Ahmad M. Saeedi, Norah H. Alonizan, Ahmad A. Alsaigh, L. Alaya, L. El Mir, Mahmoud Zaki El-Readi, M. Hjiri
Herein, sol–gel are used to synthesize pure and calcium‐doped ZnO (CZO). X‐ray diffraction shows that all samples have hexagonal wurtzite structure with a slight distortion of ZnO lattice and no extra secondary phases. The crystallite size increases after the addition of calcium from 31 to 34 nm. Photoluminescence shows the vanishment of the green emission band existed in the pure sample; in addition to the appearance of new peaks at 408, 448, 465, and 596 nm attributed to zinc interstitials (Zni), zinc vacancy (VZn), oxygen vacancy defect (Vo), and oxygen interstitial (Oi), respectively. The increase of crystallites size influences the efficacity of CZO sample against microbes. The different mechanisms to enhance the antibacterial activities are the release of Zn2+, reactive oxygen species production, and electrostatic interactions. Increasing the amount of CZO powder in dimethyl sulfoxide from 50 to 100 μg mL−1 leads to an increase of antibacterial activity of samples; and this is probably due to enhancement of number of interaction sites. Promising results are illustrated, which proves the potentiality of doping with Ca. The growth curves through optical density (OD600 nm) measurements of strains in CZO nanoparticles using serial fold dilution method indicated that strains viability decreases with increasing nanoparticles concentrations.
{"title":"Antimicrobial Agent Based on Ca‐Doped ZnO Nanopowders","authors":"Ahmad M. Saeedi, Norah H. Alonizan, Ahmad A. Alsaigh, L. Alaya, L. El Mir, Mahmoud Zaki El-Readi, M. Hjiri","doi":"10.1002/pssa.202300162","DOIUrl":"https://doi.org/10.1002/pssa.202300162","url":null,"abstract":"Herein, sol–gel are used to synthesize pure and calcium‐doped ZnO (CZO). X‐ray diffraction shows that all samples have hexagonal wurtzite structure with a slight distortion of ZnO lattice and no extra secondary phases. The crystallite size increases after the addition of calcium from 31 to 34 nm. Photoluminescence shows the vanishment of the green emission band existed in the pure sample; in addition to the appearance of new peaks at 408, 448, 465, and 596 nm attributed to zinc interstitials (Zni), zinc vacancy (VZn), oxygen vacancy defect (Vo), and oxygen interstitial (Oi), respectively. The increase of crystallites size influences the efficacity of CZO sample against microbes. The different mechanisms to enhance the antibacterial activities are the release of Zn2+, reactive oxygen species production, and electrostatic interactions. Increasing the amount of CZO powder in dimethyl sulfoxide from 50 to 100 μg mL−1 leads to an increase of antibacterial activity of samples; and this is probably due to enhancement of number of interaction sites. Promising results are illustrated, which proves the potentiality of doping with Ca. The growth curves through optical density (OD600 nm) measurements of strains in CZO nanoparticles using serial fold dilution method indicated that strains viability decreases with increasing nanoparticles concentrations.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72601002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianfei Xu, Xiuming Liu, Yuhang Zhang, Yiqun Hu, R. Xia
Cold welding at the nanoscale is a promising technique for bottom‐up fabrication and assembly of nanostructured materials. Herein, the cold welding process of the CoCrFeCuNi high‐entropy‐alloy (HEA) nanowires in the form of side‐by‐side contact using molecular dynamics simulation is inestigated. The effects of overlap length, crystal orientation, and temperature are taken into consideration. The results demonstrate that strength is positively correlated with the overlap length. Fracture strain first increases up to a maximum and then decreases with the increase in overlap length. When the temperature increases from 300 to 900 K, the ultimate stress of the welded nanowires decreases from 1.18 to 0.87 GPa, and the welding stress decreases from −0.54 to −0.26 GPa. The crystal orientation significantly influences the deformation mechanism. For samples welded by nanowires with the same crystal orientation, the primary deformation mechanisms are twinning and dislocation slip. However, for samples welded by nanowires with different crystal orientations, the deformation is primarily mediated by the grain boundary slip. The research can enhance the understanding of the cold welding behavior for low‐dimensional materials and is hopeful to provide some valuable guidance for the bottom‐up fabrication and assembly of HEA nanocomponents.
{"title":"Mechanical Properties of Cold‐Welded CoCrFeCuNi Nanowires with Side‐by‐Side Contact: A Molecular Dynamics Study","authors":"Jianfei Xu, Xiuming Liu, Yuhang Zhang, Yiqun Hu, R. Xia","doi":"10.1002/pssa.202300326","DOIUrl":"https://doi.org/10.1002/pssa.202300326","url":null,"abstract":"Cold welding at the nanoscale is a promising technique for bottom‐up fabrication and assembly of nanostructured materials. Herein, the cold welding process of the CoCrFeCuNi high‐entropy‐alloy (HEA) nanowires in the form of side‐by‐side contact using molecular dynamics simulation is inestigated. The effects of overlap length, crystal orientation, and temperature are taken into consideration. The results demonstrate that strength is positively correlated with the overlap length. Fracture strain first increases up to a maximum and then decreases with the increase in overlap length. When the temperature increases from 300 to 900 K, the ultimate stress of the welded nanowires decreases from 1.18 to 0.87 GPa, and the welding stress decreases from −0.54 to −0.26 GPa. The crystal orientation significantly influences the deformation mechanism. For samples welded by nanowires with the same crystal orientation, the primary deformation mechanisms are twinning and dislocation slip. However, for samples welded by nanowires with different crystal orientations, the deformation is primarily mediated by the grain boundary slip. The research can enhance the understanding of the cold welding behavior for low‐dimensional materials and is hopeful to provide some valuable guidance for the bottom‐up fabrication and assembly of HEA nanocomponents.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77780168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samar Al-Shehri, Salma Alshehri, Haithem Elhosni Ali, Jamaan E. Alassafi, A. O. Alzahrani, M. S. Aida
Herein, zinc oxide (ZnO) nanocrystalline powders with different aluminum (Al) concentrations (from 0 to 4 wt%) have been successfully synthesized via sol–gel technique. The structure and morphology of the Al‐doped ZnO (AZO) nanoparticles are investigated using X‐ray powder diffraction (XRD) and scanning electron microscopy. The XRD results reveal the reduction in the crystallite size with increasing the Al doping ratio. ZnO phase is observed in all samples with no extra peaks. In addition, UV–vis diffuse reflectance spectroscopy is used to study the effect of Al dopant on the ZnO nanopowder optical properties. it is concluded that increasing Al concentration leads to decrease in energy gap (Eg) value from 3.30 eV (for undoped ZnO) to 3.25 eV (for AZO with highest concentration, 4 wt%). Finally, according to the obtained results, the ability to tune the bandgap of the prepared samples makes them superior candidates for using in various applications, especially optoelectronic devices.
{"title":"Al Doping Influence on the Properties of Sol–Gel Synthetized ZnO Nanoparticles","authors":"Samar Al-Shehri, Salma Alshehri, Haithem Elhosni Ali, Jamaan E. Alassafi, A. O. Alzahrani, M. S. Aida","doi":"10.1002/pssa.202300272","DOIUrl":"https://doi.org/10.1002/pssa.202300272","url":null,"abstract":"Herein, zinc oxide (ZnO) nanocrystalline powders with different aluminum (Al) concentrations (from 0 to 4 wt%) have been successfully synthesized via sol–gel technique. The structure and morphology of the Al‐doped ZnO (AZO) nanoparticles are investigated using X‐ray powder diffraction (XRD) and scanning electron microscopy. The XRD results reveal the reduction in the crystallite size with increasing the Al doping ratio. ZnO phase is observed in all samples with no extra peaks. In addition, UV–vis diffuse reflectance spectroscopy is used to study the effect of Al dopant on the ZnO nanopowder optical properties. it is concluded that increasing Al concentration leads to decrease in energy gap (Eg) value from 3.30 eV (for undoped ZnO) to 3.25 eV (for AZO with highest concentration, 4 wt%). Finally, according to the obtained results, the ability to tune the bandgap of the prepared samples makes them superior candidates for using in various applications, especially optoelectronic devices.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82236559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To explore the influence of different gate positions on the performance of AlGaN/GaN high electron mobility transistor devices, two model structures are proposed in this paper: an inverted T‐type gate and source–drain opposite side structure (ITGS–DOSS), and an embedded ITGS–DOSS. It is shown in the simulation results that compared with the traditional T‐type gate structure, these two structures have better transfer characteristics and significantly reduce the on‐state resistance, which can effectively improve the virtual gate effect and suppress the current collapse effect. Furthermore, these two structures can also improve the frequency characteristics of the device, with a maximum cutoff frequency of about 625 and 635 GHz, respectively. The threshold voltage of the ITGS–DOSS is about −30 V, which is significantly shifted to the left compared to the traditional T‐type structure. With a gate–drain spacing of 4.4 μm, the breakdown voltage is still as high as 1661 V. As the device size and gate–drain spacing decrease, this structure has better voltage withstand characteristics, thus achieving low threshold and high breakdown device performance.
{"title":"Effect of Source–Drain Opposite Side Gate on the AlGaN/GaN High Electron Mobility Transistor Devices","authors":"Shengting Luo, Xianyun Liu, Xingfang Jiang","doi":"10.1002/pssa.202300375","DOIUrl":"https://doi.org/10.1002/pssa.202300375","url":null,"abstract":"To explore the influence of different gate positions on the performance of AlGaN/GaN high electron mobility transistor devices, two model structures are proposed in this paper: an inverted T‐type gate and source–drain opposite side structure (ITGS–DOSS), and an embedded ITGS–DOSS. It is shown in the simulation results that compared with the traditional T‐type gate structure, these two structures have better transfer characteristics and significantly reduce the on‐state resistance, which can effectively improve the virtual gate effect and suppress the current collapse effect. Furthermore, these two structures can also improve the frequency characteristics of the device, with a maximum cutoff frequency of about 625 and 635 GHz, respectively. The threshold voltage of the ITGS–DOSS is about −30 V, which is significantly shifted to the left compared to the traditional T‐type structure. With a gate–drain spacing of 4.4 μm, the breakdown voltage is still as high as 1661 V. As the device size and gate–drain spacing decrease, this structure has better voltage withstand characteristics, thus achieving low threshold and high breakdown device performance.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84881412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blue, green, and red micro‐light‐emitting diodes (LEDs) are expected to serve as light sources for next‐generation full‐color displays. This study fabricates an InGaN LED with an active layer comprising stacked red, green, and blue active layers separated by interlayers using the metal‐organic vapor‐phase epitaxy method for application to a monolithic full‐color LED. Experimental results and band simulations reveal that the emission wavelength during the current injection is controllable via adjustments to the Si doping amount of the interlayer. For a Si doping amount of the interlayer of approximately 2 × 1018 cm−3, only the red active layer closest to the p‐side emits light with a wavelength of ≈610 nm. With a decrease in the Si doping amount in the interlayer, the emission intensity from the n‐side active layer, that is, the green and blue active layers, increases. Moreover, the Si‐doped interlayer acts as a barrier against holes diffusing from the p‐side to the n‐side, thus controlling the amount of carrier injected into each active layer. Additionally, the green and blue active layers under the red active layer improve the emission characteristics of the red active layer. These results indicate the importance of this technology for realizing monolithic, full‐color InGaN‐based LEDs.
{"title":"Emission Mechanism of Light‐Emitting Diode Structures with Red, Green, and Blue Active Layers Separated by Si‐Doped Interlayers","authors":"K. Okuno, K. Goshonoo, M. Ohya","doi":"10.1002/pssa.202300181","DOIUrl":"https://doi.org/10.1002/pssa.202300181","url":null,"abstract":"Blue, green, and red micro‐light‐emitting diodes (LEDs) are expected to serve as light sources for next‐generation full‐color displays. This study fabricates an InGaN LED with an active layer comprising stacked red, green, and blue active layers separated by interlayers using the metal‐organic vapor‐phase epitaxy method for application to a monolithic full‐color LED. Experimental results and band simulations reveal that the emission wavelength during the current injection is controllable via adjustments to the Si doping amount of the interlayer. For a Si doping amount of the interlayer of approximately 2 × 1018 cm−3, only the red active layer closest to the p‐side emits light with a wavelength of ≈610 nm. With a decrease in the Si doping amount in the interlayer, the emission intensity from the n‐side active layer, that is, the green and blue active layers, increases. Moreover, the Si‐doped interlayer acts as a barrier against holes diffusing from the p‐side to the n‐side, thus controlling the amount of carrier injected into each active layer. Additionally, the green and blue active layers under the red active layer improve the emission characteristics of the red active layer. These results indicate the importance of this technology for realizing monolithic, full‐color InGaN‐based LEDs.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82239808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Reinhold, Ulf Mikolajczak, H. Borchert, Jürgen Parisi, Dorothea Scheunemann
Copper indium disulfide nanoparticles continue attracting attention as absorber material in light harvesting devices. The preparation of thin films by deposition of this material from colloidal solution remains challenging. Typically, colloidal semiconductor nanoparticles are surrounded by long organic ligand molecules which are required to stabilize the particles during synthesis. A common way to obtain conductive thin films is the development of ligand exchange procedures that need to be applied prior to film deposition. However, in the case of copper indium disulfide nanoparticles, appropriate procedures are still missing. Therefore, an alternative approach is investigated herein. Colloidal copper indium disulfide nanoparticles are synthesized and deposited on substrates. Instead of applying a ligand exchange procedure, thermal removal of the ligands and sintering of the inorganic film are explored. Results on the preparation of the nanoparticle films, their structural investigation, and conductivity measurements are reported.
{"title":"Preparation and Structural Characterization of Thin Films of CuInS2 by Sintering Colloidally Synthesized Nanoparticles at Moderate Temperature","authors":"H. Reinhold, Ulf Mikolajczak, H. Borchert, Jürgen Parisi, Dorothea Scheunemann","doi":"10.1002/pssa.202200855","DOIUrl":"https://doi.org/10.1002/pssa.202200855","url":null,"abstract":"Copper indium disulfide nanoparticles continue attracting attention as absorber material in light harvesting devices. The preparation of thin films by deposition of this material from colloidal solution remains challenging. Typically, colloidal semiconductor nanoparticles are surrounded by long organic ligand molecules which are required to stabilize the particles during synthesis. A common way to obtain conductive thin films is the development of ligand exchange procedures that need to be applied prior to film deposition. However, in the case of copper indium disulfide nanoparticles, appropriate procedures are still missing. Therefore, an alternative approach is investigated herein. Colloidal copper indium disulfide nanoparticles are synthesized and deposited on substrates. Instead of applying a ligand exchange procedure, thermal removal of the ligands and sintering of the inorganic film are explored. Results on the preparation of the nanoparticle films, their structural investigation, and conductivity measurements are reported.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74140012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The performance potentials and limits for GaN current aperture vertical electron transistors with conventional, doped, and natural polarization superjunction (PSJ) drift layers at 1.2–10 kV breakdown voltage (BV) ratings are quantitatively compared. The static and dynamic performance parameters for each device are simulated and extracted. The specific on‐resistance RON,sp and specific total charge QT,sp (defined as the sum of specific gate charge QG,sp and specific drain–source charge QDS,sp) are extracted from Medici technology computer‐aided design simulations representing both the static and dynamic performance respectively. Moreover, a developed figure‐of‐merit (FoM) (RON,sp · QT,sp) is used to quantitively compare the performance of these field‐effect transistors in the range of BV ratings. Compared to the doped superjunction (DSJ) and conventional CAVETs, natural PSJ CAVET exhibits 1%–60% and 70%–99% reduction in RON,sp, while it is 100 to 1000× reduction in QT,sp, at BV between 1.2 and 10 kV respectively. Simultaneously, 22%–80% and 80%–99% reduction in performance FoM respectively are found.
{"title":"Comparative Performance Evaluation for 1.2–10kV Conventional and Superjunction GaN Current Aperture Vertical Electron Transistors","authors":"M. Torky, Yanzhen Zhao, Panagiotis Lazos, T. Chow","doi":"10.1002/pssa.202300305","DOIUrl":"https://doi.org/10.1002/pssa.202300305","url":null,"abstract":"The performance potentials and limits for GaN current aperture vertical electron transistors with conventional, doped, and natural polarization superjunction (PSJ) drift layers at 1.2–10 kV breakdown voltage (BV) ratings are quantitatively compared. The static and dynamic performance parameters for each device are simulated and extracted. The specific on‐resistance RON,sp and specific total charge QT,sp (defined as the sum of specific gate charge QG,sp and specific drain–source charge QDS,sp) are extracted from Medici technology computer‐aided design simulations representing both the static and dynamic performance respectively. Moreover, a developed figure‐of‐merit (FoM) (RON,sp · QT,sp) is used to quantitively compare the performance of these field‐effect transistors in the range of BV ratings. Compared to the doped superjunction (DSJ) and conventional CAVETs, natural PSJ CAVET exhibits 1%–60% and 70%–99% reduction in RON,sp, while it is 100 to 1000× reduction in QT,sp, at BV between 1.2 and 10 kV respectively. Simultaneously, 22%–80% and 80%–99% reduction in performance FoM respectively are found.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86670692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias L. Karschuck, Stefan-Wolfgang Schmidt, Stefan Achtsnicht, A. Poghossian, Patrick H. Wagner, M. Schöning
In comparison to single‐analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi‐simultaneous characterization of multiple (up to 16) capacitive field‐effect sensors by the capacitive–voltage (C–V) and the constant‐capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user‐defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label‐free detection of ligand‐stabilized, charged gold nanoparticles.
{"title":"Multiplexing system for automated characterization of a capacitive field‐effect sensor array","authors":"Tobias L. Karschuck, Stefan-Wolfgang Schmidt, Stefan Achtsnicht, A. Poghossian, Patrick H. Wagner, M. Schöning","doi":"10.1002/pssa.202300265","DOIUrl":"https://doi.org/10.1002/pssa.202300265","url":null,"abstract":"In comparison to single‐analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi‐simultaneous characterization of multiple (up to 16) capacitive field‐effect sensors by the capacitive–voltage (C–V) and the constant‐capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user‐defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label‐free detection of ligand‐stabilized, charged gold nanoparticles.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86029733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an efficient, safe, and environmentally friendly technology, semiconductor photocatalysis has been widely used in the removal of antibiotics from wastewater. In this work, a novel Ag/BiOI/g‐C3N4 composite photocatalytic material, BiOI/g‐C3N4, g‐C3N4, and BiOI are prepared as the photocatalysts. The morphologies, chemical properties, and photocatalytic performances of the photocatalysts are characterized using scanning electron microscope, transmission electron microscope, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectrometer, ultraviolet–visible spectroscopy (UV–Vis) diffuse reflectance spectra, and photoluminescence spectra. In addition, tetracycline hydrochloride (TC) and ceftiofur sodium aqueous solutions are used to simulate wastewater and the photocatalytic degradation performances of the photocatalysts are investigated and compared under visible light. Compared to g‐C3N4, BiOI, and BiOI/g‐C3N4, the Ag/BiOI/g‐C3N4 demonstrates superior performance, increasing the removal rates of TC and ceftiofur sodium to 85.6% and 90.2%, respectively. The photocatalytic mechanism of the Ag/BiOI/g‐C3N4 may involve the promotion of the visible light–harvesting ability and inhibition of the recombination of photogenerated electron/hole pairs. Furthermore, the primary active groups in the system are identified as superoxide radicals (·O2−) and hydroxyl radicals (·OH). Herein, some valuable insights into the development of innovative photocatalytic materials are offered for the effective removal of antibiotics from water.
{"title":"Enhanced photocatalytic degradation of antibiotics by Ag/BiOI/g‐C3N4 composites","authors":"Ting Li, M. Ma, Junhai Wang, Qiang Li, Yunwu Yu, Qianqian Zou, Xinran Li, Xiaoyi Wei, Tingting Yan, Yulan Tang","doi":"10.1002/pssa.202300261","DOIUrl":"https://doi.org/10.1002/pssa.202300261","url":null,"abstract":"As an efficient, safe, and environmentally friendly technology, semiconductor photocatalysis has been widely used in the removal of antibiotics from wastewater. In this work, a novel Ag/BiOI/g‐C3N4 composite photocatalytic material, BiOI/g‐C3N4, g‐C3N4, and BiOI are prepared as the photocatalysts. The morphologies, chemical properties, and photocatalytic performances of the photocatalysts are characterized using scanning electron microscope, transmission electron microscope, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectrometer, ultraviolet–visible spectroscopy (UV–Vis) diffuse reflectance spectra, and photoluminescence spectra. In addition, tetracycline hydrochloride (TC) and ceftiofur sodium aqueous solutions are used to simulate wastewater and the photocatalytic degradation performances of the photocatalysts are investigated and compared under visible light. Compared to g‐C3N4, BiOI, and BiOI/g‐C3N4, the Ag/BiOI/g‐C3N4 demonstrates superior performance, increasing the removal rates of TC and ceftiofur sodium to 85.6% and 90.2%, respectively. The photocatalytic mechanism of the Ag/BiOI/g‐C3N4 may involve the promotion of the visible light–harvesting ability and inhibition of the recombination of photogenerated electron/hole pairs. Furthermore, the primary active groups in the system are identified as superoxide radicals (·O2−) and hydroxyl radicals (·OH). Herein, some valuable insights into the development of innovative photocatalytic materials are offered for the effective removal of antibiotics from water.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80358341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The microstructure and mechanical properties of cast Al‐Cu‐Mn alloy influenced by various Sc additions (viz. 0.1, 0.2, 0.3, 0.4, and 0.5 wt%) are investigated. It is found that the grain size of α‐Al and the area proportion of the second phase are decreased with the addition of Sc. In addition, the morphology of the precipitated phase in Al‐Cu‐Mn alloy also evolves at different stages, and the solidification temperature range and initial enthalpy change of the alloy are changed, resulting in the formation of a variety of second‐phase containing Sc. Owing to the grain refinement and precipitation strengthening effects, the hardness of as‐cast alloys is better than T6 alloys. Moreover, it is observed that when the Sc content is 0.3%, the mechanical properties of the as‐cast Al‐Cu‐Mn alloy are the minimum, and the Al‐Cu‐Mn alloys after T6 heat treatment are the maximum. These results confirm that the mechanical properties improvement effect of the as‐cast Al‐Cu‐Mn alloy is greater than that of the T6 heat treatment Al‐Cu‐Mn alloy with the addition of Sc. Meanwhile, the Orowan strengthening mechanism is found to have lost its dominant position.
研究了不同Sc添加量(即0.1、0.2、0.3、0.4和0.5 wt%)对铸态Al - Cu - Mn合金显微组织和力学性能的影响。结果表明,随着Sc的加入,α - Al的晶粒尺寸和第二相的面积比例减小,Al - Cu - Mn合金中析出相的形态也在不同阶段发生变化,合金的凝固温度范围和初始焓变也发生了变化,从而形成了多种含Sc的第二相。铸态合金的硬度优于T6合金。此外,Sc含量为0.3%时,铸态Al - Cu - Mn合金的力学性能最低,T6热处理后的Al - Cu - Mn合金力学性能最高。结果表明,添加Sc的铸态Al - Cu - Mn合金的力学性能改善效果大于T6热处理Al - Cu - Mn合金,同时发现Orowan强化机制失去了主导地位。
{"title":"Effect Mechanism of Sc Addition and T6 Heat Treatment on Precipitated Phase and Mechanical Properties of Al‐Cu‐Mn Alloy","authors":"Pan Tang, Kailai Yu, Luman Qin, Saisha Huang","doi":"10.1002/pssa.202300190","DOIUrl":"https://doi.org/10.1002/pssa.202300190","url":null,"abstract":"The microstructure and mechanical properties of cast Al‐Cu‐Mn alloy influenced by various Sc additions (viz. 0.1, 0.2, 0.3, 0.4, and 0.5 wt%) are investigated. It is found that the grain size of α‐Al and the area proportion of the second phase are decreased with the addition of Sc. In addition, the morphology of the precipitated phase in Al‐Cu‐Mn alloy also evolves at different stages, and the solidification temperature range and initial enthalpy change of the alloy are changed, resulting in the formation of a variety of second‐phase containing Sc. Owing to the grain refinement and precipitation strengthening effects, the hardness of as‐cast alloys is better than T6 alloys. Moreover, it is observed that when the Sc content is 0.3%, the mechanical properties of the as‐cast Al‐Cu‐Mn alloy are the minimum, and the Al‐Cu‐Mn alloys after T6 heat treatment are the maximum. These results confirm that the mechanical properties improvement effect of the as‐cast Al‐Cu‐Mn alloy is greater than that of the T6 heat treatment Al‐Cu‐Mn alloy with the addition of Sc. Meanwhile, the Orowan strengthening mechanism is found to have lost its dominant position.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79422861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}