Pub Date : 2023-06-01Epub Date: 2023-06-27DOI: 10.1270/jsbbs.23002
Yu Wei Sun, Xin Yu Wang, Lu Liu, Qi Zhang, Yong Jing Xi, Pi Wu Wang
Light provides energy for photosynthesis and is also an important environmental signal that regulates plant growth and development. Ribose-5-phosphate isomerase plays a crucial role in photosynthesis. However, ribose-5-phosphate isomerase has yet to be studied in soybean photosynthesis. To understand the biological function of GmRPI2, in this study, GmRPI2 was cloned, plant overexpression vectors and gene editing vectors were successfully constructed, and transformed into recipient soybean JN74 using the Agrobacterium-mediated method. Using qRT-PCR, we analyzed that GmRPI2 gene expression was highest in leaves, second highest in roots, and lowest in stems. Promoter analysis revealed the presence of multiple cis-acting elements related to light response in the promoter region of GmRPI2. Compared with the control soybean plants, the net photosynthetic rate and transpiration rate of the overexpression lines were higher than those of the control and gene editing lines, while the intercellular CO2 concentration was significantly lower than that of the control and gene editing lines; the total chlorophyll, chlorophyll a, chlorophyll b contents and soluble sugar contents of the overexpression plants were significantly higher than those of the recipient and editing plants, indicating that the GmRPI2 gene can increase The GmRPI2 gene can increase the photosynthetic capacity of soybean plants, providing a theoretical basis and genetic resources for improving soybean yield by regulating photosynthetic efficiency.
{"title":"Cloning and functional study of <i>GmRPI2</i>, which is the critical gene of photosynthesis in soybean.","authors":"Yu Wei Sun, Xin Yu Wang, Lu Liu, Qi Zhang, Yong Jing Xi, Pi Wu Wang","doi":"10.1270/jsbbs.23002","DOIUrl":"10.1270/jsbbs.23002","url":null,"abstract":"<p><p>Light provides energy for photosynthesis and is also an important environmental signal that regulates plant growth and development. Ribose-5-phosphate isomerase plays a crucial role in photosynthesis. However, ribose-5-phosphate isomerase has yet to be studied in soybean photosynthesis. To understand the biological function of <i>GmRPI2</i>, in this study, <i>GmRPI2</i> was cloned, plant overexpression vectors and gene editing vectors were successfully constructed, and transformed into recipient soybean JN74 using the Agrobacterium-mediated method. Using qRT-PCR, we analyzed that <i>GmRPI2</i> gene expression was highest in leaves, second highest in roots, and lowest in stems. Promoter analysis revealed the presence of multiple cis-acting elements related to light response in the promoter region of <i>GmRPI2</i>. Compared with the control soybean plants, the net photosynthetic rate and transpiration rate of the overexpression lines were higher than those of the control and gene editing lines, while the intercellular CO<sub>2</sub> concentration was significantly lower than that of the control and gene editing lines; the total chlorophyll, chlorophyll a, chlorophyll b contents and soluble sugar contents of the overexpression plants were significantly higher than those of the recipient and editing plants, indicating that the <i>GmRPI2</i> gene can increase The <i>GmRPI2</i> gene can increase the photosynthetic capacity of soybean plants, providing a theoretical basis and genetic resources for improving soybean yield by regulating photosynthetic efficiency.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"290-299"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570876/pdf/73_290.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Golden cyst nematodes have threatened the cultivation of 'Toyoshiro', a major potato variety used for chip processing in Japan. Common scab is a soilborne disease that occurs in potato fields worldwide. To solve these problems, we crossed two US varieties and selected a clone that showed a slightly higher marketable yield and a significantly higher yield rate, compared with 'Toyoshiro', and had good chip processing quality, extreme resistance to cyst nematodes, and moderately high resistance to common scab. This clone was named 'Poroshiri'; it is the first variety released from the Calbee Potato breeding program.
{"title":"Development of 'Poroshiri', a chip processing potato variety with golden cyst nematode and common scab resistance.","authors":"Mutsuo Tsuyama, Shogo Ogawa, Keiichi Ogawa, Toshiya Igarashi, Emiko Koizumi","doi":"10.1270/jsbbs.22084","DOIUrl":"10.1270/jsbbs.22084","url":null,"abstract":"<p><p>Golden cyst nematodes have threatened the cultivation of 'Toyoshiro', a major potato variety used for chip processing in Japan. Common scab is a soilborne disease that occurs in potato fields worldwide. To solve these problems, we crossed two US varieties and selected a clone that showed a slightly higher marketable yield and a significantly higher yield rate, compared with 'Toyoshiro', and had good chip processing quality, extreme resistance to cyst nematodes, and moderately high resistance to common scab. This clone was named 'Poroshiri'; it is the first variety released from the Calbee Potato breeding program.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"343-348"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570885/pdf/73_343.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sweetpotato (Ipomoea batatas) cultivars grown in Japan are highly valued for their excellent sweetness, high quality, and good texture. The export volume of sweetpotato from Japan has been rising rapidly, with a 10-fold increase on a weight basis over the last 10 years. However, since sweetpotato is propagated vegetatively from storage roots, it is easy to cultivate and propagate this crop, prompting concerns that Japanese sweetpotato cultivars/lines are being exported overseas, cultivated without permission, or reimported. Therefore, a rapid and accurate cultivar identification methodology is needed. In this study, we comprehensively analyzed the insertion sites of Cl8 retrotransposon to develop a cultivar identification technique for the Japanese cultivars 'Beniharuka' and 'Fukumurasaki'. These two cultivars were successfully distinguished from other cultivars using a minimum of two marker sets. Using the chromatographic printed array strip (C-PAS) method for DNA signal detection, 'Beniharuka' and 'Fukumurasaki' can be precisely identified using a single strip of chromatographic paper based on multiplex DNA signals derived from the amplicons of the Cl8 insertion sites. Since this method can detect DNA signals in only ~15 minutes, we expect that our method will facilitate rapid, reliable, and convenient cultivar discrimination for on-site inspection of sweetpotato.
{"title":"Chromatographic printed array strip (C-PAS) method for cultivar-specific identification of sweetpotato cultivars 'Beniharuka' and 'Fukumurasaki'.","authors":"Yuki Monden, Maho Kakigi, Emdadul Haque, Tomoyuki Takeuchi, Kazuto Takasaki, Masaru Tanaka","doi":"10.1270/jsbbs.22101","DOIUrl":"10.1270/jsbbs.22101","url":null,"abstract":"<p><p>Sweetpotato (<i>Ipomoea batatas</i>) cultivars grown in Japan are highly valued for their excellent sweetness, high quality, and good texture. The export volume of sweetpotato from Japan has been rising rapidly, with a 10-fold increase on a weight basis over the last 10 years. However, since sweetpotato is propagated vegetatively from storage roots, it is easy to cultivate and propagate this crop, prompting concerns that Japanese sweetpotato cultivars/lines are being exported overseas, cultivated without permission, or reimported. Therefore, a rapid and accurate cultivar identification methodology is needed. In this study, we comprehensively analyzed the insertion sites of <i>Cl8</i> retrotransposon to develop a cultivar identification technique for the Japanese cultivars 'Beniharuka' and 'Fukumurasaki'. These two cultivars were successfully distinguished from other cultivars using a minimum of two marker sets. Using the chromatographic printed array strip (C-PAS) method for DNA signal detection, 'Beniharuka' and 'Fukumurasaki' can be precisely identified using a single strip of chromatographic paper based on multiplex DNA signals derived from the amplicons of the <i>Cl8</i> insertion sites. Since this method can detect DNA signals in only ~15 minutes, we expect that our method will facilitate rapid, reliable, and convenient cultivar discrimination for on-site inspection of sweetpotato.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"313-321"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570877/pdf/73_313.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To avoid crop failure because of climate change, soybean (Glycine max (L.) Merrill) cultivars adaptable to early planting are required in western Japan. Because current Japanese cultivars may not be adaptable, genetic resources with high early-planting adaptability, and their genetic information must be developed. In the present study, summer type (ST) soybeans developed for early planting were used as plant materials. We examined their phenological characteristics and short reproductive period as an indicator of early planting adaptability and performed genetic studies. Biparental quantitative trait loci (QTL) analysis of a representative ST cultivar revealed a principal QTL for the reproductive period duration on chromosome 11. The results of resequencing analysis suggested that circadian clock-related Tof11 (soybean orthologue of PRR3) is a candidate QTL. Additionally, all 25 early planting-adaptable germplasms evaluated in this study possessed mutant alleles in Tof11, whereas 15 conventional cultivars only had wild-type alleles. These results suggest that mutant alleles in Tof11 are important genetic factors in the high adaptability to early planting of these soybeans, and thus, these alleles were acquired and accumulated in the ST soybean population.
{"title":"Mutant <i>Tof11</i> alleles are highly accumulated in early planting-adaptable Japanese summer type soybeans.","authors":"Kunihiko Komatsu, Takashi Sayama, Ken-Ichiro Yamashita, Yoshitake Takada","doi":"10.1270/jsbbs.22098","DOIUrl":"10.1270/jsbbs.22098","url":null,"abstract":"<p><p>To avoid crop failure because of climate change, soybean (<i>Glycine max</i> (L.) Merrill) cultivars adaptable to early planting are required in western Japan. Because current Japanese cultivars may not be adaptable, genetic resources with high early-planting adaptability, and their genetic information must be developed. In the present study, summer type (ST) soybeans developed for early planting were used as plant materials. We examined their phenological characteristics and short reproductive period as an indicator of early planting adaptability and performed genetic studies. Biparental quantitative trait loci (QTL) analysis of a representative ST cultivar revealed a principal QTL for the reproductive period duration on chromosome 11. The results of resequencing analysis suggested that circadian clock-related <i>Tof11</i> (soybean orthologue of <i>PRR3</i>) is a candidate QTL. Additionally, all 25 early planting-adaptable germplasms evaluated in this study possessed mutant alleles in <i>Tof11</i>, whereas 15 conventional cultivars only had wild-type alleles. These results suggest that mutant alleles in <i>Tof11</i> are important genetic factors in the high adaptability to early planting of these soybeans, and thus, these alleles were acquired and accumulated in the ST soybean population.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"322-331"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570879/pdf/73_322.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-07-07DOI: 10.1270/jsbbs.22094
Anna Ivanova-Pozdejeva, Liina Jakobson, Kai Ilves, Agnes Kivistik, Liina Kann, Jekaterina Aida, Liisa Kübarsepp, Terje Tähtjärv, Kristiina Laanemets
Globodera rostochiensis resistance has been an important trait in potato (Solanum tuberosum) breeding for decades. Our aim was to complement phenotypic testing with genetic marker analysis. We analysed the results of G. rostochiensis resistance greenhouse testing in 4601 tubers of 2918 breeding clones from 11 years. Applicability of H1 gene markers TG689 and 57R was compared. We implemented the latter with the positive predictive value of 99.1% and negative predictive value of 60.0% into the breeding scheme. The 57R marker alleles of 22 Estonian cultivars and 470 breeding clones were determined. Two unique 57R alleles, 57R-887 and 57R-1155, were found in Estonian cultivar 'Anti'. The 887 bp allele has two deletions (14 bp and 490 bp) accompanied by several other indels and SNPs within the 57R marker region. The 1155 bp allele has three deletions (7 bp, 20 bp and 210 bp) accompanied by several other indels and SNPs within the same region. Partial resistance to G. rostochiensis in 'Anti' suggests that the newly described alleles could affect the H1-mediated resistance directly or indirectly.
{"title":"Studies of potato resistance to <i>Globodera rostochiensis</i> revealed novel alleles for 57R marker.","authors":"Anna Ivanova-Pozdejeva, Liina Jakobson, Kai Ilves, Agnes Kivistik, Liina Kann, Jekaterina Aida, Liisa Kübarsepp, Terje Tähtjärv, Kristiina Laanemets","doi":"10.1270/jsbbs.22094","DOIUrl":"10.1270/jsbbs.22094","url":null,"abstract":"<p><p><i>Globodera rostochiensis</i> resistance has been an important trait in potato (<i>Solanum tuberosum</i>) breeding for decades. Our aim was to complement phenotypic testing with genetic marker analysis. We analysed the results of <i>G. rostochiensis</i> resistance greenhouse testing in 4601 tubers of 2918 breeding clones from 11 years. Applicability of <i>H1</i> gene markers TG689 and 57R was compared. We implemented the latter with the positive predictive value of 99.1% and negative predictive value of 60.0% into the breeding scheme. The 57R marker alleles of 22 Estonian cultivars and 470 breeding clones were determined. Two unique 57R alleles, 57R-887 and 57R-1155, were found in Estonian cultivar 'Anti'. The 887 bp allele has two deletions (14 bp and 490 bp) accompanied by several other indels and SNPs within the 57R marker region. The 1155 bp allele has three deletions (7 bp, 20 bp and 210 bp) accompanied by several other indels and SNPs within the same region. Partial resistance to <i>G. rostochiensis</i> in 'Anti' suggests that the newly described alleles could affect the <i>H1</i>-mediated resistance directly or indirectly.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"300-312"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570887/pdf/73_300.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.
{"title":"Development of 12 sets of chromosome segment substitution lines that enhance allele mining in Asian cultivated rice.","authors":"Kazufumi Nagata, Yasunori Nonoue, Kazuki Matsubara, Ritsuko Mizobuchi, Nozomi Ono, Taeko Shibaya, Kaworu Ebana, Eri Ogiso-Tanaka, Takanari Tanabata, Kazuhiko Sugimoto, Fumio Taguchi-Shiobara, Jun-Ichi Yonemaru, Yusaku Uga, Atsunori Fukuda, Tadamasa Ueda, Shin-Ichi Yamamoto, Utako Yamanouchi, Toshiyuki Takai, Takashi Ikka, Katsuhiko Kondo, Tomoki Hoshino, Eiji Yamamoto, Shunsuke Adachi, Jian Sun, Noriyuki Kuya, Yuka Kitomi, Ken Iijima, Hideki Nagasaki, Ayahiko Shomura, Tatsumi Mizubayashi, Noriyuki Kitazawa, Kiyosumi Hori, Tsuyu Ando, Toshio Yamamoto, Shuichi Fukuoka, Masahiro Yano","doi":"10.1270/jsbbs.23006","DOIUrl":"10.1270/jsbbs.23006","url":null,"abstract":"<p><p>Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the <i>japonica</i> background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous <i>japonica</i> background to be validated.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"332-342"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570878/pdf/73_332.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ear tip-barrenness (ETB), which results from aborted kernels or infertile florets at the ear tip, is an undesirable factor affecting the yield and quality of waxy maize. To uncover the genetic basis of ETB, a genome-wide association study (GWAS) was conducted using the genotype with 27,354 SNPs and phenotype with three environments. Five SNPs that distributed on chromosomes 1, 3 and 6, were identified to be significantly associated with ETB based on the threshold of false discovery rate (FDR) at 0.05. Among these significant loci, three SNPs were clustered together and colocalized with genomic regions previously reported. The average length of ETB decreased almost linearly from the inbred lines containing no favorable alleles across the three loci (1.75 cm) to those with one (1.18 cm), two (0.94 cm) and three (0.65 cm) favorable alleles. Moreover, three important genes, Zm00001d030028, Zm00001d041510 and Zm00001d038676 were predicted for three significant QTLs, respectively. These results promote the understanding genetic basis for ETB and will be useful for breeding waxy maize varieties with high-quality and high-yield.
{"title":"Genome-wide association study of ear tip barrenness in waxy maize.","authors":"Xudong Song, Guangfei Zhou, Zhenliang Zhang, Huiming Zhang, Lin Xue, Hui Wang, Mingliang Shi, Huhua Lu, Yuxiang Mao, Guoqing Chen, Xiaolan Huang, Hongjian Zheng, Derong Hao","doi":"10.1270/jsbbs.22056","DOIUrl":"10.1270/jsbbs.22056","url":null,"abstract":"<p><p>Ear tip-barrenness (ETB), which results from aborted kernels or infertile florets at the ear tip, is an undesirable factor affecting the yield and quality of waxy maize. To uncover the genetic basis of ETB, a genome-wide association study (GWAS) was conducted using the genotype with 27,354 SNPs and phenotype with three environments. Five SNPs that distributed on chromosomes 1, 3 and 6, were identified to be significantly associated with ETB based on the threshold of false discovery rate (FDR) at 0.05. Among these significant loci, three SNPs were clustered together and colocalized with genomic regions previously reported. The average length of ETB decreased almost linearly from the inbred lines containing no favorable alleles across the three loci (1.75 cm) to those with one (1.18 cm), two (0.94 cm) and three (0.65 cm) favorable alleles. Moreover, three important genes, <i>Zm00001d030028</i>, <i>Zm00001d041510</i> and <i>Zm00001d038676</i> were predicted for three significant QTLs, respectively. These results promote the understanding genetic basis for ETB and will be useful for breeding waxy maize varieties with high-quality and high-yield.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"261-268"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570881/pdf/73_261.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somaclonal variation was studied by whole-genome sequencing in rice plants (Oryza sativa L., 'Nipponbare') regenerated from the zygotes, mature embryos, and immature embryos of a single mother plant. The mother plant and its seed-propagated progeny were also sequenced. A total of 338 variants of the mother plant sequence were detected in the progeny, and mean values ranged from 9.0 of the seed-propagated plants to 37.4 of regenerants from mature embryos. The natural mutation rate of 1.2 × 10-8 calculated using the variants in the seed-propagated plants was consistent with the values reported previously. The ratio of single nucleotide variants (SNVs) among the variants in the seed-propagated plants was 91.1%, which is higher than 56.1% previously reported, and not significantly different from those in the regenerants. Overall, the ratio of transitions to transversions of SNVs was lower in the regenerants as shown previously. Plants regenerated from mature embryos had significantly more variants than different progeny types. Therefore, using zygotes and immature embryos can reduce somaclonal variation during the genetic manipulation of rice.
{"title":"Whole-genome sequence analysis of mutations in rice plants regenerated from zygotes, mature embryos, and immature embryos.","authors":"Masako Ichikawa, Norio Kato, Erika Toda, Masakazu Kashihara, Yuji Ishida, Yukoh Hiei, Sachiko N Isobe, Kenta Shirasawa, Hideki Hirakawa, Takashi Okamoto, Toshihiko Komari","doi":"10.1270/jsbbs.22100","DOIUrl":"10.1270/jsbbs.22100","url":null,"abstract":"<p><p>Somaclonal variation was studied by whole-genome sequencing in rice plants (<i>Oryza sativa</i> L., 'Nipponbare') regenerated from the zygotes, mature embryos, and immature embryos of a single mother plant. The mother plant and its seed-propagated progeny were also sequenced. A total of 338 variants of the mother plant sequence were detected in the progeny, and mean values ranged from 9.0 of the seed-propagated plants to 37.4 of regenerants from mature embryos. The natural mutation rate of 1.2 × 10<sup>-8</sup> calculated using the variants in the seed-propagated plants was consistent with the values reported previously. The ratio of single nucleotide variants (SNVs) among the variants in the seed-propagated plants was 91.1%, which is higher than 56.1% previously reported, and not significantly different from those in the regenerants. Overall, the ratio of transitions to transversions of SNVs was lower in the regenerants as shown previously. Plants regenerated from mature embryos had significantly more variants than different progeny types. Therefore, using zygotes and immature embryos can reduce somaclonal variation during the genetic manipulation of rice.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"349-353"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570880/pdf/73_349.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.
{"title":"Development of a multicriteria decision-making model for evaluating hybrid offspring in the sweetpotato (<i>Ipomoea batatas</i> L.) breeding process.","authors":"Wei Xiang, Kailong Li, Fang Dong, Ya Zhang, Qiang Zeng, Ling Jiang, Daowei Zhang, Yanlan Huang, Liang Xiao, Zhuo Zhang, Chaofan Zhang","doi":"10.1270/jsbbs.22096","DOIUrl":"10.1270/jsbbs.22096","url":null,"abstract":"<p><p>Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 3","pages":"246-260"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570886/pdf/73_246.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selfing and crossing methods were used to develop the cytoplasmic male sterility (CMS) lines from 2 elite F1 hybrids of CMS hot chilies. The pungency of the CMS lines was improved by backcrossing with the B cultivar. The first and second backcrossed progenies of the CMS lines showed significantly higher capsaicin contents than the F1 hybrids. One good female line K16 × BBC2 (K16), was selected and backcrossed with 3 good maintainer cultivars, C5, C9 and C0. Some incomplete male sterility of pollens was demonstrated in the F1 hybrids and the 1st backcrossed progenies while the partial sterility disappeared by the stage of the second and third generations of backcrossing. When K16 and P32 were crossed with restorers, fruit yields and yield components of certain F1 hybrids, parental lines and commercial varieties were significantly different. Heterosis of yield and yield components of the F1 hybrid chilies was significant. When K16 was used as a female parent, positive and significant heterosis of the F1 hybrids was the same as P32. Moreover, significant GCA of the restorer lines, C7, C8 and C9, was observed in some horticultural characteristics. Furthermore, significant differences of the specific combining ability of some characteristics were observed in a few F1 hybrids.
{"title":"Development of male sterile lines of CMS chilies (<i>Capsicum annuum</i> L.) from F<sub>1</sub> hybrids.","authors":"Maneechat Nikornpun, Kridsada Sukwiwat, Kittisak Wongsing, Jutamas Kumchai","doi":"10.1270/jsbbs.22042","DOIUrl":"https://doi.org/10.1270/jsbbs.22042","url":null,"abstract":"<p><p>Selfing and crossing methods were used to develop the cytoplasmic male sterility (CMS) lines from 2 elite F<sub>1</sub> hybrids of CMS hot chilies. The pungency of the CMS lines was improved by backcrossing with the B cultivar. The first and second backcrossed progenies of the CMS lines showed significantly higher capsaicin contents than the F<sub>1</sub> hybrids. One good female line K16 × BBC2 (K16), was selected and backcrossed with 3 good maintainer cultivars, C5, C9 and C0. Some incomplete male sterility of pollens was demonstrated in the F<sub>1</sub> hybrids and the 1<sup>st</sup> backcrossed progenies while the partial sterility disappeared by the stage of the second and third generations of backcrossing. When K16 and P32 were crossed with restorers, fruit yields and yield components of certain F<sub>1</sub> hybrids, parental lines and commercial varieties were significantly different. Heterosis of yield and yield components of the F<sub>1</sub> hybrid chilies was significant. When K16 was used as a female parent, positive and significant heterosis of the F<sub>1</sub> hybrids was the same as P32. Moreover, significant GCA of the restorer lines, C7, C8 and C9, was observed in some horticultural characteristics. Furthermore, significant differences of the specific combining ability of some characteristics were observed in a few F<sub>1</sub> hybrids.</p>","PeriodicalId":9258,"journal":{"name":"Breeding Science","volume":"73 2","pages":"158-167"},"PeriodicalIF":2.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9801027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}