Pub Date : 2024-10-21DOI: 10.1186/s12917-024-04332-0
Daniela Tercero-Guerrero, José L Blanco, Marta Hernández, Laura Torre-Fuentes, Julio Alvarez, Marta E García
Background: Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines.
Results: The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types.
Conclusions: The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.
{"title":"Whole-genome sequencing of toxigenic Clostridioides difficile reveals multidrug resistance and virulence genes in strains of environmental and animal origin.","authors":"Daniela Tercero-Guerrero, José L Blanco, Marta Hernández, Laura Torre-Fuentes, Julio Alvarez, Marta E García","doi":"10.1186/s12917-024-04332-0","DOIUrl":"10.1186/s12917-024-04332-0","url":null,"abstract":"<p><strong>Background: </strong>Clostridioides difficile has been recognized as an emerging pathogen in both humans and animals. In this context, antimicrobial resistance plays a major role in driving the spread of this disease, often leading to therapeutic failure. Moreover, recent increases in community-acquired C. difficile infections have led to greater numbers of investigations into the animal origin of the disease. The aim of this study was to evaluate the genetic similarities between 23 environmental and animal isolates by using whole-genome sequencing and to determine antimicrobial resistance and virulence factor genes in toxigenic C. difficile strains to provide important data for the development of diagnostic methods or treatment guidelines.</p><p><strong>Results: </strong>The most common sequence type was ST11 (87%), followed by ST2 (9%) and ST19 (4%). In addition, 86.95% of the strains exhibited multidrug resistance, with antimicrobial resistance to mainly aminoglycosides, fluoroquinolones, tetracycline and B-lactams; nevertheless, one strain also carried other resistance genes that conferred resistance to lincosamide, macrolides, streptogramin a, streptogramin b, pleuromutilin, oxazolidinone and amphenicol. In addition, a wide range of virulence factor genes, such as those encoding adherence factors, exoenzymes and toxins, were found. However, we observed variations between toxinotypes, ribotypes and sequence types.</p><p><strong>Conclusions: </strong>The results of this study demonstrated significant genetic similarity between ST11 strains isolated from environmental sampling and from animal origin; these strains may represent a reservoir for community-acquired C. difficile infection, which is becoming a growing public health threat due to the development of multridug resistant (MDR) bacteria and the number of virulence factors detected.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1186/s12917-024-04309-z
Hashir Mehmood, Paul R Kasher, Richard Barrett-Jolley, Gemma L Walmsley
Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and veterinary patients. Researchers use models to study skeletal muscle development and pathology, improve our understanding of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, including murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. This review discusses the models available as alternatives to mammals for muscle development, biology and disease research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applications: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and opportunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila melanogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experimental design and improved research practices to reduce the numbers of animals used and the severity of their experience. An understanding of the advantages and disadvantages of potential models is essential for researchers to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research not only improves animal welfare but generates high-quality, reproducible and reliable data with translational relevance to human and animal patients.
{"title":"Aligning with the 3Rs: alternative models for research into muscle development and inherited myopathies.","authors":"Hashir Mehmood, Paul R Kasher, Richard Barrett-Jolley, Gemma L Walmsley","doi":"10.1186/s12917-024-04309-z","DOIUrl":"https://doi.org/10.1186/s12917-024-04309-z","url":null,"abstract":"<p><p>Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and veterinary patients. Researchers use models to study skeletal muscle development and pathology, improve our understanding of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, including murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. This review discusses the models available as alternatives to mammals for muscle development, biology and disease research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applications: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and opportunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila melanogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experimental design and improved research practices to reduce the numbers of animals used and the severity of their experience. An understanding of the advantages and disadvantages of potential models is essential for researchers to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research not only improves animal welfare but generates high-quality, reproducible and reliable data with translational relevance to human and animal patients.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488271/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Tuberculosis in cattle is caused by Mycobacterium tuberculosis complex (MTBC) species. Apart from MTBC, different Nontuberculous Mycobacteria (NTM) species have also been isolated from cattle. The presence of NTM infection in bovines makes the diagnosis of bovine tuberculosis (bTB) a cumbersome task. Therefore, a cross sectional study was conducted to isolate and characterize different Mycobacterium spp. from a slaughterhouse situated in Kolkata, a city in the eastern part of India.
Results: Out of 258 morbid samples, 98 isolates were found to be positive for bacterial growth, and 35% (n = 34) were positive for Mycobacterium. 94% of Mycobacterial cultural isolates were NTM (n = 32), and the rest (n = 2) were found to be MTBC. Species-level identification of the isolates by hsp65 sequencing revealed that out of 32 isolates, 24 were M. fortuitum, three were M. abscessus, two each were M. chelonae and M. parascrofulaceum, and one was M. novocastrense. A phylogenetic tree with partial hsp65 gene sequences was also constructed to determine the relatedness of the unknown isolates to the reference strains.
Conclusion: Both NTM species and MTBCs were identified from TB-like lesions in cattle that were slaughtered at the Kolkata abattoir. This discovery may indicate that NTM contributes to the development of lesions in cattle. Also, we recommend implication of more specific diagnostic tests for bTB.
{"title":"Challenges in diagnosing bovine tuberculosis through surveillance and characterization of Mycobacterium species in slaughtered cattle in Kolkata.","authors":"Molla Zakirul Haque, Chanchal Guha, Ayan Mukherjee, Sukhen Samanta, Partha Sarathi Jana, Ujjwal Biswas, Sangeeta Mandal, Santanu Pal, Manigandan Venkatesan, Joy Sarojini Michael, Pramod Kumar Nanda, Samiran Bandyopadhyay, Arun K Das, Premanshu Dandapat","doi":"10.1186/s12917-024-04272-9","DOIUrl":"https://doi.org/10.1186/s12917-024-04272-9","url":null,"abstract":"<p><strong>Background: </strong>Tuberculosis in cattle is caused by Mycobacterium tuberculosis complex (MTBC) species. Apart from MTBC, different Nontuberculous Mycobacteria (NTM) species have also been isolated from cattle. The presence of NTM infection in bovines makes the diagnosis of bovine tuberculosis (bTB) a cumbersome task. Therefore, a cross sectional study was conducted to isolate and characterize different Mycobacterium spp. from a slaughterhouse situated in Kolkata, a city in the eastern part of India.</p><p><strong>Results: </strong>Out of 258 morbid samples, 98 isolates were found to be positive for bacterial growth, and 35% (n = 34) were positive for Mycobacterium. 94% of Mycobacterial cultural isolates were NTM (n = 32), and the rest (n = 2) were found to be MTBC. Species-level identification of the isolates by hsp65 sequencing revealed that out of 32 isolates, 24 were M. fortuitum, three were M. abscessus, two each were M. chelonae and M. parascrofulaceum, and one was M. novocastrense. A phylogenetic tree with partial hsp65 gene sequences was also constructed to determine the relatedness of the unknown isolates to the reference strains.</p><p><strong>Conclusion: </strong>Both NTM species and MTBCs were identified from TB-like lesions in cattle that were slaughtered at the Kolkata abattoir. This discovery may indicate that NTM contributes to the development of lesions in cattle. Also, we recommend implication of more specific diagnostic tests for bTB.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1186/s12917-024-04268-5
Marwa H Hassan, Ibrahim A Emam, Haitham Farghali, Marwa A Ibrahim, Neven H Hassan, Khaled Y Farroh, Eman I Hassanen
Zinc oxide nanoparticles (ZnO NPs) have recently been applied in various veterinary and medical fields, however, the toxicological evaluations of these NPs in dogs are lacking. Therefore, the current study is designed to assess the impact of exposure to daily subcutaneous (SC) injections of ZnO NPs at different concentrations on various organs of mongrel dogs. Nine dogs were randomly divided into three groups (n = 3 for each) as follows: group (1) served as the control group, whereas groups (2&3) received SC injections of 50 and 100 ppm ZnO NPs (8 and 16 μg/kg bwt), respectively, once/day for 7 days. Our results revealed that ZnO NPs disrupted the oxidant/antioxidant balance in the lungs, liver, and kidneys of dogs in a dose-dependent manner. ZnO NPs induced dose-dependent radiological, ultrasonographical, and histopathological alterations in various organs especially lungs, spleen, liver, and kidneys along with disturbance in both liver and kidney biomarkers levels. Most organs of both ZnO NPs receiving groups displayed strong caspase-3 protein expression. Additionally, it upregulates the transcriptase levels of TNF-α and VEGF, as well as downregulates the antiapoptotic gene IL-10 in lung, kidney, and liver tissue homogenates. It was concluded that the daily SC injections of dogs with ZnO NPs at concentrations of 50 and 100 ppm caused extensive oxidative stress damage in various organs which provoked serious pathological processes such as apoptosis and inflammation.
{"title":"Toxicological screening of zinc oxide nanoparticles in mongrel dogs after seven days of repeated subcutaneous injections.","authors":"Marwa H Hassan, Ibrahim A Emam, Haitham Farghali, Marwa A Ibrahim, Neven H Hassan, Khaled Y Farroh, Eman I Hassanen","doi":"10.1186/s12917-024-04268-5","DOIUrl":"https://doi.org/10.1186/s12917-024-04268-5","url":null,"abstract":"<p><p>Zinc oxide nanoparticles (ZnO NPs) have recently been applied in various veterinary and medical fields, however, the toxicological evaluations of these NPs in dogs are lacking. Therefore, the current study is designed to assess the impact of exposure to daily subcutaneous (SC) injections of ZnO NPs at different concentrations on various organs of mongrel dogs. Nine dogs were randomly divided into three groups (n = 3 for each) as follows: group (1) served as the control group, whereas groups (2&3) received SC injections of 50 and 100 ppm ZnO NPs (8 and 16 μg/kg bwt), respectively, once/day for 7 days. Our results revealed that ZnO NPs disrupted the oxidant/antioxidant balance in the lungs, liver, and kidneys of dogs in a dose-dependent manner. ZnO NPs induced dose-dependent radiological, ultrasonographical, and histopathological alterations in various organs especially lungs, spleen, liver, and kidneys along with disturbance in both liver and kidney biomarkers levels. Most organs of both ZnO NPs receiving groups displayed strong caspase-3 protein expression. Additionally, it upregulates the transcriptase levels of TNF-α and VEGF, as well as downregulates the antiapoptotic gene IL-10 in lung, kidney, and liver tissue homogenates. It was concluded that the daily SC injections of dogs with ZnO NPs at concentrations of 50 and 100 ppm caused extensive oxidative stress damage in various organs which provoked serious pathological processes such as apoptosis and inflammation.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1186/s12917-024-04302-6
Amr Saber Mahmoud, Alaa El Din H Sayed, Usama T Mahmoud, Ahmed A A Mohammed, Madeha H A Darwish
This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.
本研究旨在通过评估非洲鲶鱼(Clarias gariepinus)的攻击行为(咬钩频率和追逐持续时间)、血液学指标和应激相关生化指标等参数,评估纳米氧化锌在减轻热应激有害影响方面的作用。总共有 96 条鲶鱼被分为四个不同的组(每组 24 条):第一组(CON)为对照组,食物中不含纳米氧化锌。第二组(HS)在 35 °C ± 1 °C的温度下接受热胁迫。第三组(ZN)饲喂含纳米氧化锌(30 毫克/千克)的日粮,第四组(ZHN)暴露于热应激(35 °C ± 1 °C)并饲喂含纳米氧化锌(30 毫克/千克)的日粮。结果表明,动物的攻击行为和皮质醇水平明显高于对照组(P
{"title":"Impact of zinc oxide nanoparticles on the behavior and stress indicators of African catfish (Clarias gariepinus) exposed to heat stress.","authors":"Amr Saber Mahmoud, Alaa El Din H Sayed, Usama T Mahmoud, Ahmed A A Mohammed, Madeha H A Darwish","doi":"10.1186/s12917-024-04302-6","DOIUrl":"https://doi.org/10.1186/s12917-024-04302-6","url":null,"abstract":"<p><p>This study was designed to assess the role of nano-zinc oxide in mitigating the deleterious effects of heat stress in African catfish (Clarias gariepinus) by evaluating parameters such as aggressive behavior (biting frequency and chasing duration), hematological indicators, and stress-related biochemical markers. A total of 96 catfish were divided into four distinct groups (24 fish/group): The first group (CON) served as the control group, receiving a diet free of nano-zinc oxide. The second group (HS) was exposed to heat stress at 35 °C ± 1 °C. The third group (ZN) was fed a diet containing nano-zinc oxide at 30 mg/kg of the diet, and the fourth group (ZHN) was exposed to heat stress (35 °C ± 1 °C) and fed a diet containing nano-zinc oxide at 30 mg/kg of the diet. The results clarified that the aggressive behavior and cortisol levels were significantly higher (P < 0.05) in the HS group compared to the CON and ZHN groups. Additionally, the level of acetylcholinesterase (AChE) was significantly lower (P < 0.05) in the HS group compared to the CON and ZHN groups. Meanwhile, a significant (P < 0.05) decrease in red blood cells, hemoglobin, packed cell volume, white blood cells, alkaline phosphatase, and lymphocytes, was observed in fish belonging to the HS group, while the levels of alanine aminotransferase, aspartate aminotransferase, neutrophils, and monocytes showed a significant increase (P < 0.05). Supplementation with nano-zinc oxide significantly recovered most hematological and biochemical parameters. In conclusion, nano-zinc oxide contributed significantly to the regulation of the negative impacts of heat stress on fish by reducing aggressive behavior and cortisol levels. Additionally, it improved the levels of AChE and certain hematological and biochemical parameters.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Aquaculture, traditionally a form of biotechnology, has evolved to integrate innovative biotechnological applications, such as advanced feed formulations, aimed at improving the growth performance and health of farmed fish species. In the present study, the effects of feeding rainbow trout with novel feed formulations were investigated. Fish growth, gut and liver morphology, the concentration of fatty acids in the fillet, and volatile fatty acids in the gut were assessed. The study also validated scenarios from in vivo experiments using a nutrient-based model called FEEDNETICS™. This globally used model serves as a tool for data interpretation and decision support in the context of precision fish farming.
Methods: Alternative protein and oil sources, including poultry by-product meal (PBM) and natural algae oil, were explored as sustainable replacements for fishmeal (FM) and fish oil (FO). A 90-day feeding trial was conducted using rainbow trout, comparing two isoproteic, isolipidic and isoenergetic diets. The control diet contained 15% FM, 5% PBM, and 8% FO, while the test diet replaced FM with 15% PBM and 5% feather meal hydrolysate (FMH), and fully substituted FO with VeraMaris® natural algae oil and rapeseed oil.
Results: PBM successfully replaced FM protein without negatively affecting feed intake, growth performance or feed utilization in trout. The combination of PBM and natural algae oil was well tolerated by the trout and showed no negative effects on gut health. A detailed analysis of fatty acids in the fillet revealed that PUFAs of the n3 and n6 series were significantly higher in the PBM group than in the FM group. Values of fatty acid-related health indexes, including atherogenicity index, and thrombogenicity index, confirmed the high nutritional value of trout filet, thus representing a healthy product for human. In addition, the predictions using the FEEDNETICS™ indicated that the tested novel alternative formulations are economically viable. The validation of the model for fish growth resulted in a Mean Absolute Percentage Error (MAPE) of 8%.
Conclusions: The FEEDNETICS™ application enhances our ability to optimize feeding strategies and improve production efficiency in the aquaculture industry. VeraMaris® algae oil and PBM could serve as viable and sustainable raw materials for fish feed, promoting environmentally friendly aquaculture practices.
{"title":"Effects of poultry by-product meal and complete replacement of fish oil with alternative oils on growth performance and gut health of rainbow trout (Oncorhynchus mykiss): a FEEDNETICS™ validation study.","authors":"Imam Hasan, Simona Rimoldi, Biagina Chiofalo, Marianna Oteri, Micaela Antonini, Rosangela Armone, Violeta Kalemi, Laura Gasco, Genciana Terova","doi":"10.1186/s12917-024-04324-0","DOIUrl":"https://doi.org/10.1186/s12917-024-04324-0","url":null,"abstract":"<p><strong>Background: </strong>Aquaculture, traditionally a form of biotechnology, has evolved to integrate innovative biotechnological applications, such as advanced feed formulations, aimed at improving the growth performance and health of farmed fish species. In the present study, the effects of feeding rainbow trout with novel feed formulations were investigated. Fish growth, gut and liver morphology, the concentration of fatty acids in the fillet, and volatile fatty acids in the gut were assessed. The study also validated scenarios from in vivo experiments using a nutrient-based model called FEEDNETICS™. This globally used model serves as a tool for data interpretation and decision support in the context of precision fish farming.</p><p><strong>Methods: </strong>Alternative protein and oil sources, including poultry by-product meal (PBM) and natural algae oil, were explored as sustainable replacements for fishmeal (FM) and fish oil (FO). A 90-day feeding trial was conducted using rainbow trout, comparing two isoproteic, isolipidic and isoenergetic diets. The control diet contained 15% FM, 5% PBM, and 8% FO, while the test diet replaced FM with 15% PBM and 5% feather meal hydrolysate (FMH), and fully substituted FO with VeraMaris<sup>®</sup> natural algae oil and rapeseed oil.</p><p><strong>Results: </strong>PBM successfully replaced FM protein without negatively affecting feed intake, growth performance or feed utilization in trout. The combination of PBM and natural algae oil was well tolerated by the trout and showed no negative effects on gut health. A detailed analysis of fatty acids in the fillet revealed that PUFAs of the n3 and n6 series were significantly higher in the PBM group than in the FM group. Values of fatty acid-related health indexes, including atherogenicity index, and thrombogenicity index, confirmed the high nutritional value of trout filet, thus representing a healthy product for human. In addition, the predictions using the FEEDNETICS™ indicated that the tested novel alternative formulations are economically viable. The validation of the model for fish growth resulted in a Mean Absolute Percentage Error (MAPE) of 8%.</p><p><strong>Conclusions: </strong>The FEEDNETICS™ application enhances our ability to optimize feeding strategies and improve production efficiency in the aquaculture industry. VeraMaris<sup>®</sup> algae oil and PBM could serve as viable and sustainable raw materials for fish feed, promoting environmentally friendly aquaculture practices.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Peste des Petits Ruminants (PPR) is a highly contagious viral disease primarily affecting goats and sheep, with clinical manifestations ranging from peracute disease to subclinical infection, particularly in atypical hosts such as cattle. The role of atypical hosts such as cattle to the spread of PPR remains controversial, with conflicting reports in the literature. Despite its worldwide significance, considerable knowledge gaps exist regarding the pathogenesis and clinical progression in both primary and atypical hosts. This study aimed to elucidate the tissue tropism, pathogenesis, virus shedding, clinical progression, and pathology associated with experimental PPR virus infection in indigenous goats and cattle. To this end, 32 animals-16 goats and 16 cattle-were intranasally inoculated with the Ethiopia/Habru/2014 Lineage-IV strain of the PPR virus followed by detailed clinical evaluations and systematic sampling at pre-established intervals to assess serological conversion, viral shedding, and the pathogenesis of the infection across both species.
Results: The results show that goats exhibited typical clinical signs 4 days post-inoculation, with seroconversion by day 6 and early detection of viral RNA in swabs and tissues by day 3 and virus isolation starting day 4. In contrast, cattle exhibited minimal clinical signs, with seroconversion occurring at day 8 with viral RNA detected in tissue samples at day 4 and virus isolation starting day 6 in tissues and in a single nasal swab at day 8. Clinical scores and tissue positivity rates significantly differed between goats and cattle (P = 0.007 and P < 0.001, respectively). While goats exhibited expected gross and histopathological lesions, cattle showed only nonspecific lesions.
Conclusions: Together, our findings highlight the importance of comparative pathology studies for better understanding virus dynamics and transmission pathways that may help inform more effective PPR control programs. Future research should explore the pathogenesis of different PPRV lineages in cattle, assessing variations in disease progression and potential for epidemiological impact.
{"title":"Comparative pathogenesis of Ethiopia/Habru/2014 Lineage-IV peste des petits ruminants virus in goats and cattle.","authors":"Fasil Aklilu, Hagos Ashenafi, Tesfu Kassa, Hassen Chaka, Demeke Sibhatu, Dereje Shegu, Abde Aliy Mohammed, Redeat Belaineh, Menbere Kidane, Hagos Asgedom, Tesfaye Chibssa, Getnet Mekonnen, Asegedetch Sirak, Solomon Gebredufe, Claudia Schulz, Catherine M Herzog, Vivek Kapur","doi":"10.1186/s12917-024-04313-3","DOIUrl":"https://doi.org/10.1186/s12917-024-04313-3","url":null,"abstract":"<p><strong>Background: </strong>Peste des Petits Ruminants (PPR) is a highly contagious viral disease primarily affecting goats and sheep, with clinical manifestations ranging from peracute disease to subclinical infection, particularly in atypical hosts such as cattle. The role of atypical hosts such as cattle to the spread of PPR remains controversial, with conflicting reports in the literature. Despite its worldwide significance, considerable knowledge gaps exist regarding the pathogenesis and clinical progression in both primary and atypical hosts. This study aimed to elucidate the tissue tropism, pathogenesis, virus shedding, clinical progression, and pathology associated with experimental PPR virus infection in indigenous goats and cattle. To this end, 32 animals-16 goats and 16 cattle-were intranasally inoculated with the Ethiopia/Habru/2014 Lineage-IV strain of the PPR virus followed by detailed clinical evaluations and systematic sampling at pre-established intervals to assess serological conversion, viral shedding, and the pathogenesis of the infection across both species.</p><p><strong>Results: </strong>The results show that goats exhibited typical clinical signs 4 days post-inoculation, with seroconversion by day 6 and early detection of viral RNA in swabs and tissues by day 3 and virus isolation starting day 4. In contrast, cattle exhibited minimal clinical signs, with seroconversion occurring at day 8 with viral RNA detected in tissue samples at day 4 and virus isolation starting day 6 in tissues and in a single nasal swab at day 8. Clinical scores and tissue positivity rates significantly differed between goats and cattle (P = 0.007 and P < 0.001, respectively). While goats exhibited expected gross and histopathological lesions, cattle showed only nonspecific lesions.</p><p><strong>Conclusions: </strong>Together, our findings highlight the importance of comparative pathology studies for better understanding virus dynamics and transmission pathways that may help inform more effective PPR control programs. Future research should explore the pathogenesis of different PPRV lineages in cattle, assessing variations in disease progression and potential for epidemiological impact.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1186/s12917-024-04322-2
Dikeledi C Sebola, James W Oguttu, Mogaugedi N Malahlela, Marleen M Kock, Daniel N Qekwana
Objective: This study aimed to investigate the presence of ESKAPE organisms on the hands of students working in the intensive care unit (ICU) at a veterinary academic hospital.
Methods: A cross-sectional study was conducted among students working in an ICU at a veterinary academic hospital in South Africa. Students were sampled before the start of the ICU shift using a modified glove-juice method. Standard microbiological techniques and a series of polymerase chain reaction (PCR) assays were used to identify and characterize the bacteria. All the isolates were tested for resistance against a specific panel of antibiotics using the disk diffusion method. Proportions of bacterial species and their antimicrobial-susceptibility profiles were calculated.
Results: At screening, all the veterinary students (n = 62) carried at least one of the ESKAPE organisms on their hands. Escherichia coli was the most isolated organism (76%, 47/62), followed by P. aeruginosa (48%, 30/62), A. baumannii (47%, 29/62), E. faecium (35%, 22/62), K. pneumoniae (27%, 17/62), and S. aureus (24%, 15/62). A reduced proportion of isolates were recovered from the samples, E. coli (26%, 12/47), E. faecium (23%, 5/22), P. aeruginosa (43%, 13/30), A. baumannii (24%,7/29), K. pneumoniae (41%, 7/17), and S. aureus (20%, 3/15). Most of the organisms showed a high proportion of resistance to at least one antibiotic. Multidrug resistance was reported among just over half (56%, 5/9) of E. coli, 40% (2/5) of E. faecium, 100% (13/13) of P. aeruginosa, and 33% (1/3) of S. aureus isolates.
Conclusion: Students working in the ICU carry several organisms belonging to the ESKAPE group of organisms before contact with patients. Moreover, MDR resistance was common among this group of organisms. The findings of the present study underscore the importance of infection prevention and control (IPC) strategies to help reduce the likelihood of the spread of these organisms to personnel, owners, family members, and patients.
{"title":"Occurrence and characterization of ESKAPE organisms on the hands of veterinary students before patient contact at a veterinary academic hospital, South Africa.","authors":"Dikeledi C Sebola, James W Oguttu, Mogaugedi N Malahlela, Marleen M Kock, Daniel N Qekwana","doi":"10.1186/s12917-024-04322-2","DOIUrl":"https://doi.org/10.1186/s12917-024-04322-2","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the presence of ESKAPE organisms on the hands of students working in the intensive care unit (ICU) at a veterinary academic hospital.</p><p><strong>Methods: </strong>A cross-sectional study was conducted among students working in an ICU at a veterinary academic hospital in South Africa. Students were sampled before the start of the ICU shift using a modified glove-juice method. Standard microbiological techniques and a series of polymerase chain reaction (PCR) assays were used to identify and characterize the bacteria. All the isolates were tested for resistance against a specific panel of antibiotics using the disk diffusion method. Proportions of bacterial species and their antimicrobial-susceptibility profiles were calculated.</p><p><strong>Results: </strong>At screening, all the veterinary students (n = 62) carried at least one of the ESKAPE organisms on their hands. Escherichia coli was the most isolated organism (76%, 47/62), followed by P. aeruginosa (48%, 30/62), A. baumannii (47%, 29/62), E. faecium (35%, 22/62), K. pneumoniae (27%, 17/62), and S. aureus (24%, 15/62). A reduced proportion of isolates were recovered from the samples, E. coli (26%, 12/47), E. faecium (23%, 5/22), P. aeruginosa (43%, 13/30), A. baumannii (24%,7/29), K. pneumoniae (41%, 7/17), and S. aureus (20%, 3/15). Most of the organisms showed a high proportion of resistance to at least one antibiotic. Multidrug resistance was reported among just over half (56%, 5/9) of E. coli, 40% (2/5) of E. faecium, 100% (13/13) of P. aeruginosa, and 33% (1/3) of S. aureus isolates.</p><p><strong>Conclusion: </strong>Students working in the ICU carry several organisms belonging to the ESKAPE group of organisms before contact with patients. Moreover, MDR resistance was common among this group of organisms. The findings of the present study underscore the importance of infection prevention and control (IPC) strategies to help reduce the likelihood of the spread of these organisms to personnel, owners, family members, and patients.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12917-024-04320-4
Raúl David Guevara, Jose J Pastor, Sergi López-Vergé, Xavier Manteca, Gemma Tedo, Pol Llonch
The goal of the current study was to develop a pig model to investigate oxidative stress with a low negative impact on piglet welfare. Four independent trials (A, B, C, and D) were performed using a single intraperitoneal shot of lipopolysaccharide (LPS) as an immune challenge, aiming to assess the minimal LPS dose for piglets of different age to trigger a measurable acute oxidative stress response in healthy animals. In trial A, piglets received an LPS dose of 25 µg/KgBW at 41 days post-weaning (p.w.). In trial B, piglets received 25 µg/KgBW of LPS at 28 days p.w., in trials C And D, piglets were injected with 50 µg/KgBW of LPS at 21 days p.w., respectively. Piglets were randomly allocated either to the T1) Control group with saline solution (Ctrl), or T2) LPS challenge (LPS). The oxidative stress response was measured through the enzymatic activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT), in both plasma and intestinal tissues. Intestinal gene expression of oxidative stress and inflammatory markers was assessed. Discomfort behaviors (panting, prostration, trembling, and vomits) were also recorded. Plasmatic and intestinal oxidative stress response was inconsistent across the four trials even when the dose and pig age were similar, possibly due to individual variability. Relative gene expression differences of anti-inflammatory cytokines (IL10), oxidation precursor (iNOS), and antioxidant markers (GPx4, MnSOD, and CAT) were detected between Ctrl and LPS treatment (P < 0.05) when assessed. Behavioral observations were sensitive to the LPS dose relative to Ctrl (P < 0.05) in all four trials. These results suggest that behavioral observations can be used as a non-invasive methodology to detect the presence of oxidative stress in pigs in challenging conditions. Behavioral observations were more sensitive than other indicators (i.e., biomarkers and gene expression) in the current study. However, a sensitivity scale system needs to be developed to qualify and rank the impact of oxidative stress in pigs.
{"title":"Physiology, gene expression, and behavior as potential indicators of oxidative stress in piglets.","authors":"Raúl David Guevara, Jose J Pastor, Sergi López-Vergé, Xavier Manteca, Gemma Tedo, Pol Llonch","doi":"10.1186/s12917-024-04320-4","DOIUrl":"https://doi.org/10.1186/s12917-024-04320-4","url":null,"abstract":"<p><p>The goal of the current study was to develop a pig model to investigate oxidative stress with a low negative impact on piglet welfare. Four independent trials (A, B, C, and D) were performed using a single intraperitoneal shot of lipopolysaccharide (LPS) as an immune challenge, aiming to assess the minimal LPS dose for piglets of different age to trigger a measurable acute oxidative stress response in healthy animals. In trial A, piglets received an LPS dose of 25 µg/KgBW at 41 days post-weaning (p.w.). In trial B, piglets received 25 µg/KgBW of LPS at 28 days p.w., in trials C And D, piglets were injected with 50 µg/KgBW of LPS at 21 days p.w., respectively. Piglets were randomly allocated either to the T1) Control group with saline solution (Ctrl), or T2) LPS challenge (LPS). The oxidative stress response was measured through the enzymatic activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT), in both plasma and intestinal tissues. Intestinal gene expression of oxidative stress and inflammatory markers was assessed. Discomfort behaviors (panting, prostration, trembling, and vomits) were also recorded. Plasmatic and intestinal oxidative stress response was inconsistent across the four trials even when the dose and pig age were similar, possibly due to individual variability. Relative gene expression differences of anti-inflammatory cytokines (IL10), oxidation precursor (iNOS), and antioxidant markers (GPx4, MnSOD, and CAT) were detected between Ctrl and LPS treatment (P < 0.05) when assessed. Behavioral observations were sensitive to the LPS dose relative to Ctrl (P < 0.05) in all four trials. These results suggest that behavioral observations can be used as a non-invasive methodology to detect the presence of oxidative stress in pigs in challenging conditions. Behavioral observations were more sensitive than other indicators (i.e., biomarkers and gene expression) in the current study. However, a sensitivity scale system needs to be developed to qualify and rank the impact of oxidative stress in pigs.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1186/s12917-024-04328-w
Yixing Xie, Yintong Deng, Jiaxun Mai, Heyu Li, Yizhou Chen
Background: Colonic stenosis is a rare postoperative complication of ovariohysterectomy in cats, leading to dyschezia and fecal diameter reduction. In cats, while there are reports of colonic stenosis after midline approach ovariohysterectomy, there are no specific reports of flank approach ovariohysterectomy.
Case presentation: This report describes a severe case of a one-year-old British shorthair female cat presenting with gastrointestinal signs, including dyschezia and reduced fecal diameter, three weeks after flank approach ovariohysterectomy. Despite abdominal radiography, proctography with barium sulfate, colonoscopy, CT, and hematological analysis, the cause of colonic stenosis remained unclear. During exploratory laparotomy, an annular tissue band was found encircling the descending colon, resulting in severe local stenosis. After excision of the tissue band, the presenting clinical signs of the cat were rapidly improved. This result suggests that colonic stenosis caused by tissue band should be considered when diagnosing postoperative complications in flank approach ovariohysterectomy in cats.
Conclusion: Colon stenosis due to annular tissue band restriction should be considered one of the differentials for postoperative complications in flank approach ovariohysterectomy in cats.
{"title":"An apparently healthy female British shorthair cat with a rare complication of colonic stenosis after flank approach ovariohysterectomy.","authors":"Yixing Xie, Yintong Deng, Jiaxun Mai, Heyu Li, Yizhou Chen","doi":"10.1186/s12917-024-04328-w","DOIUrl":"10.1186/s12917-024-04328-w","url":null,"abstract":"<p><strong>Background: </strong>Colonic stenosis is a rare postoperative complication of ovariohysterectomy in cats, leading to dyschezia and fecal diameter reduction. In cats, while there are reports of colonic stenosis after midline approach ovariohysterectomy, there are no specific reports of flank approach ovariohysterectomy.</p><p><strong>Case presentation: </strong>This report describes a severe case of a one-year-old British shorthair female cat presenting with gastrointestinal signs, including dyschezia and reduced fecal diameter, three weeks after flank approach ovariohysterectomy. Despite abdominal radiography, proctography with barium sulfate, colonoscopy, CT, and hematological analysis, the cause of colonic stenosis remained unclear. During exploratory laparotomy, an annular tissue band was found encircling the descending colon, resulting in severe local stenosis. After excision of the tissue band, the presenting clinical signs of the cat were rapidly improved. This result suggests that colonic stenosis caused by tissue band should be considered when diagnosing postoperative complications in flank approach ovariohysterectomy in cats.</p><p><strong>Conclusion: </strong>Colon stenosis due to annular tissue band restriction should be considered one of the differentials for postoperative complications in flank approach ovariohysterectomy in cats.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}