to the anatomical sanctuary such as testis. This study investigated the effects of tenofovir disoproxil fumarate (TDF) loaded silver nanoparticles (AgNPs) on the testicular oxidative stress, inflammatory cytokines and histology in male diabetic rats. Thirty-six Sprague-Dawley rats weighing 230 ± 20 g were randomly divided into diabetic and non-diabetic groups (n = 18). Diabetes was induced using the fructose-streptozotocin (Frt-STZ) rat model. Both groups were further divided into three (n = 6) and administered distilled water, TDF, or TDF-AgNP. Results obtained with the TDF-AgNP administration showed a significant increase (p < .05) in the reduced glutathione and catalase levels. Tumour necrosis factor-alpha and interleukin 6 were reduced in diabetic rats administered TDF-AgNP. More so, administration of TDF-AgNP to diabetic rats improved testicular histoarchitecture in diabetic rats. In addition, diabetic rats administered TDF-AgNP showed a significant reduction (p < .05) in blood glucose levels. TDF-AgNP to diabetic rats enhanced testicular antioxidant enzyme, reduced testicular inflammation, and alleviated structural derangements in the testis. Thus, the application of AgNP to deliver TDF may alleviate testicular toxicity and subsequently cater for neglected reproductive dysfunction during the management of HIV infection.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"34 1","pages":"71 - 80"},"PeriodicalIF":5.8,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85432975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-17DOI: 10.1080/21691401.2021.1883043
S. Nadri, A. Rahmani, S. H. Hosseini, M. Habibizadeh, M. Araghi, Hossein Mostafavi
Abstract Adhesion bands are pathological fibrous tissues that create in the middle of tissues and organs, often reasons of intestinal obstruction, and female infertility. Here, we explored the anti-adhesive and inflammatory capacities of PEG/silk and Ibuprofen-loaded PEG/Silk core-shell nanofibrous membranes, respectively. The ibuprofen-loaded Silk Fibroin-Poly ethylene Glycol (SF-PEG) core-shell membrane was fabricated by electrospinning and considered in terms of morphology, surface wettability, drug release, and degradation. To reveal the membrane capability for adhesion bands inhibition, the membrane was stitched among the abdominal partition and peritoneum and then evaluated using two scoring adhesion systems. According to results, the fibrous membrane hindered cell proliferation, and the scoring systems and pathology showed that in a rat model, Ibuprofen-loaded PEG/Silk core-shell membrane caused a lightening in post-operative adhesion bands and the low-grade inflammatory reaction in animal models. Collectively, we fabricated new ibuprofen-loaded PEG/SF membranes with anti-adhesion and anti-inflammation properties. Moreover, this core-shell electrospun fibrous membrane has not even now been used to prevent peritendinous adhesion generation.
{"title":"Prevention of peritoneal adhesions formation by core-shell electrospun ibuprofen-loaded PEG/silk fibrous membrane","authors":"S. Nadri, A. Rahmani, S. H. Hosseini, M. Habibizadeh, M. Araghi, Hossein Mostafavi","doi":"10.1080/21691401.2021.1883043","DOIUrl":"https://doi.org/10.1080/21691401.2021.1883043","url":null,"abstract":"Abstract Adhesion bands are pathological fibrous tissues that create in the middle of tissues and organs, often reasons of intestinal obstruction, and female infertility. Here, we explored the anti-adhesive and inflammatory capacities of PEG/silk and Ibuprofen-loaded PEG/Silk core-shell nanofibrous membranes, respectively. The ibuprofen-loaded Silk Fibroin-Poly ethylene Glycol (SF-PEG) core-shell membrane was fabricated by electrospinning and considered in terms of morphology, surface wettability, drug release, and degradation. To reveal the membrane capability for adhesion bands inhibition, the membrane was stitched among the abdominal partition and peritoneum and then evaluated using two scoring adhesion systems. According to results, the fibrous membrane hindered cell proliferation, and the scoring systems and pathology showed that in a rat model, Ibuprofen-loaded PEG/Silk core-shell membrane caused a lightening in post-operative adhesion bands and the low-grade inflammatory reaction in animal models. Collectively, we fabricated new ibuprofen-loaded PEG/SF membranes with anti-adhesion and anti-inflammation properties. Moreover, this core-shell electrospun fibrous membrane has not even now been used to prevent peritendinous adhesion generation.","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"68 1","pages":"40 - 48"},"PeriodicalIF":5.8,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80337941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}