Pub Date : 2024-12-30DOI: 10.1109/OJPEL.2024.3523676
Michael Basler;Richard Reiner;Daniel Grieshaber;Fouad Benkhelifa;Stefan Mönch
In this work, a novel monolithically integrated and galvanically isolated GaN gate driver is presented, which combines the separated power and data link of conventional Si-based solutions. The core is an integrated spiral transformer, which is driven on the primary side by a VHF class-D oscillator with on-off keying modulated by the PWM signal. On the secondary side, the signal is rectified and a network ensures the correct off-state. The driver was operated with PWM signals of up to 2 MHz with only one supply voltage of 8 V on the primary side. This GaN IC shows the potential to be integrated with the power transistor in the future to provide a highly compact isolated driver solution on chip.
{"title":"Monolithically Integrated and Galvanically Isolated GaN Gate Driver","authors":"Michael Basler;Richard Reiner;Daniel Grieshaber;Fouad Benkhelifa;Stefan Mönch","doi":"10.1109/OJPEL.2024.3523676","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3523676","url":null,"abstract":"In this work, a novel monolithically integrated and galvanically isolated GaN gate driver is presented, which combines the separated power and data link of conventional Si-based solutions. The core is an integrated spiral transformer, which is driven on the primary side by a VHF class-D oscillator with on-off keying modulated by the PWM signal. On the secondary side, the signal is rectified and a network ensures the correct off-state. The driver was operated with PWM signals of up to 2 MHz with only one supply voltage of 8 V on the primary side. This GaN IC shows the potential to be integrated with the power transistor in the future to provide a highly compact isolated driver solution on chip.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"144-149"},"PeriodicalIF":5.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1109/OJPEL.2024.3520111
Dai Orihara;Hisao Taoka;Hiroshi Kikusato;Jun Hashimoto;Kenji Otani;Rahman Khaliqur;Ustun Taha Selim
Grid-forming (GFM) inverters enable inverter-based resources to act as voltage sources, providing support to power systems. They are anticipated to serve as a technology capable of replacing synchronous generators. However, during a fault, it is crucial to implement a function that limits their output current to prevent short circuit currents from exceeding their capacity. This raises concerns about the potential deterioration of transient stability in the power system. The influence of current limiting on transient stability depends on the current-limiting methodology. However, comprehensive theoretical evaluations are still lacking. This paper presents the theoretical evaluation of the influence of current limiting on transient stability for various current limitation algorithms. Accordingly, an equivalent virtual impedance (EVI) is proposed as a universal metric. EVI represents an impedance virtually assumed between the voltage source simulated in GFM control and the connection point of the inverter, and is computed so that the current through the EVI matches the limited output current. The transient stability is then assessed for various current-limiting algorithms based on the electric circuit characteristic of EVI. Finally, time-domain simulation is conducted to evaluate the consistency of the assessment.
{"title":"Theoretical Comparison of Current Limiting Algorithms in Grid-Forming Inverter in Terms of Transient Stability","authors":"Dai Orihara;Hisao Taoka;Hiroshi Kikusato;Jun Hashimoto;Kenji Otani;Rahman Khaliqur;Ustun Taha Selim","doi":"10.1109/OJPEL.2024.3520111","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3520111","url":null,"abstract":"Grid-forming (GFM) inverters enable inverter-based resources to act as voltage sources, providing support to power systems. They are anticipated to serve as a technology capable of replacing synchronous generators. However, during a fault, it is crucial to implement a function that limits their output current to prevent short circuit currents from exceeding their capacity. This raises concerns about the potential deterioration of transient stability in the power system. The influence of current limiting on transient stability depends on the current-limiting methodology. However, comprehensive theoretical evaluations are still lacking. This paper presents the theoretical evaluation of the influence of current limiting on transient stability for various current limitation algorithms. Accordingly, an equivalent virtual impedance (EVI) is proposed as a universal metric. EVI represents an impedance virtually assumed between the voltage source simulated in GFM control and the connection point of the inverter, and is computed so that the current through the EVI matches the limited output current. The transient stability is then assessed for various current-limiting algorithms based on the electric circuit characteristic of EVI. Finally, time-domain simulation is conducted to evaluate the consistency of the assessment.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"109-119"},"PeriodicalIF":5.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1109/OJPEL.2024.3519877
Marziyeh Hajiheidari;Joel Fushekati;Mohammad Emad;Bas J. D. Vermulst;Jeroen van Duivenbode;Henk Huisman
This paper introduces two new single-path and cascaded High-Resolution Digital Pulse Width Modulation (HRDPWM) architectures. The proposed single-path architecture uses fewer FPGA resources to achieve the same resolution as conventional dual-path architectures. Moreover, the generated HRDPWM signal is independent of the Place-And-Route (PAR) algorithm applied by the synthesis tool, as well as temperature and voltage variations. The proposed cascaded architecture can be used to increase the DPWM resolution without raising the system clock frequency or, alternatively, to reduce the FPGA system clock frequency (relaxing timing challenges) without lowering the resolution. Both architectures have been implemented and verified using a mid-range Artix-7 FPGA with both triangular and sawtooth carriers. A time resolution of 39 ps has been achieved for the cascaded HRDPWM architecture with a sawtooth carrier and a system clock of 400 MHz. Additionally, a GaN-based synchronous buck converter is designed and implemented to evaluate the performance of the proposed HRDPWM architectures in a real application. It is demonstrated that bothhldead time and duty cycle can be modified with high accuracy and resolution and updated twice per switching cycle.
{"title":"Single-Path High-Resolution Digital PWM Architectures With Cascadability of Delay Lines","authors":"Marziyeh Hajiheidari;Joel Fushekati;Mohammad Emad;Bas J. D. Vermulst;Jeroen van Duivenbode;Henk Huisman","doi":"10.1109/OJPEL.2024.3519877","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3519877","url":null,"abstract":"This paper introduces two new single-path and cascaded High-Resolution Digital Pulse Width Modulation (HRDPWM) architectures. The proposed single-path architecture uses fewer FPGA resources to achieve the same resolution as conventional dual-path architectures. Moreover, the generated HRDPWM signal is independent of the Place-And-Route (PAR) algorithm applied by the synthesis tool, as well as temperature and voltage variations. The proposed cascaded architecture can be used to increase the DPWM resolution without raising the system clock frequency or, alternatively, to reduce the FPGA system clock frequency (relaxing timing challenges) without lowering the resolution. Both architectures have been implemented and verified using a mid-range Artix-7 FPGA with both triangular and sawtooth carriers. A time resolution of 39 ps has been achieved for the cascaded HRDPWM architecture with a sawtooth carrier and a system clock of 400 MHz. Additionally, a GaN-based synchronous buck converter is designed and implemented to evaluate the performance of the proposed HRDPWM architectures in a real application. It is demonstrated that bothhldead time and duty cycle can be modified with high accuracy and resolution and updated twice per switching cycle.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"130-143"},"PeriodicalIF":5.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1109/OJPEL.2024.3500895
{"title":"IEEE Power Electronics Society Information","authors":"","doi":"10.1109/OJPEL.2024.3500895","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3500895","url":null,"abstract":"","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"C2-C2"},"PeriodicalIF":5.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10803120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1109/OJPEL.2024.3500897
{"title":"IEEE Open Journal of Power Electronics Information for Authors","authors":"","doi":"10.1109/OJPEL.2024.3500897","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3500897","url":null,"abstract":"","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"C3-C3"},"PeriodicalIF":5.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10803119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1109/OJPEL.2024.3515798
Jannik Schäfer;Gwendolin Rohner;Johann W. Kolar
This paper extends the Generalized Steinmetz Equation (GSE) to account for the influence of mechanical stress on ferrite core losses. Experimental measurements are used to quantify the effects of compressive and tensile stresses on the relative permeability and the core losses of different ferrite materials. Mechanical stress is found to significantly affect the core losses, depending on the relative orientation of the magnetic flux density and the applied mechanical stress. Specifically, the losses monotonically increase when the flux and compressive stress vectors are parallel, while perpendicular vectors lead to a more complex response depending on the level of mechanical stress. The measured loss characteristics are translated in an extension of the GSE (X-GSE), which is validated for different ferrite materials, and provides a useful tool for a first rough estimation of the core losses under mechanical stresses. Finally, FEM simulations demonstrate how thermally induced mechanical stresses in a ferrite core can redistribute the magnetic flux and therefore impact the resulting core losses, which underlines the importance of considering the stress dependence of core losses in ferrite, especially in the development of magnetic components to be encapsulated in incompressible materials.
{"title":"Extending the Steinmetz Equation: Incorporating Mechanical Stress Effects in Ferrite Core Loss Calculations","authors":"Jannik Schäfer;Gwendolin Rohner;Johann W. Kolar","doi":"10.1109/OJPEL.2024.3515798","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3515798","url":null,"abstract":"This paper extends the Generalized Steinmetz Equation (GSE) to account for the influence of mechanical stress on ferrite core losses. Experimental measurements are used to quantify the effects of compressive and tensile stresses on the relative permeability and the core losses of different ferrite materials. Mechanical stress is found to significantly affect the core losses, depending on the relative orientation of the magnetic flux density and the applied mechanical stress. Specifically, the losses monotonically increase when the flux and compressive stress vectors are parallel, while perpendicular vectors lead to a more complex response depending on the level of mechanical stress. The measured loss characteristics are translated in an extension of the GSE (X-GSE), which is validated for different ferrite materials, and provides a useful tool for a first rough estimation of the core losses under mechanical stresses. Finally, FEM simulations demonstrate how thermally induced mechanical stresses in a ferrite core can redistribute the magnetic flux and therefore impact the resulting core losses, which underlines the importance of considering the stress dependence of core losses in ferrite, especially in the development of magnetic components to be encapsulated in incompressible materials.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"56-65"},"PeriodicalIF":5.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10792929","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1109/OJPEL.2024.3515288
Anurag Tiwari;Vinayak Kumar;Ruchi Agarwal;Mohammad Amir;Mohammed A. Alharbi;S. M. Muyeen
This study provides an extensive overview of recent developments in grid-connected photovoltaic (PV) systems based on five-level Multilevel Inverters (MLIs), with an emphasis on modulation schemes, control approaches, and system architectures. Five-level MLI-based PV systems have become a crucial option as the relevance of renewable energy keeps increasing because of their increased efficiency, less harmonic distortion, and greater power quality. The study looks at several different control strategies, including grid synchronization approaches and Maximum Power Point Tracking (MPPT), to improve PV system performance and grid interaction. Several modulation techniques are also examined, with a focus on how they might lower harmonics and boost system performance. Examples of these techniques include pulse width modulation (PWM) and selective harmonic elimination (SHE). Further analysis of the structural features of five-level MLI-based systems is done, which helps to clarify the trade-offs between complexity, dependability, and cost. This analysis includes component needs and scalability concerns. Researchers and engineers working on the design, control, and deployment of sophisticated MLI-based PV systems in grid-connected applications may learn from this paper.
{"title":"Five-Level MLI-Based Grid-Connected Photovoltaic Systems: A Review on Control Methodologies, Modulation Strategies and Recent Developments","authors":"Anurag Tiwari;Vinayak Kumar;Ruchi Agarwal;Mohammad Amir;Mohammed A. Alharbi;S. M. Muyeen","doi":"10.1109/OJPEL.2024.3515288","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3515288","url":null,"abstract":"This study provides an extensive overview of recent developments in grid-connected photovoltaic (PV) systems based on five-level Multilevel Inverters (MLIs), with an emphasis on modulation schemes, control approaches, and system architectures. Five-level MLI-based PV systems have become a crucial option as the relevance of renewable energy keeps increasing because of their increased efficiency, less harmonic distortion, and greater power quality. The study looks at several different control strategies, including grid synchronization approaches and Maximum Power Point Tracking (MPPT), to improve PV system performance and grid interaction. Several modulation techniques are also examined, with a focus on how they might lower harmonics and boost system performance. Examples of these techniques include pulse width modulation (PWM) and selective harmonic elimination (SHE). Further analysis of the structural features of five-level MLI-based systems is done, which helps to clarify the trade-offs between complexity, dependability, and cost. This analysis includes component needs and scalability concerns. Researchers and engineers working on the design, control, and deployment of sophisticated MLI-based PV systems in grid-connected applications may learn from this paper.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"78-108"},"PeriodicalIF":5.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10791915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1109/OJPEL.2024.3512855
Ali Sarajian;Quanxue Guan;Ibrahim Harbi;Davood Arab Khaburi;Ralph Kennel;Cristian Garcia;Patrick Wheeler;Jose Rodriguez
Modulated Model Predictive Control (MMPC) techniques can be applied to enhance matrix converter (MC) performance in the linear modulation zone (LMZ). However, extending the converter operation in the overmodulation zone (OMZ) remains a problem. A key limitation of existing control methods in the OMZ is using the duty cycles calculated for the LMZ without considering the voltage or current reference vectors. This approach can lead to inaccurate calculations and a slower transient response when switching between the two operational zones. To overcome this challenge, a novel reference vector calculation method is proposed in this paper. The proposed approach simplifies the duty cycle calculation and ensures optimal performance in the OMZ by introducing new vector calculations and dividing the OMZ into two subzones. This method also minimizes the transition time between LMZ and OMZs to maximize the usable operating range of MCs. Simulation and experimental results validate the proposed method outperforms two other MMPC methods in improving the MC performance, reducing the transition times between operational zones, and maximizing the converter utilization.
{"title":"Enhanced Modulated Model Predictive Control for Matrix Converters in Overmodulation Zones","authors":"Ali Sarajian;Quanxue Guan;Ibrahim Harbi;Davood Arab Khaburi;Ralph Kennel;Cristian Garcia;Patrick Wheeler;Jose Rodriguez","doi":"10.1109/OJPEL.2024.3512855","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3512855","url":null,"abstract":"Modulated Model Predictive Control (MMPC) techniques can be applied to enhance matrix converter (MC) performance in the linear modulation zone (LMZ). However, extending the converter operation in the overmodulation zone (OMZ) remains a problem. A key limitation of existing control methods in the OMZ is using the duty cycles calculated for the LMZ without considering the voltage or current reference vectors. This approach can lead to inaccurate calculations and a slower transient response when switching between the two operational zones. To overcome this challenge, a novel reference vector calculation method is proposed in this paper. The proposed approach simplifies the duty cycle calculation and ensures optimal performance in the OMZ by introducing new vector calculations and dividing the OMZ into two subzones. This method also minimizes the transition time between LMZ and OMZs to maximize the usable operating range of MCs. Simulation and experimental results validate the proposed method outperforms two other MMPC methods in improving the MC performance, reducing the transition times between operational zones, and maximizing the converter utilization.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"66-77"},"PeriodicalIF":5.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a novel high-gain DC-DC converter by integrating a coupled inductor (CI) and a voltage multiplier cell (VMC) into the conventional SEPIC topology. An auxiliary switch, benefiting from zero voltage switching (ZVS), is applied to provide ZVS for the main switch over a wide output power range. Moreover, the employed diodes turn off under zero current switching (ZCS), thus eliminating reverse recovery losses and increasing efficiency. This study conducts a comprehensive analysis and compares the proposed converter with state-of-the-art topologies. The claimed features are verified by implementing a prototype that converts 36 to 250 V.
{"title":"A Novel Soft-Switched SEPIC-Based DC–DC Converter With High Voltage Gain","authors":"Reza Asgarnia;Ehsan Adib;Ebrahim Afjei;Hadi Tarzamni","doi":"10.1109/OJPEL.2024.3513219","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3513219","url":null,"abstract":"This study introduces a novel high-gain DC-DC converter by integrating a coupled inductor (CI) and a voltage multiplier cell (VMC) into the conventional SEPIC topology. An auxiliary switch, benefiting from zero voltage switching (ZVS), is applied to provide ZVS for the main switch over a wide output power range. Moreover, the employed diodes turn off under zero current switching (ZCS), thus eliminating reverse recovery losses and increasing efficiency. This study conducts a comprehensive analysis and compares the proposed converter with state-of-the-art topologies. The claimed features are verified by implementing a prototype that converts 36 to 250 V.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1-9"},"PeriodicalIF":5.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10783039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1109/OJPEL.2024.3514519
Patrick A. J. Lawton;Feiyang J. Lin;Grant A. Covic
This paper presents an Inductive Power Transfer (IPT) system for Electric Vehicle (EV) charging with Power Class Interoperability (PCI) between the SAE WPT3 (10 kW) and WPT5 (50 kW) power classes using a multi-coil Bi-Polar Pad (BPP) Vehicle Assembly (VA) magnetic topology. The objective is to provide wireless PCI for electric taxis and fleet vehicles which may require WPT5 charging while on shift and WPT3 off shift charging. The design process of the WPT3/5 BPP VA magnetics is presented. Alternative methods of ferrite core layout and coil overlap to reduce form factor and cross-coupling are investigated. A dual active bridge topology using LCC-LCC tuning demonstrates effective dual-sided control, combining conduction angle, active bridge phase shift, and Selective Coil Energization (SCE) to provide system functionality essential to PCI. Active bridge phase shift is utilized to adjust the relative secondary to primary phase past 90° to enable Zero-Volt Switching (ZVS) in the active bridges when operating at either power class. Experiments demonstrate the proposed WPT3/5 BPP VA charging from an above ground WPT3 UGA, and flush ground mounted WPT5 GA, and show an efficiency increase of 3.6% and 0.7% respectively when the proposed control method is used. The performance of the proposed system is shown to be comparable to other IPT systems at either power class.
{"title":"A Power Class Interoperable Multi-Coil Inductive Power Transfer System for 10/50 kW EV Charging","authors":"Patrick A. J. Lawton;Feiyang J. Lin;Grant A. Covic","doi":"10.1109/OJPEL.2024.3514519","DOIUrl":"https://doi.org/10.1109/OJPEL.2024.3514519","url":null,"abstract":"This paper presents an Inductive Power Transfer (IPT) system for Electric Vehicle (EV) charging with Power Class Interoperability (PCI) between the SAE WPT3 (10 kW) and WPT5 (50 kW) power classes using a multi-coil Bi-Polar Pad (BPP) Vehicle Assembly (VA) magnetic topology. The objective is to provide wireless PCI for electric taxis and fleet vehicles which may require WPT5 charging while on shift and WPT3 off shift charging. The design process of the WPT3/5 BPP VA magnetics is presented. Alternative methods of ferrite core layout and coil overlap to reduce form factor and cross-coupling are investigated. A dual active bridge topology using LCC-LCC tuning demonstrates effective dual-sided control, combining conduction angle, active bridge phase shift, and Selective Coil Energization (SCE) to provide system functionality essential to PCI. Active bridge phase shift is utilized to adjust the relative secondary to primary phase past 90° to enable Zero-Volt Switching (ZVS) in the active bridges when operating at either power class. Experiments demonstrate the proposed WPT3/5 BPP VA charging from an above ground WPT3 UGA, and flush ground mounted WPT5 GA, and show an efficiency increase of 3.6% and 0.7% respectively when the proposed control method is used. The performance of the proposed system is shown to be comparable to other IPT systems at either power class.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"10-27"},"PeriodicalIF":5.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}