Pub Date : 2024-11-29DOI: 10.1007/s00449-024-03108-y
Natália Madruga Arrieira, Mariana Teixeira de Ávila, Wladimir Hernandez Flores, Mariano Michelon, Susan Hartwig Duarte, Janaína Fernandes de Medeiros Burkert
This study aimed to evaluate different methods of recovery of carotenoid-rich microbial oil (CRMO) produced by Rhodotorula mucilaginosa in renewable agro-industrial by-products to achieve oleogels based on CRMO and carnauba wax (CW). Among the oil extraction methods, Bligh and Dyer was selected since this system kept color stability. Extracted CRMO showed 41.1 µg g-1 of total carotenoid and lipid content of 23.8%. Oleogels based on CRMO or olive oil (control system) and CW at concentrations of 2.5, 5, 7.5, and 10% were characterized and their potential application to food systems was highlighted. This study is one of the first to describe production of oleogel based on CRMO. Its results contribute to its potential as a fat replacer. This novel oleogel may meet worldwide demands to reduce trans fatty acids in foods and act as a protective system of bioactive biocompounds.
{"title":"Oleogels based on carotenoid-rich microbial oil produced by R. mucilaginosa in agro-industrial by-products.","authors":"Natália Madruga Arrieira, Mariana Teixeira de Ávila, Wladimir Hernandez Flores, Mariano Michelon, Susan Hartwig Duarte, Janaína Fernandes de Medeiros Burkert","doi":"10.1007/s00449-024-03108-y","DOIUrl":"https://doi.org/10.1007/s00449-024-03108-y","url":null,"abstract":"<p><p>This study aimed to evaluate different methods of recovery of carotenoid-rich microbial oil (CRMO) produced by Rhodotorula mucilaginosa in renewable agro-industrial by-products to achieve oleogels based on CRMO and carnauba wax (CW). Among the oil extraction methods, Bligh and Dyer was selected since this system kept color stability. Extracted CRMO showed 41.1 µg g<sup>-1</sup> of total carotenoid and lipid content of 23.8%. Oleogels based on CRMO or olive oil (control system) and CW at concentrations of 2.5, 5, 7.5, and 10% were characterized and their potential application to food systems was highlighted. This study is one of the first to describe production of oleogel based on CRMO. Its results contribute to its potential as a fat replacer. This novel oleogel may meet worldwide demands to reduce trans fatty acids in foods and act as a protective system of bioactive biocompounds.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1007/s00449-024-03107-z
Manjila Adhikari, Li Wang, Dhurba Adhikari, Sujan Khadka, Mati Ullah, Bricard Mbituyimana, Clemence Futila Bukatuka, Zhijun Shi, Guang Yang
Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.
{"title":"Electric stimulation: a versatile manipulation technique mediated microbial applications.","authors":"Manjila Adhikari, Li Wang, Dhurba Adhikari, Sujan Khadka, Mati Ullah, Bricard Mbituyimana, Clemence Futila Bukatuka, Zhijun Shi, Guang Yang","doi":"10.1007/s00449-024-03107-z","DOIUrl":"https://doi.org/10.1007/s00449-024-03107-z","url":null,"abstract":"<p><p>Electric stimulation (ES) is a versatile technique that uses an electric field to manipulate microorganisms individually. Over the past several decades, the capabilities of ES have expanded from bioremediation to the precise motion control of cells and microorganisms. However, there is limited information on the underlying mechanisms, latest advancement and broader microbial applications of ES in various fields, such as the production of extracellular polymers with upgraded properties. This review article summarizes recent advancements in ES and discusses it as a unique external manipulation technique for microorganisms with wide applications in bioremediation, industry, biofilm deactivation, disinfection, and controlled biosynthesis. One specific application of ES discussed in this review is the extracellular biosynthesis, regulation, and organization of extracellular polymers, such as bacterial cellulose nanofibrils, curdlan, and microbial nanowires. Overall, this review aims to provide a platform for microbial biotechnologists and synthetic biologists to leverage the manipulation of microorganisms using ES for bio-based applications, including the production of extracellular polymers with enhanced properties. Researchers can engineer, manipulate, and control microorganisms for various applications by harnessing the potential of electric fields.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm2. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m3 and 0.099 USD/m3, respectively.
{"title":"Enhancing the anaerobic sludge characteristics and inorganic impurities removal from synthesis wastewater through integration of electrocoagulation process with up-flow anaerobic sludge blanket reactor.","authors":"Saeed Derakhshesh, Elham Abdollahzadeh Sharghi, Babak Bonakdarpour","doi":"10.1007/s00449-024-03104-2","DOIUrl":"https://doi.org/10.1007/s00449-024-03104-2","url":null,"abstract":"<p><p>The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm<sup>2</sup>. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m<sup>3</sup> and 0.099 USD/m<sup>3</sup>, respectively.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Droplet-based bioprinting (DBB) allows for high precision, noncontact, and on-demand distribution of bioinks, hence it has been widely utilized in the preparation of bacteria-laden living materials (BLMs). Nonetheless, discontinuous ink deposition makes it challenging to fabricate large-sized intact living structures via this technique. Herein, we explore the way of using DBB to construct centimeter-scale BLMs with bespoke geometries, and further demonstrate its potential applicability in sensing-responsive device by integrating engineered bacteria. We first established a DBB method based on printing-path design, which does not require hardware modification. This strategy was able to produce customized 3D-hydrogel structures with high shape fidelity. Then, we confirmed the excellent biocompatibility of the above biofabrication approach. The Escherichia coli survived 93% ± 4.0% in printed BLMs, with uniform distribution throughout the structure. As a proof-of-concept, we finally manufactured a test strip-like heavy metal biosensor capable of plug-and-play detecting mercury (II) in water using the aforesaid approach. To our knowledge, this is the first study to employ 3D bioprinted BLMs for the detection of prevalent heavy metal pollutants. Our research shed light on the versatility of DBB in BLMs construction, which is not restricted to two-dimensional patterns. Moreover, our results are expected to innovate heavy metal biodetection and improve detection efficiency and sensitivity.
{"title":"Droplet-based bioprinting for the tailored fabrication of bacteria-laden living materials.","authors":"Xudong Guo, Dingyi Wang, Yingying Guo, Junpeng Zhang, Yingying Li, Haozhong Tian, Lihong Liu, Yong Liang, Yongguang Yin, Bin He, Ligang Hu, Guibin Jiang","doi":"10.1007/s00449-024-03106-0","DOIUrl":"https://doi.org/10.1007/s00449-024-03106-0","url":null,"abstract":"<p><p>Droplet-based bioprinting (DBB) allows for high precision, noncontact, and on-demand distribution of bioinks, hence it has been widely utilized in the preparation of bacteria-laden living materials (BLMs). Nonetheless, discontinuous ink deposition makes it challenging to fabricate large-sized intact living structures via this technique. Herein, we explore the way of using DBB to construct centimeter-scale BLMs with bespoke geometries, and further demonstrate its potential applicability in sensing-responsive device by integrating engineered bacteria. We first established a DBB method based on printing-path design, which does not require hardware modification. This strategy was able to produce customized 3D-hydrogel structures with high shape fidelity. Then, we confirmed the excellent biocompatibility of the above biofabrication approach. The Escherichia coli survived 93% ± 4.0% in printed BLMs, with uniform distribution throughout the structure. As a proof-of-concept, we finally manufactured a test strip-like heavy metal biosensor capable of plug-and-play detecting mercury (II) in water using the aforesaid approach. To our knowledge, this is the first study to employ 3D bioprinted BLMs for the detection of prevalent heavy metal pollutants. Our research shed light on the versatility of DBB in BLMs construction, which is not restricted to two-dimensional patterns. Moreover, our results are expected to innovate heavy metal biodetection and improve detection efficiency and sensitivity.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.
{"title":"Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies.","authors":"Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03105-1","DOIUrl":"10.1007/s00449-024-03105-1","url":null,"abstract":"<p><p>D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1007/s00449-024-03102-4
Kexin Lin, Weiting Zhang, Xinyang Fan, Xiaoyan Li, Nuomeng Wang, Shuyu Yu, Lei Lu
The efficient and eco-friendly removal of lignin is a critical challenge for bioethanol production from lignocellulosic biomass. Herein, we report the integration of laccase with deep eutectic solvents (DESs) for the pretreatment of corn stover to enhance the production of reducing sugars. Three betaine-based DESs were prepared and tested for their effects on the activity and stability of a bacterial laccase from Bacillus amyloliquefaciens LC02. The aqueous solution of DESs showed no adverse influence on laccase activity, and the laccase thermostability was improved in the presence of DESs. More than 95% of the laccase activity was retained in the DESs solution during the first hour of incubation at 70 °C. A red shift in the fluorescence spectra was observed for the laccase in the presence of DESs, indicating conformational changes. The laccase was able to degrade a dimeric lignin model compound by cleaving its β-O-4 bond. The transformation products were identified using LC-MS. The maximal lignin removal from corn stover was achieved by pretreatment using laccase in combination with the betaine-glycerol DES, which also resulted in a yield of fermentable sugar that was 130% higher than the control. This combination strategy provides guidance on the application of laccase and DESs in the pretreatment of lignocellulosic biomass.
高效、环保地去除木质素是利用木质纤维素生物质生产生物乙醇的关键挑战。在此,我们报告了将漆酶与深共晶溶剂(DES)结合用于玉米秸秆预处理以提高还原糖产量的方法。我们制备了三种甜菜碱基 DES,并测试了它们对来自淀粉芽孢杆菌 LC02 的细菌漆酶的活性和稳定性的影响。结果表明,DESs水溶液对漆酶活性没有不良影响,而且在DESs存在的情况下,漆酶的热稳定性得到了改善。在 70 °C 下培养的第一个小时内,DESs 溶液中保留了超过 95% 的漆酶活性。在有DESs存在的情况下,可以观察到漆酶的荧光光谱发生了红移,表明其构象发生了变化。漆酶能够通过裂解二聚木质素模型化合物的 β-O-4 键来降解该化合物。利用 LC-MS 对转化产物进行了鉴定。使用漆酶结合甜菜碱-甘油 DES 进行预处理,可以最大程度地去除玉米秸秆中的木质素,其可发酵糖的产量比对照组高出 130%。这种组合策略为漆酶和 DES 在木质纤维素生物质预处理中的应用提供了指导。
{"title":"Deep eutectic solvents assisted laccase pretreatment for improving enzymatic hydrolysis of corn stover.","authors":"Kexin Lin, Weiting Zhang, Xinyang Fan, Xiaoyan Li, Nuomeng Wang, Shuyu Yu, Lei Lu","doi":"10.1007/s00449-024-03102-4","DOIUrl":"https://doi.org/10.1007/s00449-024-03102-4","url":null,"abstract":"<p><p>The efficient and eco-friendly removal of lignin is a critical challenge for bioethanol production from lignocellulosic biomass. Herein, we report the integration of laccase with deep eutectic solvents (DESs) for the pretreatment of corn stover to enhance the production of reducing sugars. Three betaine-based DESs were prepared and tested for their effects on the activity and stability of a bacterial laccase from Bacillus amyloliquefaciens LC02. The aqueous solution of DESs showed no adverse influence on laccase activity, and the laccase thermostability was improved in the presence of DESs. More than 95% of the laccase activity was retained in the DESs solution during the first hour of incubation at 70 °C. A red shift in the fluorescence spectra was observed for the laccase in the presence of DESs, indicating conformational changes. The laccase was able to degrade a dimeric lignin model compound by cleaving its β-O-4 bond. The transformation products were identified using LC-MS. The maximal lignin removal from corn stover was achieved by pretreatment using laccase in combination with the betaine-glycerol DES, which also resulted in a yield of fermentable sugar that was 130% higher than the control. This combination strategy provides guidance on the application of laccase and DESs in the pretreatment of lignocellulosic biomass.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1007/s00449-024-03103-3
Mohd Shafiq Nasir, Ahmad Ramli Mohd Yahya, Nur Asshifa Md Noh
The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation. The maximum biomass produced was 11.29 ± 0.20 g/L obtained at 400 rpm, while the maximum rhamnolipid production was 5.06 ± 1.17 g/L at 600 rpm, giving a rhamnolipid productivity of 0.023 g/L/h. High agitation enhances substrate availability by breaking the hydrophobic semi-solid PSO into smaller substrate particles, increasing surface contact area, thus facilitating the PSO utilisation by P. aeruginosa USM-AR2, thereby inducing rhamnolipid production. This study further demonstrates the ability of rhamnolipid to solubilize and disperse sludge oil, which typically remains a solid at room temperature, in the liquid medium. GCMS analysis showed that five fatty acids, namely palmitic acid, myristic acid, stearic acid, methyl ester and linoleic acid, have been utilised. The rhamnolipid showed an oil spreading test result of 160 mm of waste engine oil displacement compared to control using distilled water that remained non-displaced, and a critical micelle concentration (CMC) of 17 mg/L. In emulsification index (E24) assay, the rhamnolipid was shown to emulsify toluene (66.7% ± 7.2), waste engine oil (58.3% ± 7.2), kerosene (41.8% ± 4.8) and n-hexane (33.1% ± 5.7). UPLC analysis on rhamnolipid revealed a congener mixture of rhamnolipid, namely di-rhamnolipid and mono-rhamnolipid mixture. This is the first report on the employment of an integrated foam control reactor system with PSO as the carbon source for rhamnolipid production by P. aeruginosa USM-AR2 culture.
{"title":"Utilization of palm sludge oil for rhamnolipid biosynthesis by Pseudomonas aeruginosa USM-AR2 in a stirred tank reactor.","authors":"Mohd Shafiq Nasir, Ahmad Ramli Mohd Yahya, Nur Asshifa Md Noh","doi":"10.1007/s00449-024-03103-3","DOIUrl":"https://doi.org/10.1007/s00449-024-03103-3","url":null,"abstract":"<p><p>The study focused on rhamnolipid production by batch fermentation of Pseudomonas aeruginosa USM-AR2 in a 3-L stirred-tank reactor (STR) using palm sludge oil (PSO) as the sole carbon source. The impact of various agitation rates towards the dispersion of PSO in the medium was evaluated to improve biomass growth and rhamnolipid production. A mechanical foam collection and recycling system was designed and retrofitted to the STR to overcome severe foam formation during fermentation. The maximum biomass produced was 11.29 ± 0.20 g/L obtained at 400 rpm, while the maximum rhamnolipid production was 5.06 ± 1.17 g/L at 600 rpm, giving a rhamnolipid productivity of 0.023 g/L/h. High agitation enhances substrate availability by breaking the hydrophobic semi-solid PSO into smaller substrate particles, increasing surface contact area, thus facilitating the PSO utilisation by P. aeruginosa USM-AR2, thereby inducing rhamnolipid production. This study further demonstrates the ability of rhamnolipid to solubilize and disperse sludge oil, which typically remains a solid at room temperature, in the liquid medium. GCMS analysis showed that five fatty acids, namely palmitic acid, myristic acid, stearic acid, methyl ester and linoleic acid, have been utilised. The rhamnolipid showed an oil spreading test result of 160 mm of waste engine oil displacement compared to control using distilled water that remained non-displaced, and a critical micelle concentration (CMC) of 17 mg/L. In emulsification index (E<sub>24</sub>) assay, the rhamnolipid was shown to emulsify toluene (66.7% ± 7.2), waste engine oil (58.3% ± 7.2), kerosene (41.8% ± 4.8) and n-hexane (33.1% ± 5.7). UPLC analysis on rhamnolipid revealed a congener mixture of rhamnolipid, namely di-rhamnolipid and mono-rhamnolipid mixture. This is the first report on the employment of an integrated foam control reactor system with PSO as the carbon source for rhamnolipid production by P. aeruginosa USM-AR2 culture.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-02DOI: 10.1007/s00449-024-03068-3
Nayra Ochoa-Viñals, Dania Alonso-Estrada, Rodolfo Ramos-González, Joelis Rodríguez-Hernández, José Luis Martínez-Hernández, Miguel Ángel Aguilar-González, Rebeca Betancourt-Galindo, Georgina Lourdes Michelena-Álvarez, Anna Ilina
The present study aims to analyze the interaction between Rhodotorula toruloides and magnetic nanoparticles and evaluate their effect on carotenoid production. The manganese ferrite nanoparticles were synthesized without chitosan (MnFe2O4) and chitosan coating (MnFe2O4-CS) by the co-precipitation method assisted by hydrothermal treatment. XRD (X-ray diffraction), Magnetometry, Dynamic Light Scattering (DLS) and FTIR (Fourier-Transform Infrared Spectroscopy), are used to characterize the magnetic nanoparticles. The crystallite size of MnFe2O4 was 16 nm for MnFe2O4 and 20 nm for MnFe2O4-CS. The magnetic saturation of MnFe2O4-CS was lower (39.6 ± 0.6 emu/g) than the same MnFe2O4 nanoparticles (42.7 ± 0.3 emu/g), which was attributed to the chitosan fraction presence. The MnFe2O4-CS FTIR spectra revealed the presence of the characteristic chitosan bands. DLS demonstrated that the average hydrodynamic diameters were 344 nm for MnFe2O4 and 167 nm for MnFe2O4-CS. A kinetic study of cell immobilization performed with their precipitation with a magnet demonstrated that interaction between magnetic nanoparticles and R. toruloides was characterized by an equilibrium time of 2 h. The adsorption isotherm models (Langmuir and Freundlich) were fitted to the experimental values. The trypan blue assay was used for cell viability assessment. The carotenoid production increased to 256.2 ± 6.1 µg/g dry mass at 2.0 mg/mL MnFe2O4-CS. The use of MnFe2O4-CS to stimulate carotenoid yeast production and the magnetic separation of biomass are promising nanobiotechnological alternatives. Magnetic cell immobilization is a perspective technique for obtaining cell metabolites.
{"title":"Chitosan-coated manganese ferrite nanoparticles enhanced Rhodotorula toruloides carotenoid production.","authors":"Nayra Ochoa-Viñals, Dania Alonso-Estrada, Rodolfo Ramos-González, Joelis Rodríguez-Hernández, José Luis Martínez-Hernández, Miguel Ángel Aguilar-González, Rebeca Betancourt-Galindo, Georgina Lourdes Michelena-Álvarez, Anna Ilina","doi":"10.1007/s00449-024-03068-3","DOIUrl":"10.1007/s00449-024-03068-3","url":null,"abstract":"<p><p>The present study aims to analyze the interaction between Rhodotorula toruloides and magnetic nanoparticles and evaluate their effect on carotenoid production. The manganese ferrite nanoparticles were synthesized without chitosan (MnFe<sub>2</sub>O<sub>4</sub>) and chitosan coating (MnFe<sub>2</sub>O<sub>4</sub>-CS) by the co-precipitation method assisted by hydrothermal treatment. XRD (X-ray diffraction), Magnetometry, Dynamic Light Scattering (DLS) and FTIR (Fourier-Transform Infrared Spectroscopy), are used to characterize the magnetic nanoparticles. The crystallite size of MnFe<sub>2</sub>O<sub>4</sub> was 16 nm for MnFe<sub>2</sub>O<sub>4</sub> and 20 nm for MnFe<sub>2</sub>O<sub>4</sub>-CS. The magnetic saturation of MnFe<sub>2</sub>O<sub>4</sub>-CS was lower (39.6 ± 0.6 emu/g) than the same MnFe<sub>2</sub>O<sub>4</sub> nanoparticles (42.7 ± 0.3 emu/g), which was attributed to the chitosan fraction presence. The MnFe<sub>2</sub>O<sub>4</sub>-CS FTIR spectra revealed the presence of the characteristic chitosan bands. DLS demonstrated that the average hydrodynamic diameters were 344 nm for MnFe<sub>2</sub>O<sub>4</sub> and 167 nm for MnFe<sub>2</sub>O<sub>4</sub>-CS. A kinetic study of cell immobilization performed with their precipitation with a magnet demonstrated that interaction between magnetic nanoparticles and R. toruloides was characterized by an equilibrium time of 2 h. The adsorption isotherm models (Langmuir and Freundlich) were fitted to the experimental values. The trypan blue assay was used for cell viability assessment. The carotenoid production increased to 256.2 ± 6.1 µg/g dry mass at 2.0 mg/mL MnFe<sub>2</sub>O<sub>4</sub>-CS. The use of MnFe<sub>2</sub>O<sub>4</sub>-CS to stimulate carotenoid yeast production and the magnetic separation of biomass are promising nanobiotechnological alternatives. Magnetic cell immobilization is a perspective technique for obtaining cell metabolites.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1777-1787"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research investigated the physicochemical properties and biological activities of green-synthesized copper oxide nanoparticles (CuO NPs) via Moringa peregrina extract, graphene oxide (GO), and their composite (CuO-GO). SEM revealed the morphology and structure, indicating polygonal CuO NPs, thin wrinkled sheets of GO, and a combination of CuO NPs and GO in the nanocomposite. EDS confirmed the elemental composition and distribution. XRD analysis confirmed the crystalline monoclinic structure of CuO NPs and GO, as well as their composite, CuO-GO, with characteristic peaks. DLS analysis exhibited distinct size distributions, with CuO NPs showing the narrowest range. BET surface area analysis revealed mesoporous structures for all materials, with the nanocomposite showing enhanced surface area and pore volume. Anticancer assays on MCF-7 and normal NIH/3T3 cells demonstrated CuO-GO's superior cytotoxicity against cancer cells, with minimal effects on normal cells, suggesting selective cytotoxicity. Moreover, antibacterial assays against Pseudomonas aeruginosa and Staphylococcus aureus indicated CuO-GO's potent inhibitory activity. The composite's synergistic effects were evidenced by its lower minimum inhibitory concentration (MIC) compared to individual components. In conclusion, this study elucidated the promising biomedical applications of CuO NPs, GO, and their nanocomposite, particularly in cancer treatment and antibacterial therapies, showcasing their potential as multifunctional nanomaterials.
{"title":"Green synthesis of copper oxide nanoparticles via Moringa peregrina extract incorporated in graphene oxide: evaluation of antibacterial and anticancer efficacy.","authors":"Mahmood Barani, Amirabbas Mir, Maryam Roostaee, Ghasem Sargazi, Mahboubeh Adeli-Sardou","doi":"10.1007/s00449-024-03077-2","DOIUrl":"10.1007/s00449-024-03077-2","url":null,"abstract":"<p><p>This research investigated the physicochemical properties and biological activities of green-synthesized copper oxide nanoparticles (CuO NPs) via Moringa peregrina extract, graphene oxide (GO), and their composite (CuO-GO). SEM revealed the morphology and structure, indicating polygonal CuO NPs, thin wrinkled sheets of GO, and a combination of CuO NPs and GO in the nanocomposite. EDS confirmed the elemental composition and distribution. XRD analysis confirmed the crystalline monoclinic structure of CuO NPs and GO, as well as their composite, CuO-GO, with characteristic peaks. DLS analysis exhibited distinct size distributions, with CuO NPs showing the narrowest range. BET surface area analysis revealed mesoporous structures for all materials, with the nanocomposite showing enhanced surface area and pore volume. Anticancer assays on MCF-7 and normal NIH/3T3 cells demonstrated CuO-GO's superior cytotoxicity against cancer cells, with minimal effects on normal cells, suggesting selective cytotoxicity. Moreover, antibacterial assays against Pseudomonas aeruginosa and Staphylococcus aureus indicated CuO-GO's potent inhibitory activity. The composite's synergistic effects were evidenced by its lower minimum inhibitory concentration (MIC) compared to individual components. In conclusion, this study elucidated the promising biomedical applications of CuO NPs, GO, and their nanocomposite, particularly in cancer treatment and antibacterial therapies, showcasing their potential as multifunctional nanomaterials.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1915-1928"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-17DOI: 10.1007/s00449-024-03079-0
Edson Baltazar Estrada-Arriaga, Raúl Montero-Farías, Cornelio Morales-Morales, Liliana García-Sánchez, Axel Falcón-Rojas, Marco A Garzón-Zúñiga, Tania Gutierrez-Macias
The septic tank is the most commonly used decentralized wastewater treatment systems for household wastewater treatment in on-site applications. The removal rate of various pollutants is lower in different septic tank configurations. The integration of a microbial electrolysis cells (MEC) into septic tank or biofilm-based reactors can be a green and sustainable technology for household wastewater treatment and energy production. In this study, a 50-L septic tank was converted into a 50-L MEC coupled with biofilm-based reactor for simultaneous household wastewater treatment and hydrogen production. The biofilm-based reactor was integrated by an anaerobic packed-bed biofilm reactor (APBBR) and an aerobic moving bed biofilm reactor (aeMBBR). The MEC/APBBR/aeMBBR was evaluated at different organic loading rates (OLRs) by applying voltage of 0.7 and 1.0 V. Result showed that the increase of OLRs from 0.2 to 0.44 kg COD/m3 d did not affect organic matter removals. Nutrient and solids removal decreased with increasing OLR up to 0.44 kg COD/m3 d. Global removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), ammoniacal nitrogen (NH4+), total phosphorus (TP) and total suspended solids (TSS) removal ranged from 81 to 84%, 84 to 85%, 53 to 68%, 88 to 98%, 11 to 30% and 76 to 88% respectively, was obtained in this study. The current density generated in the MEC from 0 to 0.41 A/m2 contributed to an increase in hydrogen production and pollutants removal. The maximum volumetric hydrogen production rate obtained in the MEC was 0.007 L/L.d (0.072 L/d). The integration of the MEC into biofilm-based reactors applying a voltage of 1.0 V generated different bioelectrochemical nitrogen and phosphorus transformations within the MEC, allowing a simultaneous denitrification-nitrification process with phosphorus removal.
化粪池是最常用的分散式污水处理系统,用于现场处理家庭污水。在不同的化粪池配置中,各种污染物的去除率较低。将微生物电解池(MEC)集成到化粪池或生物膜反应器中,可以成为一种绿色、可持续的家庭污水处理和能源生产技术。本研究将一个 50 升的化粪池改造成了一个 50 升的微生物电解池,并与生物膜反应器相结合,用于同时处理家庭废水和制氢。生物膜反应器由厌氧填料床生物膜反应器(APBBR)和好氧移动床生物膜反应器(aeMBBR)集成。通过施加 0.7 和 1.0 V 的电压,在不同的有机负荷率(OLR)下对 MEC/APBBR/aeMBBR 进行了评估。结果表明,有机负荷率从 0.2 kg COD/m3 d 增加到 0.44 kg COD/m3 d 并不影响有机物的去除。本研究获得的化学需氧量(COD)、生化需氧量(BOD)、总氮(TN)、氨氮(NH4+)、总磷(TP)和总悬浮固体(TSS)的总体去除率分别为 81%至 84%、84%至 85%、53%至 68%、88%至 98%、11%至 30%和 76%至 88%。MEC 中产生的电流密度从 0 到 0.41 A/m2 都有助于提高氢气产量和污染物去除率。在 MEC 中获得的最大体积产氢率为 0.007 L/L.d(0.072 L/d)。将 MEC 集成到基于生物膜的反应器中,施加 1.0 V 的电压,可在 MEC 中产生不同的生物电化学氮和磷转化,从而实现同时脱氮-硝化过程和除磷。
{"title":"Performance of a pilot-scale microbial electrolysis cell coupled with biofilm-based reactor for household wastewater treatment: simultaneous pollutant removal and hydrogen production.","authors":"Edson Baltazar Estrada-Arriaga, Raúl Montero-Farías, Cornelio Morales-Morales, Liliana García-Sánchez, Axel Falcón-Rojas, Marco A Garzón-Zúñiga, Tania Gutierrez-Macias","doi":"10.1007/s00449-024-03079-0","DOIUrl":"10.1007/s00449-024-03079-0","url":null,"abstract":"<p><p>The septic tank is the most commonly used decentralized wastewater treatment systems for household wastewater treatment in on-site applications. The removal rate of various pollutants is lower in different septic tank configurations. The integration of a microbial electrolysis cells (MEC) into septic tank or biofilm-based reactors can be a green and sustainable technology for household wastewater treatment and energy production. In this study, a 50-L septic tank was converted into a 50-L MEC coupled with biofilm-based reactor for simultaneous household wastewater treatment and hydrogen production. The biofilm-based reactor was integrated by an anaerobic packed-bed biofilm reactor (APBBR) and an aerobic moving bed biofilm reactor (aeMBBR). The MEC/APBBR/aeMBBR was evaluated at different organic loading rates (OLRs) by applying voltage of 0.7 and 1.0 V. Result showed that the increase of OLRs from 0.2 to 0.44 kg COD/m<sup>3</sup> d did not affect organic matter removals. Nutrient and solids removal decreased with increasing OLR up to 0.44 kg COD/m<sup>3</sup> d. Global removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), ammoniacal nitrogen (NH<sub>4</sub><sup>+</sup>), total phosphorus (TP) and total suspended solids (TSS) removal ranged from 81 to 84%, 84 to 85%, 53 to 68%, 88 to 98%, 11 to 30% and 76 to 88% respectively, was obtained in this study. The current density generated in the MEC from 0 to 0.41 A/m<sup>2</sup> contributed to an increase in hydrogen production and pollutants removal. The maximum volumetric hydrogen production rate obtained in the MEC was 0.007 L/L<sup>.</sup>d (0.072 L/d). The integration of the MEC into biofilm-based reactors applying a voltage of 1.0 V generated different bioelectrochemical nitrogen and phosphorus transformations within the MEC, allowing a simultaneous denitrification-nitrification process with phosphorus removal.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1929-1950"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}