In our modern environment, we are bombarded with stimuli or cues that exert significant influence over our actions. The extent to which such cues attain control over or disrupt goal-directed behavior is dependent on several factors, including one's inherent tendencies. Using a rodent model, we have shown that individuals vary in the value they place on stimuli associated with reward. Some individuals, termed "goal-trackers," primarily attribute predictive value to reward cues, whereas others, termed "sign-trackers," attribute predictive and incentive value. Thus, for sign-trackers, the reward cue is transformed into an incentive stimulus that is capable of eliciting maladaptive behaviors. The sign-tracker/goal-tracker animal model has allowed us to refine our understanding of behavioral and computational theories related to reward learning and to parse the underlying neural processes. Further, the neurobehavioral profile of sign-trackers is relevant to several psychiatric disorders, including substance use disorder, impulse control disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and posttraumatic stress disorder. This model, therefore, can advance our understanding of the psychological and neurobiological mechanisms that contribute to individual differences in vulnerability to psychopathology. Notably, initial attempts at translation-capturing individual variability in the propensity to sign-track in humans-have been promising and in line with what we have learned from the animal model. In this review, we highlight the pivotal role played by the sign-tracker/goal-tracker animal model in enriching our understanding of the psychological and neural basis of motivated behavior and psychiatric symptomatology. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Before we can make any choice, we must gather information from the environment about what our options are. This information-gathering process is critically mediated by attention, and our attention is, in turn, shaped by our previous experiences with-and learning about-stimuli and their consequences. In this review, we highlight studies demonstrating a rapid and automatic influence of reward learning on attentional capture and argue that these findings provide a human analog of sign-tracking behavior observed in nonhuman animals-wherein signals of reward gain incentive salience and become attractive targets for attention (and overt behavior) in their own right. We then consider the implications of this idea for understanding the drivers of cue-controlled behavior, with focus on addiction as a case in which choices with regard to reward-related stimuli can become injurious to health. We argue that motivated behavior in general-and addiction in particular-can be understood within a "biased competition" framework: Different options and outcomes compete for attentional priority as a function of top-down goals, bottom-up salience, and prior experience, and the winner of this competition becomes the target for subsequent outcome-directed and flexible behavior. Finally, we outline the implications of the biased-competition framework for cognitive, behavioral, and socioeconomic interventions for addiction. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
There is a growing number of studies investigating discriminatory fear conditioning and conditioned inhibition of fear to assess safety learning, in addition to extinction of cued fear. Despite all of these paradigms resulting in a reduction in fear expression, there are nuanced differences among them, which could be mediated through distinct behavioral and neural mechanisms. These differences could impact how we approach potential treatment options in clinical disorders with dysregulated fear responses. The objective of this review is to give an overview of the conditional discrimination and inhibition findings reported in both animal models and human neuropsychiatric disorders. Both behavioral and neural findings are reviewed among human and rodent studies that include conditional fear discrimination via conditional stimuli with and without reinforcement (CS+ vs. CS-, respectively) and/or conditional inhibition of fear through assessment of the fear response to a compound CS-/CS+ cue versus CS+. There are several parallels across species in behavioral fear expression as well as neural circuits promoting fear reduction in response to a CS- and/or CS-/CS+ compound cue. Continued and increased efforts to compare similar behavioral fear inhibition paradigms across species are needed to make breakthrough advances in our understanding and treatment approaches to individuals with fear disorders. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Psychopathology is vast and diverse. Across distinct disease states, individuals exhibit symptoms that appear counter to the standard view of rationality (expected utility maximization). We argue that some aspects of psychopathology can be described as resource-rational, reflecting a rational trade-off between reward and cognitive resources. We review work on two theories of this kind: rational inattention, where a capacity limit applies to perceptual channels, and policy compression, where the capacity limit applies to action channels. We show how these theories can parsimoniously explain many forms of psychopathology, including affective, primary psychotic, and neurodevelopmental disorders, as well as many effects of psychoactive medications on these disorders. While there are important disorder-specific differences and the theories are by no means universal, we argue that resource rationality offers a useful new perspective on psychopathology. By emphasizing the role of cognitive resource constraints, this approach offers a more inclusive picture of rationality. Some aspects of psychopathology may reflect rational trade-offs rather than the breakdown of rationality. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Adolescents, both human and nonhuman, exhibit impairments in the extinction of learned fear, an effect that is exacerbated, at least in rodents, by exposure to chronic stress. However, we have little understanding of the mechanisms underlying this effect. Therefore, here, we examined whether corticosterone exposure, a model of chronic stress, alters the expression of inhibitory neurons expressing parvalbumin (PV) in the basolateral amygdala and prefrontal cortex, two brain regions that have been implicated in fear extinction memories, in adolescent rats. We also examined the expression of perineuronal nets (PNNs), extracellular matrix structures that encompass inhibitory interneurons, in these two regions. These structures might render fear memories resistant to extinction by applying a structural "brake" on the plasticity of fear memories. Corticosterone-exposed adolescent rats exhibited poor extinction retention, as in past work, and were also found to have reduced percentage of PV-positive cells surrounded by PNNs in the basolateral amygdala. PV cells and PNNs were unaffected by corticosterone exposure in the prefrontal cortex. Our results suggest that the altered function of amygdala interneurons may be associated with the impaired extinction performance in stress-exposed adolescent rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Here, we describe the efforts we dedicated to the challenge of modifying entrenched emotionally laden memories. In recent years, through a number of collaborations and using a combination of behavioral, molecular, and computational approaches, we: (a) developed novel approaches to fear attenuation that engage mechanisms that differ from those engaged during extinction (Monfils), (b) examined whether our approaches can generalize to other reinforcers (Lee, Gonzales, Chaudhri, Cofresi, and Monfils), (c) derived principled explanations for the differential outcomes of our approaches (Niv, Gershman, Song, and Monfils), (d) developed better assessment metrics to evaluate outcome success (Shumake and Monfils), (e) identified biomarkers that can explain significant variance in our outcomes of interest (Shumake and Monfils), and (f) developed better basic research assays and translated efforts to the clinic (Smits, Telch, Otto, Shumake, and Monfils). We briefly highlight each of these milestones and conclude with final remarks and extracted principles. (PsycInfo Database Record (c) 2024 APA, all rights reserved).