首页 > 最新文献

Bioprocess and Biosystems Engineering最新文献

英文 中文
Inline Raman spectroscopy as process analytical technology for SARS-CoV-2 VLP production. 作为 SARS-CoV-2 VLP 生产过程分析技术的在线拉曼光谱。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-09 DOI: 10.1007/s00449-024-03094-1
Felipe Moura Dias, Milena Miyu Teruya, Samanta Omae Camalhonte, Vinícius Aragão Tejo Dias, Luis Giovani de Oliveira Guardalini, Jaci Leme, Thaissa Consoni Bernardino, Felipe S Sposito, Eduardo Dias, Renato Manciny Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez

The present work focused on inline Raman spectroscopy monitoring of SARS-CoV-2 VLP production using two culture media by fitting chemometric models for biochemical parameters (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, ammonium, and viral titer). For that purpose, linear, partial least square (PLS), and nonlinear approaches, artificial neural network (ANN), were used as correlation techniques to build the models for each variable. ANN approach resulted in better fitting for most parameters, except for viable cell density and glucose, whose PLS presented more suitable models. Both were statistically similar for ammonium. The mean absolute error of the best models, within the quantified value range for viable cell density (375,000-1,287,500 cell/mL), cell viability (29.76-100.00%), glucose (8.700-10.500 g/), lactate (0.019-0.400 g/L), glutamine (0.925-1.520 g/L), glutamate (0.552-1.610 g/L), viral titer (no virus quantified-7.505 log10 PFU/mL) and ammonium (0.0074-0.0478 g/L) were, respectively, 41,533 ± 45,273 cell/mL (PLS), 1.63 ± 1.54% (ANN), 0.058 ± 0.065 g/L (PLS), 0.007 ± 0.007 g/L (ANN), 0.007 ± 0.006 g/L (ANN), 0.006 ± 0.006 g/L (ANN), 0.211 ± 0.221 log10 PFU/mL (ANN), and 0.0026 ± 0.0026 g/L (PLS) or 0.0027 ± 0.0034 g/L (ANN). The correlation accuracy, errors, and best models obtained are in accord with studies, both online and offline approaches while using the same insect cell/baculovirus expression system or different cell host. Besides, the biochemical tracking throughout bioreactor runs using the models showed suitable profiles, even using two different culture media.

本研究通过拟合生化参数(存活细胞密度、细胞存活率、葡萄糖、乳酸、谷氨酰胺、谷氨酸、铵和病毒滴度)的化学计量模型,利用拉曼光谱在线监测两种培养基中 SARS-CoV-2 VLP 的产生。为此,采用了线性、偏最小二乘法(PLS)和非线性方法,即人工神经网络(ANN)作为相关技术,为每个变量建立模型。人工神经网络法对大多数参数的拟合效果较好,但对有活力细胞密度和葡萄糖的拟合效果较差,而偏最小二乘法(PLS)则提出了更合适的模型。对于铵,两者在统计上相似。在活细胞密度(375,000-1,287,500 cells/mL)、细胞存活率(29.76-100.00%)、葡萄糖(8.700-10.500克/)、乳酸盐(0.019-0.400克/升)、谷氨酰胺(0.925-1.520克/升)、谷氨酸(0.552-1.610克/升)、病毒滴度(无病毒定量-7.505 log10 PFU/mL)和铵(0.0074-0.0478 g/L)分别为:41,533 ± 45,273 cell/mL(PLS)、1.63 ± 1.54%(ANN)、0.058 ± 0.065 g/L(PLS)、0.007 ± 0.007 g/L(ANN)、0.0.007±0.006克/升(ANN)、0.006±0.006克/升(ANN)、0.211±0.221 log10 PFU/mL(ANN)、0.0026±0.0026克/升(PLS)或0.0027±0.0034克/升(ANN)。所获得的相关精度、误差和最佳模型与使用相同昆虫细胞/杆状病毒表达系统或不同细胞宿主的在线和离线方法的研究结果一致。此外,即使使用两种不同的培养基,使用这些模型对整个生物反应器运行过程进行的生化跟踪也显示出合适的曲线。
{"title":"Inline Raman spectroscopy as process analytical technology for SARS-CoV-2 VLP production.","authors":"Felipe Moura Dias, Milena Miyu Teruya, Samanta Omae Camalhonte, Vinícius Aragão Tejo Dias, Luis Giovani de Oliveira Guardalini, Jaci Leme, Thaissa Consoni Bernardino, Felipe S Sposito, Eduardo Dias, Renato Manciny Astray, Aldo Tonso, Soraia Attie Calil Jorge, Eutimio Gustavo Fernández Núñez","doi":"10.1007/s00449-024-03094-1","DOIUrl":"https://doi.org/10.1007/s00449-024-03094-1","url":null,"abstract":"<p><p>The present work focused on inline Raman spectroscopy monitoring of SARS-CoV-2 VLP production using two culture media by fitting chemometric models for biochemical parameters (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, ammonium, and viral titer). For that purpose, linear, partial least square (PLS), and nonlinear approaches, artificial neural network (ANN), were used as correlation techniques to build the models for each variable. ANN approach resulted in better fitting for most parameters, except for viable cell density and glucose, whose PLS presented more suitable models. Both were statistically similar for ammonium. The mean absolute error of the best models, within the quantified value range for viable cell density (375,000-1,287,500 cell/mL), cell viability (29.76-100.00%), glucose (8.700-10.500 g/), lactate (0.019-0.400 g/L), glutamine (0.925-1.520 g/L), glutamate (0.552-1.610 g/L), viral titer (no virus quantified-7.505 log<sub>10</sub> PFU/mL) and ammonium (0.0074-0.0478 g/L) were, respectively, 41,533 ± 45,273 cell/mL (PLS), 1.63 ± 1.54% (ANN), 0.058 ± 0.065 g/L (PLS), 0.007 ± 0.007 g/L (ANN), 0.007 ± 0.006 g/L (ANN), 0.006 ± 0.006 g/L (ANN), 0.211 ± 0.221 log<sub>10</sub> PFU/mL (ANN), and 0.0026 ± 0.0026 g/L (PLS) or 0.0027 ± 0.0034 g/L (ANN). The correlation accuracy, errors, and best models obtained are in accord with studies, both online and offline approaches while using the same insect cell/baculovirus expression system or different cell host. Besides, the biochemical tracking throughout bioreactor runs using the models showed suitable profiles, even using two different culture media.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices. 使用振动搅拌器的实验室规模生物反应器的机械和几何因素对哺乳动物细胞培养指数影响的定量研究。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-07 DOI: 10.1007/s00449-024-03095-0
Sepehr Govara, S M Hosseinalipour, Masoud Soleimani

Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).

实验室中的哺乳动物细胞培养有静态和动态两种方法,动态模式下的细胞生长指数更高。在这项研究中,使用振动盘和合适的装置制作了实验室规模的搅拌生物反应器,用于动态细胞培养,在低剪切应力下进行适当的混合。采用 Box-Behnken 设计,以 Raji 细胞为研究对象进行了 15 次批量实验,定量研究了该生物反应器的机械和几何因素对细胞培养指标的影响。选择了三个结构因素作为主要因素,包括圆盘直径、振动幅度和圆盘放置高度。三个细胞生长指数包括特定生长率、最大细胞浓度和生产率,被视为生物反应。结果模型能准确预测不同因素设置下的各项指标值。结果表明,在所研究的因素中,圆盘直径的影响最大。此外,使用振幅为 2.5 至 3(毫米)、放置高度为 40 至 60(毫米)的 25(毫米)圆盘,比生长率、最大细胞浓度的自然对数和生产率分别约为 0.033(1/h)、13.2 和 5133(细胞/hmL)。
{"title":"Quantitative investigation of the effect of mechanical and geometrical factors of a laboratory-scale bioreactor using a vibrating agitator on mammalian cell culture indices.","authors":"Sepehr Govara, S M Hosseinalipour, Masoud Soleimani","doi":"10.1007/s00449-024-03095-0","DOIUrl":"https://doi.org/10.1007/s00449-024-03095-0","url":null,"abstract":"<p><p>Mammalian cell cultures in laboratories are performed in static and dynamic methods, and cell growth indices are higher in dynamic mode. In this study, a lab-scale stirred bioreactor using a vibrating disc and a suitable setup has been introduced for dynamic cell culture, which creates proper mixing at low shear stress. 15 experiments have been done by Raji cell in batch mode using Box-Behnken design to quantitatively investigate the effect of mechanical and geometrical factors of this bioreactor on cell culture indices. Three structural factors, including disc diameter, vibration amplitude, and the height of the disc placement have been selected as the main factors. Three cell growth indices including the specific growth rate, the maximum cell concentration, and productivity have been considered as biological responses. Resulting models predict the value of each index under different settings of the factors with good accuracy. Results show that the disc diameter has the greatest effect among the investigated factors. Also, the specific growth rate, the natural logarithm of the maximum cell concentration, and productivity are about 0.033 (1/h), 13.2, and 5133 (cells/hmL), respectively by using a 25 (mm) disc with a vibration amplitude of 2.5 up to 3 (mm), and a placement height of 40 up to 60 (mm).</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the chemical composition of buriti (Mauritia flexuosa Liliopsida) and cassava (Manihot esculenta Crantz) residues and their possible application in the bioproduction of coconut aroma (6 pentyl-α-pyrone). 评估布里蒂(Mauritia flexuosa Liliopsida)和木薯(Manihot esculenta Crantz)残渣的化学成分及其在生物生产椰子香气(6-戊基-α-吡喃酮)中的可能应用。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-06 DOI: 10.1007/s00449-024-03055-8
A S Nascimento, U M Nascimento, G J Muchave, G E C Marques, G S Nascimento, C Mendonça, G S B Becco, C P Borges, S G F Leite

This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.

这项工作旨在确定提高 6-戊基-α-吡喃酮(bioaroma)生物产量的战略。作为第一项战略,利用农用工业残留物在固态下进行发酵:Mauritia flexuosa Liliopsida.和 Manihot esculenta Crantz 分离出来,用不同的营养液进行发酵,发酵真菌为 Trichoderma harzianum。需要进行理化特性、百分数组成、木质纤维素和矿物质含量以及抗菌活性的分析。在不同的加湿条件下(水、不含添加剂的营养液和含葡萄糖或蔗糖的营养液)进行了为期 9 天的发酵。在固相微萃取法的辅助下,采用气相色谱法对生物醛进行定量。结果表明,在使用甜木薯进行的发酵中,这种化合物的产量很低(约为 6 ppm(w/w))。甜木薯残渣的生物产量低可能与其富含淀粉、基质均匀和营养浓度低有关。在使用布里提时,已经检测到没有香气产生。可能是布里提中硅的存在和木质素的高含量将真菌的活性降到了最低,从而难以获得所需的香气。鉴于废料的特性,我们选择了一种新的策略:以 1:1 的比例混合废料。使用添加了葡萄糖的营养液进行发酵,结果产生了 156.24 ppm(w/w)的香气。因此,可能是由于甜木薯中的可发酵糖和布里蒂果皮中的脂肪酸的存在,这种组合为工艺提供了更有利的环境,从而证明了生物生产椰子香气的可能性增加了约 2500%。
{"title":"Assessment of the chemical composition of buriti (Mauritia flexuosa Liliopsida) and cassava (Manihot esculenta Crantz) residues and their possible application in the bioproduction of coconut aroma (6 pentyl-α-pyrone).","authors":"A S Nascimento, U M Nascimento, G J Muchave, G E C Marques, G S Nascimento, C Mendonça, G S B Becco, C P Borges, S G F Leite","doi":"10.1007/s00449-024-03055-8","DOIUrl":"10.1007/s00449-024-03055-8","url":null,"abstract":"<p><p>This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1633-1645"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential. 清酒乳杆菌在乳清渗透物粉末中产生的类抑菌物质及其 SERS 鉴定:探索天然抗菌潜力
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-16 DOI: 10.1007/s00449-024-03065-6
Camila Ramão Contessa, Eduardo Ceretta Moreira, Caroline Costa Moraes, Janaína Fernandes de Medeiros Burkert

Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL-1, 41.3 gL-1 and 27.5 gL-1) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL-1 of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.

细菌素是一种抗菌化合物,因其有效性而引起了多个行业的关注。然而,在工业规模上大规模生产它们往往是不可行的,主要原因是加工成本高昂。为了应对这一挑战,本研究分析了在不添加任何辅料的情况下使用低成本乳清渗透物粉末,通过清酒拉特乳杆菌发酵生产类抑菌物质(BLIS)的潜力。为此,使用了不同浓度的乳清渗透物粉末(55.15 gL-1、41.3 gL-1 和 27.5 gL-1)。评估了清酒酵母菌产生 BLIS 的能力,以及粗制无细胞上清液作为防腐剂的潜力。通过拉曼光谱和表面增强拉曼散射(SERS)可以详细了解发酵过程中的成分和变化。特别是表面增强拉曼散射(SERS),它大大提高了峰值的清晰度,使乳糖、蛋白质和苯丙氨酸等关键成分的鉴定成为可能,这对了解发酵过程和 BLIS 的特性至关重要。结果表明,在无搅拌、培养温度为 32.5 ℃ 的烧瓶中,浓度为 55.15 gL-1 的乳清渗透物粉末具有最高的生物活性,对大肠杆菌和金黄色葡萄球菌的抑制率达到 99%,最低抑制浓度分别为 36%-45%。BLIS 在培养 60 小时内开始产生,与第二类细菌素有关。这些结果表明,以经济和环境可持续的方式生产 BLIS 是一种很有前景的方法,对各行各业都有潜在的影响。
{"title":"Production and SERS characterization of bacteriocin-like inhibitory substances by latilactobacillus sakei in whey permeate powder: exploring natural antibacterial potential.","authors":"Camila Ramão Contessa, Eduardo Ceretta Moreira, Caroline Costa Moraes, Janaína Fernandes de Medeiros Burkert","doi":"10.1007/s00449-024-03065-6","DOIUrl":"10.1007/s00449-024-03065-6","url":null,"abstract":"<p><p>Bacteriocins are antimicrobial compounds that have awakened interest across several industries due to their effectiveness. However, their large-scale production often becomes unfeasible on an industrial scale, primarily because of high process costs. Addressing this challenge, this work analyzes the potential of using low-cost whey permeate powder, without any supplementation, to produce bacteriocin-like inhibitory substances (BLIS) through the fermentation of Latilactobacillus sakei. For this purpose, different concentrations of whey permeate powder (55.15 gL<sup>-1</sup>, 41.3 gL<sup>-1</sup> and 27.5 gL<sup>-1</sup>) were used. The ability of L. sakei to produce BLIS was evaluated, as well as the potential of crude cell-free supernatant to act as a preservative. Raman spectroscopy and surface-enhanced Raman scattering (SERS) provided detailed insights into the composition and changes occurring during fermentation. SERS, in particular, enhanced peak definition significantly, allowing for the identification of key components, such as lactose, proteins, and phenylalanine, which are crucial in understanding the fermentation process and BLIS characteristics. The results revealed that the concentration of 55.15 gL<sup>-1</sup> of whey permeate powder, in flasks without agitation and a culture temperature of 32.5 °C, presented the highest biological activity of BLIS, reaching 99% of inhibition of Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 36-45%, respectively. BLIS production began within 60 h of cultivation and was associated with class II bacteriocins. The results demonstrate a promising approach for producing BLIS in an economical and environmentally sustainable manner, with potential implications for various industries.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1723-1734"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-mediated biosynthesis of size-tuned silver nanoparticles using Saccharomyces cerevisiae extract. 利用酿酒酵母提取物进行光介导的尺寸调整银纳米粒子的生物合成。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-14 DOI: 10.1007/s00449-024-03060-x
Lucia Colleselli, Mira Mutschlechner, Martin Spruck, Florian Albrecht, Oliver I Strube, Pamela Vrabl, Susanne Zeilinger, Harald Schöbel

Bio-based production of silver nanoparticles represents a sustainable alternative to commercially applied physicochemical manufacturing approaches and provides qualitatively highly valuable nanomaterials due to their narrow size dispersity, high stability and biocompatibility with broad application potentials. The intrinsic features of nanoparticles depend on size and shape, whereby the controlled synthesis is a challenging necessity. In the present study, the biosynthesis of size-tuned silver nanoparticles based on cell-free extracts of Saccharomyces cerevisiae DSM 1333 was investigated. Single parameter optimization strategies in phases of cultivation, extraction, and synthesis were performed to modify the nanoparticle scale and yield. Visible light was exploited as a tool in nanoparticle production. The influence of white light on the biosynthesis of silver nanoparticles was determined by using novel LED systems with the exposition of varying irradiation intensities and simultaneous performance of control experiments in the dark. Characterization of the resulting nanomaterials by spectrophotometric analysis, dynamic light scattering, scanning electron microscopy, and energy dispersive X-ray spectroscopy, revealed spherical silver nanoparticles with controlled, light-mediated size shifts in markedly increased quantities. Matching of irradiated and non-irradiated reaction mixtures mirrored the enormous functionality of photon input and the high sensitivity of the biosynthesis process. The silver nanoparticle yields increased by more than 90% with irradiation at 1.0 ± 0.2 mW cm - 2 and the reduction of particle dimensions was achieved with significant shifts of size-specific absorption maxima from 440 to 410 nm, corresponding to particle sizes of 130 nm and 100 nm, respectively. White light emerged as an excellent tool for nano-manufacturing with advantageous effects for modulating unique particle properties.

以生物为基础生产银纳米粒子是商业应用物理化学制造方法的一种可持续替代方法,由于其尺寸分散性小、稳定性高、生物相容性好,具有广泛的应用潜力,因此可提供质量上乘的高价值纳米材料。纳米粒子的固有特性取决于尺寸和形状,因此控制合成是一项具有挑战性的必要条件。本研究考察了基于无细胞萃取的酿酒酵母 DSM 1333 的尺寸调整银纳米粒子的生物合成。研究人员在培养、提取和合成阶段实施了单参数优化策略,以改变纳米粒子的规模和产量。可见光被用作纳米粒子生产的工具。通过使用新型 LED 系统进行不同强度的照射,并同时在黑暗中进行对照实验,确定了白光对银纳米粒子生物合成的影响。通过分光光度分析、动态光散射、扫描电子显微镜和能量色散 X 射线光谱对所产生的纳米材料进行表征,发现球形银纳米粒子的数量明显增加,其大小在光的作用下发生了可控的变化。辐照和非辐照反应混合物的匹配反映了光子输入的巨大功能性和生物合成过程的高灵敏度。在 1.0 ± 0.2 mW cm - 2 的辐照条件下,银纳米颗粒的产量增加了 90% 以上,颗粒尺寸的缩小是通过尺寸特异性吸收最大值从 440 纳米到 410 纳米的显著移动实现的,这分别对应于 130 纳米和 100 纳米的颗粒尺寸。白光是纳米制造的绝佳工具,具有调节颗粒独特性质的优势。
{"title":"Light-mediated biosynthesis of size-tuned silver nanoparticles using Saccharomyces cerevisiae extract.","authors":"Lucia Colleselli, Mira Mutschlechner, Martin Spruck, Florian Albrecht, Oliver I Strube, Pamela Vrabl, Susanne Zeilinger, Harald Schöbel","doi":"10.1007/s00449-024-03060-x","DOIUrl":"10.1007/s00449-024-03060-x","url":null,"abstract":"<p><p>Bio-based production of silver nanoparticles represents a sustainable alternative to commercially applied physicochemical manufacturing approaches and provides qualitatively highly valuable nanomaterials due to their narrow size dispersity, high stability and biocompatibility with broad application potentials. The intrinsic features of nanoparticles depend on size and shape, whereby the controlled synthesis is a challenging necessity. In the present study, the biosynthesis of size-tuned silver nanoparticles based on cell-free extracts of Saccharomyces cerevisiae DSM 1333 was investigated. Single parameter optimization strategies in phases of cultivation, extraction, and synthesis were performed to modify the nanoparticle scale and yield. Visible light was exploited as a tool in nanoparticle production. The influence of white light on the biosynthesis of silver nanoparticles was determined by using novel LED systems with the exposition of varying irradiation intensities and simultaneous performance of control experiments in the dark. Characterization of the resulting nanomaterials by spectrophotometric analysis, dynamic light scattering, scanning electron microscopy, and energy dispersive X-ray spectroscopy, revealed spherical silver nanoparticles with controlled, light-mediated size shifts in markedly increased quantities. Matching of irradiated and non-irradiated reaction mixtures mirrored the enormous functionality of photon input and the high sensitivity of the biosynthesis process. The silver nanoparticle yields increased by more than 90% with irradiation at <math><mrow><mn>1.0</mn> <mo>±</mo> <mn>0.2</mn> <mspace></mspace> <mtext>mW</mtext> <mspace></mspace> <msup><mrow><mtext>cm</mtext></mrow> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </mrow> </math> and the reduction of particle dimensions was achieved with significant shifts of size-specific absorption maxima from 440 to 410 nm, corresponding to particle sizes of 130 nm and 100 nm, respectively. White light emerged as an excellent tool for nano-manufacturing with advantageous effects for modulating unique particle properties.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1669-1682"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive nanoparticles derived from marine brown seaweeds and their biological applications: a review. 从海洋褐藻中提取的生物活性纳米粒子及其生物应用:综述。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-06-10 DOI: 10.1007/s00449-024-03036-x
Juhi Puthukulangara Jaison, Balamuralikrishnan Balasubramanian, Jaya Gangwar, Manikantan Pappuswamy, Arun Meyyazhagan, Hesam Kamyab, Kuppusamy Alagesan Paari, Wen-Chao Liu, Mohammad Mahdi Taheri, Kadanthottu Sebastian Joseph

The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.

生物合成具有不同形态的新型纳米粒子对其生物能力具有良好的影响,因此在纳米技术领域引起了越来越多的关注。真菌、细菌、植物和藻类提取物中的生物活性化合物是合成纳米粒子的主要成分。与其他生物资源相比,褐藻中含有更丰富的生物活性化学物质,因此也可用于将金属离子转化为金属纳米粒子。褐藻中的碳水化合物、蛋白质、多糖、维生素、酶、色素和次生代谢物在纳米粒子的合成过程中起着天然还原剂、封盖剂和稳定剂的作用。在海洋资源中占主导地位的海藻约有 2000 种,但只有少数几种被报道用于纳米粒子的合成。生物合成的金属纳米粒子中含有生物活性化学物质,因此具有生物活性。从棕色海藻中生物合成的金属和非金属纳米粒子因其不同的理化性质而具有不同的生物活性。与陆地资源相比,海洋资源在纳米粒子合成方面的开发并不多。要确认其形态,需要使用吸收分光光度计、X 射线衍射、傅立叶变换红外光谱、扫描电子显微镜和透射电子显微镜等表征方法。本综述试图介绍褐藻在合成金属和非金属纳米粒子中的重要作用、合成方法和生物应用,如抗癌、抗菌、抗氧化、抗糖尿病和其他功能。
{"title":"Bioactive nanoparticles derived from marine brown seaweeds and their biological applications: a review.","authors":"Juhi Puthukulangara Jaison, Balamuralikrishnan Balasubramanian, Jaya Gangwar, Manikantan Pappuswamy, Arun Meyyazhagan, Hesam Kamyab, Kuppusamy Alagesan Paari, Wen-Chao Liu, Mohammad Mahdi Taheri, Kadanthottu Sebastian Joseph","doi":"10.1007/s00449-024-03036-x","DOIUrl":"10.1007/s00449-024-03036-x","url":null,"abstract":"<p><p>The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticle's synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1605-1618"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant expression and characterization of the endochitinase Chit36-TA from Trichoderma asperellum in Komagataella phaffii for chitin degradation of black soldier fly exuviae. 在 Komagataella phaffii 中重组表达和鉴定来自毛霉菌 Chit36-TA 的内几丁质酶 Chit36-TA,用于降解黑纹伊蚊的几丁质。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-08 DOI: 10.1007/s00449-024-03067-4
Luisa Gebele, Andreas Wilke, Axel Salliou, Laura Schneider, Daniel Heid, Tobias Stadelmann, Corinna Henninger, Uzair Ahmed, Melanie Broszat, Pascale Müller, Georg Dusel, Michał Krzyżaniak, Katrin Ochsenreither, Thomas Eisele

The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a Km value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-β-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu2+ (10 mM) and Mn2+ (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.

天然聚合物甲壳素是宝贵的 N-乙酰壳寡糖和 N-乙酰葡糖胺的丰富来源,可用于多个行业。在 Komagataella phaffii 中重组表达了来自毛霉的内几丁质酶 Chit36-TA,用于将未使用的昆虫卵壳中的几丁质酶解为 N-乙酰壳寡糖。Chit36-TA 通过 Ni-NTA 亲和层析法纯化,随后进行了生物化学鉴定。脱糖后,内切酶的分子量为 36 kDa。Chit36-TA 的最适 pH 值为 4.5。经测定,Chit36-TA的最高温度为50 °C,而在60 °C时仍能保持大于93%的活性。该几丁质酶的热稳定性可达 45 °C,在 57 °C下培养 15 分钟后显示出约 50%的活性。以 4-甲基伞形酮基-N,N',N″-三乙酰基-β-壳三糖苷为底物时,Chit36-TA 的最大特定酶活性为 50 nkat/mg,Km 值为 289 µM。除了 SDS(1 mM)、Cu2+(10 mM)和 Mn2+(10 mM)具有较强的抑制作用(残留活性分别为 3%、41% 和 28%)外,大多数测试的阳离子、有机溶剂和试剂对内几丁质酶都有很好的耐受性。24 小时后,内切几丁质酶对胶体虾几丁质(1%(w/v))的水解度为 32%,对昆虫幼虫(1%(w/v))的水解度为 12%,因此发现内切几丁质酶适用于将胶体几丁质以及黑翅蝇幼虫的几丁质转化为水溶性 N-乙酰壳寡糖。为了证明其可扩展性,开发了一种生物反应器工艺,其酶活性提高了 55 倍(49 µkat/l),蛋白质表达量提高了 10 倍(1258 mg/l)。
{"title":"Recombinant expression and characterization of the endochitinase Chit36-TA from Trichoderma asperellum in Komagataella phaffii for chitin degradation of black soldier fly exuviae.","authors":"Luisa Gebele, Andreas Wilke, Axel Salliou, Laura Schneider, Daniel Heid, Tobias Stadelmann, Corinna Henninger, Uzair Ahmed, Melanie Broszat, Pascale Müller, Georg Dusel, Michał Krzyżaniak, Katrin Ochsenreither, Thomas Eisele","doi":"10.1007/s00449-024-03067-4","DOIUrl":"10.1007/s00449-024-03067-4","url":null,"abstract":"<p><p>The natural polymer chitin is an abundant source for valuable N-acetylchitooligosaccharides and N-acetylglucosamine applicable in several industries. The endochitinase Chit36-TA from Trichoderma asperellum was recombinantly expressed in Komagataella phaffii for the enzymatic degradation of chitin from unused insect exuviae into N-acetylchitooligosaccharides. Chit36-TA was purified by Ni-NTA affinity chromatography and subsequently biochemically characterized. After deglycosylation, the endochitinase had a molecular weight of 36 kDa. The optimum pH for Chit36-TA was 4.5. The temperature maximum of Chit36-TA was determined to be 50 °C, while it maintained > 93% activity up to 60 °C. The chitinase was thermostable up to 45 °C and exhibited ~ 50% activity after a 15 min incubation at 57 °C. Chit36-TA had a maximum specific enzyme activity of 50 nkat/mg with a K<sub>m</sub> value of 289 µM with 4-methylumbelliferyl-N,N',N″-triacetyl-β-chitotrioside as substrate. Most tested cations, organic solvents and reagents were well-tolerated by the endochitinase, except for SDS (1 mM), Cu<sup>2+</sup> (10 mM) and Mn<sup>2+</sup> (10 mM), which had stronger inhibitory effects with residual activities of 3, 41 and 28%, respectively. With a degree of hydrolysis of 32% applying colloidal shrimp chitin (1% (w/v)) and 12% on insect larvae (1% (w/v)) after 24 h, the endochitinase was found to be suitable for the conversion of colloidal chitin as well as chitin from black soldier fly larvae into water-soluble N-acetylchitooligosaccharides. To prove scalability, a bioreactor process was developed in which a 55-fold higher enzyme activity of 49 µkat/l and a tenfold higher protein expression of 1258 mg/l were achieved.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1751-1766"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ability of selected fungal strains to produce carboxylesterase enzymes for biodegradation and use of bifenthrin insecticide as carbon source: in vitro and in silico approaches. 选定真菌菌株产生羧基酯酶的能力,以生物降解联苯菊酯杀虫剂并将其用作碳源:体外和硅学方法。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-19 DOI: 10.1007/s00449-024-03062-9
Hasnat Mueen, Rafiq Ahmad, Sabaz Ali Khan, Muhammad Shahzad, Ahmed Mahmoud Ismail, Hossam S El-Beltagi, M Jamal Hajjar, Hosny Hamed Kesba

Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (μmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.

联苯菊酯(BF)是一种广谱 I 型拟除虫菊酯杀虫剂,通过损害神经系统和抑制 ATP 酶活性作用于昆虫,对非靶标生物有毒性作用,在环境中具有高持久性。本研究旨在确定六种不同真菌降解 BF 的潜力,包括湖北假酵母菌 PA、雷氏毛霉菌 PF、科宁拟毛霉菌 PD、紫云英球菌 ACE3、嗜酸塔拉酵母菌 ACE4 和黑曲霉 AJ-F3。灵敏度测试中使用了三种不同浓度的 BF,包括 0.1%、0.2% 和 0.3% w/v,结果显示 BF 对真菌生长有显著影响(p ≤ 0.01)。酶测定表明,细胞内和细胞外的羧基酯酶都能水解 BF,酶活性分别高达 175 ± 3 U(μmol/min)和 45 ± 1 U。所有受试真菌都能利用 BF 作为唯一碳源,每毫克 BF 产生 0.06 ± 0.01 至 0.45 ± 0.01 毫克干生物量。此外,利用生物信息学工具确定了真菌中 PytH 的存在,并在 A. niger、T. pinophilus、T. reesei 和 P. lilacinum 中发现了 PytH。利用 AlphaFold2 预测了 PytH 同源物的三维结构,并利用 MOE 确定了它们与拟除虫菊酯的分子间相互作用。所有同源物与不同除虫菊酯的相互作用结合能均小于 - 10 kcal/mol。根据这项研究得出的结论是,所研究的真菌在生物降解溴化阻燃剂方面具有更大的潜力。
{"title":"The ability of selected fungal strains to produce carboxylesterase enzymes for biodegradation and use of bifenthrin insecticide as carbon source: in vitro and in silico approaches.","authors":"Hasnat Mueen, Rafiq Ahmad, Sabaz Ali Khan, Muhammad Shahzad, Ahmed Mahmoud Ismail, Hossam S El-Beltagi, M Jamal Hajjar, Hosny Hamed Kesba","doi":"10.1007/s00449-024-03062-9","DOIUrl":"10.1007/s00449-024-03062-9","url":null,"abstract":"<p><p>Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (μmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1691-1705"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment. 使用铁(III)-矿物基质处理低碳氮比污水的建构湿地中的营养物去除效果和微生物动态。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-18 DOI: 10.1007/s00449-024-03063-8
Yu Li, Mengyue Zhang, Liang Li, Wenyuan Gao, Fei Huang, Guanming Lai, Liping Jia, Rui Liu

This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.

本研究评估了两种常见的铁(III)矿物来源--火山岩(VR)和废铁尾矿合成带状铁层(BIF-W)--在垂直流构建湿地(VFCWs)中的作用。这项评估是在没有铁(II)、铁(III)和土壤有机质(SOM)等关键环境因素的情况下进行的,利用元基因组分析和综合相关网络来预测脱氮途径。我们的研究结果表明,铁(III)矿物质增强了与碳水化合物分解相关的代谢活动和细胞过程,从而使 VR 和 BIF-W 的平均 COD 去除率分别提高了 10.7% 和 5.90%。值得注意的是,与 BIF-W 和对照组相比,VR 的氮去除率分别提高了 1.70% 和 5.40%。生物反应器中的铁(III)-矿物质添加剂也提高了反硝化和硝化细菌(变形菌门)和氨氧化细菌(拟杆菌门)的存留率,与 BIF-W 相比,VR 的存留率分别提高了 3.60% 和 3.20%。元基因组功能预测表明,低碳氮比 VFCW 的脱氮机制包括同时部分硝化、氨氧化和反硝化(SNAD)。基于网络的分析和相关路径进一步表明,铁(III)-矿物质的优势体现在反硝化微生物的增强上。微生物群落可能因铁(III)-矿物质的功能性溶解而被激活,从而提高了 SOM 的稳定性或铁(III)/铁(II)的转化。这项研究为从微生物群落层面了解 VFCW 中铁(III)-矿物质的功能作用提供了新的视角,并为开发基于铁的 SNAD 增强技术奠定了基础。
{"title":"Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment.","authors":"Yu Li, Mengyue Zhang, Liang Li, Wenyuan Gao, Fei Huang, Guanming Lai, Liping Jia, Rui Liu","doi":"10.1007/s00449-024-03063-8","DOIUrl":"10.1007/s00449-024-03063-8","url":null,"abstract":"<p><p>This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1707-1722"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach. 细胞外脂肪酶在填料床反应器中的吸附:另一种固定化方法。
IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-05 DOI: 10.1007/s00449-024-03066-5
Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula

In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.

鉴于对新型生物催化剂和酶生产方法的需求日益增长,本研究旨在评估管曲霉在浸没培养条件下生产脂肪酶的潜力,调查培养时间和诱导剂处理的影响。此外,本研究还调查了管曲霉脂肪酶在苯乙烯-二乙烯基苯珠(Diaion HP-20)上的物理吸附固定条件,以便将这些条件应用于填料床反应器的替代固定系统。此外,还对管氏脂肪酶及其固定化衍生物的最佳 pH 值和温度范围进行了表征。结果表明,管状芽孢杆菌是一种很好的脂肪酶生产者,无需添加诱导剂。该酶提取物的水解活性为 23 U mL-1,在 pH 值为 7.5 至 9.0 和温度为 20 至 50 ℃ 的范围内性能更佳。拟议的固定化系统是有效的,产生的固定化衍生物具有更高的水解活性(35 U g-1),在更宽的 pH 值范围(5.6 至 8.4)内具有最佳活性,对高温(40 至 60 ℃)的耐受性更强。这项研究标志着管氏酵母在浸没培养条件下生产脂肪酶迈出了第一步,并开发出了一种使用填料床反应器的替代固定化系统。拟议的系统有望在未来的工业应用中节省时间和资源。
{"title":"Adsorption of extracellular lipase in a packed-bed reactor: an alternative immobilization approach.","authors":"Amanda Noli Freitas, Daniela Remonatto, Rodney Helder Miotti Junior, João Francisco Cabral do Nascimento, Adriana Candido da Silva Moura, Valéria de Carvalho Santos Ebinuma, Ariela Veloso de Paula","doi":"10.1007/s00449-024-03066-5","DOIUrl":"10.1007/s00449-024-03066-5","url":null,"abstract":"<p><p>In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL<sup>-1</sup> and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g<sup>-1</sup>), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 ℃). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1735-1749"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioprocess and Biosystems Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1