Pub Date : 2024-10-01Epub Date: 2024-07-14DOI: 10.1007/s00449-024-03060-x
Lucia Colleselli, Mira Mutschlechner, Martin Spruck, Florian Albrecht, Oliver I Strube, Pamela Vrabl, Susanne Zeilinger, Harald Schöbel
Bio-based production of silver nanoparticles represents a sustainable alternative to commercially applied physicochemical manufacturing approaches and provides qualitatively highly valuable nanomaterials due to their narrow size dispersity, high stability and biocompatibility with broad application potentials. The intrinsic features of nanoparticles depend on size and shape, whereby the controlled synthesis is a challenging necessity. In the present study, the biosynthesis of size-tuned silver nanoparticles based on cell-free extracts of Saccharomyces cerevisiae DSM 1333 was investigated. Single parameter optimization strategies in phases of cultivation, extraction, and synthesis were performed to modify the nanoparticle scale and yield. Visible light was exploited as a tool in nanoparticle production. The influence of white light on the biosynthesis of silver nanoparticles was determined by using novel LED systems with the exposition of varying irradiation intensities and simultaneous performance of control experiments in the dark. Characterization of the resulting nanomaterials by spectrophotometric analysis, dynamic light scattering, scanning electron microscopy, and energy dispersive X-ray spectroscopy, revealed spherical silver nanoparticles with controlled, light-mediated size shifts in markedly increased quantities. Matching of irradiated and non-irradiated reaction mixtures mirrored the enormous functionality of photon input and the high sensitivity of the biosynthesis process. The silver nanoparticle yields increased by more than 90% with irradiation at and the reduction of particle dimensions was achieved with significant shifts of size-specific absorption maxima from 440 to 410 nm, corresponding to particle sizes of 130 nm and 100 nm, respectively. White light emerged as an excellent tool for nano-manufacturing with advantageous effects for modulating unique particle properties.
以生物为基础生产银纳米粒子是商业应用物理化学制造方法的一种可持续替代方法,由于其尺寸分散性小、稳定性高、生物相容性好,具有广泛的应用潜力,因此可提供质量上乘的高价值纳米材料。纳米粒子的固有特性取决于尺寸和形状,因此控制合成是一项具有挑战性的必要条件。本研究考察了基于无细胞萃取的酿酒酵母 DSM 1333 的尺寸调整银纳米粒子的生物合成。研究人员在培养、提取和合成阶段实施了单参数优化策略,以改变纳米粒子的规模和产量。可见光被用作纳米粒子生产的工具。通过使用新型 LED 系统进行不同强度的照射,并同时在黑暗中进行对照实验,确定了白光对银纳米粒子生物合成的影响。通过分光光度分析、动态光散射、扫描电子显微镜和能量色散 X 射线光谱对所产生的纳米材料进行表征,发现球形银纳米粒子的数量明显增加,其大小在光的作用下发生了可控的变化。辐照和非辐照反应混合物的匹配反映了光子输入的巨大功能性和生物合成过程的高灵敏度。在 1.0 ± 0.2 mW cm - 2 的辐照条件下,银纳米颗粒的产量增加了 90% 以上,颗粒尺寸的缩小是通过尺寸特异性吸收最大值从 440 纳米到 410 纳米的显著移动实现的,这分别对应于 130 纳米和 100 纳米的颗粒尺寸。白光是纳米制造的绝佳工具,具有调节颗粒独特性质的优势。
{"title":"Light-mediated biosynthesis of size-tuned silver nanoparticles using Saccharomyces cerevisiae extract.","authors":"Lucia Colleselli, Mira Mutschlechner, Martin Spruck, Florian Albrecht, Oliver I Strube, Pamela Vrabl, Susanne Zeilinger, Harald Schöbel","doi":"10.1007/s00449-024-03060-x","DOIUrl":"10.1007/s00449-024-03060-x","url":null,"abstract":"<p><p>Bio-based production of silver nanoparticles represents a sustainable alternative to commercially applied physicochemical manufacturing approaches and provides qualitatively highly valuable nanomaterials due to their narrow size dispersity, high stability and biocompatibility with broad application potentials. The intrinsic features of nanoparticles depend on size and shape, whereby the controlled synthesis is a challenging necessity. In the present study, the biosynthesis of size-tuned silver nanoparticles based on cell-free extracts of Saccharomyces cerevisiae DSM 1333 was investigated. Single parameter optimization strategies in phases of cultivation, extraction, and synthesis were performed to modify the nanoparticle scale and yield. Visible light was exploited as a tool in nanoparticle production. The influence of white light on the biosynthesis of silver nanoparticles was determined by using novel LED systems with the exposition of varying irradiation intensities and simultaneous performance of control experiments in the dark. Characterization of the resulting nanomaterials by spectrophotometric analysis, dynamic light scattering, scanning electron microscopy, and energy dispersive X-ray spectroscopy, revealed spherical silver nanoparticles with controlled, light-mediated size shifts in markedly increased quantities. Matching of irradiated and non-irradiated reaction mixtures mirrored the enormous functionality of photon input and the high sensitivity of the biosynthesis process. The silver nanoparticle yields increased by more than 90% with irradiation at <math><mrow><mn>1.0</mn> <mo>±</mo> <mn>0.2</mn> <mspace></mspace> <mtext>mW</mtext> <mspace></mspace> <msup><mrow><mtext>cm</mtext></mrow> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </math> and the reduction of particle dimensions was achieved with significant shifts of size-specific absorption maxima from 440 to 410 nm, corresponding to particle sizes of 130 nm and 100 nm, respectively. White light emerged as an excellent tool for nano-manufacturing with advantageous effects for modulating unique particle properties.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-10DOI: 10.1007/s00449-024-03036-x
Juhi Puthukulangara Jaison, Balamuralikrishnan Balasubramanian, Jaya Gangwar, Manikantan Pappuswamy, Arun Meyyazhagan, Hesam Kamyab, Kuppusamy Alagesan Paari, Wen-Chao Liu, Mohammad Mahdi Taheri, Kadanthottu Sebastian Joseph
The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.
{"title":"Bioactive nanoparticles derived from marine brown seaweeds and their biological applications: a review.","authors":"Juhi Puthukulangara Jaison, Balamuralikrishnan Balasubramanian, Jaya Gangwar, Manikantan Pappuswamy, Arun Meyyazhagan, Hesam Kamyab, Kuppusamy Alagesan Paari, Wen-Chao Liu, Mohammad Mahdi Taheri, Kadanthottu Sebastian Joseph","doi":"10.1007/s00449-024-03036-x","DOIUrl":"10.1007/s00449-024-03036-x","url":null,"abstract":"<p><p>The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-19DOI: 10.1007/s00449-024-03062-9
Hasnat Mueen, Rafiq Ahmad, Sabaz Ali Khan, Muhammad Shahzad, Ahmed Mahmoud Ismail, Hossam S El-Beltagi, M Jamal Hajjar, Hosny Hamed Kesba
Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (μmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.
{"title":"The ability of selected fungal strains to produce carboxylesterase enzymes for biodegradation and use of bifenthrin insecticide as carbon source: in vitro and in silico approaches.","authors":"Hasnat Mueen, Rafiq Ahmad, Sabaz Ali Khan, Muhammad Shahzad, Ahmed Mahmoud Ismail, Hossam S El-Beltagi, M Jamal Hajjar, Hosny Hamed Kesba","doi":"10.1007/s00449-024-03062-9","DOIUrl":"10.1007/s00449-024-03062-9","url":null,"abstract":"<p><p>Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (μmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.
{"title":"Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment.","authors":"Yu Li, Mengyue Zhang, Liang Li, Wenyuan Gao, Fei Huang, Guanming Lai, Liping Jia, Rui Liu","doi":"10.1007/s00449-024-03063-8","DOIUrl":"10.1007/s00449-024-03063-8","url":null,"abstract":"<p><p>This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-08DOI: 10.1007/s00449-024-03067-4
Luisa Gebele, Andreas Wilke, Axel Salliou, Laura Schneider, Daniel Heid, Tobias Stadelmann, Corinna Henninger, Uzair Ahmed, Melanie Broszat, Pascale Müller, Georg Dusel, Michał Krzyżaniak, Katrin Ochsenreither, Thomas Eisele
The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a Km value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-β-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu2+ (10 mM) and Mn2+ (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.
{"title":"Recombinant expression and characterization of the endochitinase Chit36-TA from Trichoderma asperellum in Komagataella phaffii for chitin degradation of black soldier fly exuviae.","authors":"Luisa Gebele, Andreas Wilke, Axel Salliou, Laura Schneider, Daniel Heid, Tobias Stadelmann, Corinna Henninger, Uzair Ahmed, Melanie Broszat, Pascale Müller, Georg Dusel, Michał Krzyżaniak, Katrin Ochsenreither, Thomas Eisele","doi":"10.1007/s00449-024-03067-4","DOIUrl":"10.1007/s00449-024-03067-4","url":null,"abstract":"<p><p>The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a K<sub>m</sub> value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-β-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu<sup>2+</sup> (10 mM) and Mn<sup>2+</sup> (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-05DOI: 10.1007/s00449-024-03066-5
Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
{"title":"Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach.","authors":"Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula","doi":"10.1007/s00449-024-03066-5","DOIUrl":"10.1007/s00449-024-03066-5","url":null,"abstract":"<p><p>In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL<sup>-1</sup> and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g<sup>-1</sup>), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-27DOI: 10.1007/s00449-024-03056-7
Yinan Hong, Yue Shi, Yurou Fan, Hong Pan, Xiangyu Yao, Yu Xie, Xiaojun Wang
Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a "green" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.
人参皂苷化合物 K(CK)具有保护心脏和抗糖尿病等多种药理活性,在制药业的应用潜力巨大。然而,人参皂苷化合物 K 的分离技术难度大、产量有限,阻碍了其广泛应用。本研究利用β-葡萄糖苷酶研究了人参皂苷 CK 的转化过程。研究旨在确定酶结合的特定位点以及酶的最有利排列。此外,还采用分子对接法确定了β-葡萄糖苷酶与人参皂苷之间的相互作用,结果表明它们之间存在很强的自发接触力。使用 "绿色 "深共晶溶剂(DES)进一步提高了转化过程的有效性。采用单变量实验设计确定了 DES 的组成以及 β-葡萄糖苷酶将人参皂苷 Rb1 转化为人参皂苷 CK 的最佳水解条件。利用β-葡萄糖苷酶酶解法合成稀有人参皂苷 CK,采用环境友好型溶剂 DES,不仅可行、有效,而且适合工业化应用。表征方法证实,DES 不会破坏 β-葡萄糖苷酶的结构和构象。在 ChCl:EG = 2:1 (30%, v/v)、pH 值为 5.0 的 DES 缓冲液中,反应温度为 50 ℃,酶底物质量比为 1:1,反应 36 h 后,CK 收率是醋酸盐缓冲液的 1.24 倍,可达 86.2%。本研究认为,在绿色溶剂DES中利用β-葡萄糖苷酶酶解生产稀有人参皂苷CK的工艺可行、高效,适合工业化生产和应用。
{"title":"Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents.","authors":"Yinan Hong, Yue Shi, Yurou Fan, Hong Pan, Xiangyu Yao, Yu Xie, Xiaojun Wang","doi":"10.1007/s00449-024-03056-7","DOIUrl":"10.1007/s00449-024-03056-7","url":null,"abstract":"<p><p>Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a \"green\" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-12DOI: 10.1007/s00449-024-03061-w
Jiajie Wang, Takao Kasuga, Zhiliang Fan
This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.
{"title":"Cellobionate production from sodium hydroxide pretreated wheat straw by engineered Neurospora crassa HL10.","authors":"Jiajie Wang, Takao Kasuga, Zhiliang Fan","doi":"10.1007/s00449-024-03061-w","DOIUrl":"10.1007/s00449-024-03061-w","url":null,"abstract":"<p><p>This study investigated cellobionate production from a lignocellulosic substrate using Neurospora crassa HL10. Utilizing NaOH-pretreated wheat straw as the substrate obviated the need for an exogenous redox mediator addition, as lignin contained in the pretreated wheat served as a natural mediator. The low laccase production by N. crassa HL10 on pretreated wheat straw caused slow cellobionate production, and exogenous laccase addition accelerated the process. Cycloheximide induced substantial laccase production in N. crassa HL10, enabling the strain to yield approximately 57 mM cellobionate from pretreated wheat straw (equivalent to 20 g/L cellulose), shortening the conversion time from 8 to 6 days. About 92% of the cellulose contained in the pretreated wheat straw is converted to cellobionate. In contrast to existing methods requiring pure cellobiose or cellulase enzymes, this process efficiently converts a low-cost feedstock into cellobionate at a high yield without enzyme or redox mediator supplementation.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-06DOI: 10.1007/s00449-024-03054-9
Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang
Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r2 = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with Tm (℃) = 171.5 and ΔH of Tm (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.
{"title":"Novel differential scanning calorimetry (DSC) application to select polyhydroxyalkanoate (PHA) producers correlating 3-hydroxyhexanoate (3-HHx) monomer with melting enthalpy.","authors":"Hee Ju Jung, Byungchan Kim, Tae-Rim Choi, Suk Jin Oh, Suwon Kim, Yeda Lee, Yuni Shin, Suhye Choi, Jinok Oh, So Yeon Park, Young Sik Lee, Young Heon Choi, Yung-Hun Yang","doi":"10.1007/s00449-024-03054-9","DOIUrl":"10.1007/s00449-024-03054-9","url":null,"abstract":"<p><p>Polyhydroxyalkanoate (PHA) is an environmental alternative to petroleum-based plastics because of its biodegradability. The polymer properties of PHA have been improved by the incorporation of different monomers. Traditionally, the monomer composition of PHA has been analyzed using gas chromatography (GC) and nuclear magnetic resonance (NMR), providing accurate monomer composition. However, sequential analysis of the thermal properties of PHA using differential scanning calorimetry (DSC) remains necessary, providing crucial insights into its thermal characteristics. To shorten the monomer composition and thermal property analysis, we directly applied DSC to the analysis of the obtained PHA film and observed a high correlation (r<sup>2</sup> = 0.98) between melting enthalpy and the 3-hydroxyhexanoate (3-HHx) mole fraction in the polymer. A higher 3-HHx fraction resulted in a lower melting enthalpy as 3-HHx provided the polymer with higher flexibility. Based on this, we selected the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) producing strain from Cupriavidus strains that newly screened and transformed with vectors containing P(3HB-co-3HHx) biosynthetic genes, achieving an average error rate below 1.8% between GC and DSC results. Cupriavidus sp. BK2 showed a high 3-HHx mole fraction, up to 10.38 mol%, with T<sub>m </sub>(℃) = 171.5 and ΔH of T<sub>m</sub> (J/g) = 48.0, simultaneously detected via DSC. This study is an example of the expansion of DSC for PHA analysis from polymer science to microbial engineering.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-05DOI: 10.1007/s00449-024-03057-6
Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.
{"title":"Protein rational design and modification of erythrose reductase for the improvement of erythritol production in Yarrowia lipolytica.","authors":"Lianggang Huang, Wenjia Wang, Kai Wang, Yurong Li, Junping Zhou, Aiping Pang, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03057-6","DOIUrl":"10.1007/s00449-024-03057-6","url":null,"abstract":"<p><p>Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ER<sup>K26N/V295M</sup> (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}