Pub Date : 2024-04-04Epub Date: 2024-03-07DOI: 10.1016/j.stem.2024.02.005
Xiang Yuan, Jingqi Wu, Zhen Sun, Jin Cen, Yajing Shu, Chenhua Wang, Hong Li, Dongni Lin, Kun Zhang, Baihua Wu, Anil Dhawan, Ludi Zhang, Lijian Hui
Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs). Here, quality-controlled ProliHHs were produced in mass and engineered as liver organoids to improve their maturity. Encapsulated ProliHHs liver organoids (eLO) were intraperitoneally transplanted to treat liver failure animals. Notably, eLO treatment increased the survival of mice with post-hepatectomy liver failure (PHLF) and ameliorated hyperammonemia and hypoglycemia by providing liver functions. Additionally, eLO treatment protected the gut from PHLF-augmented permeability and normalized the increased serum endotoxin and inflammatory response, which facilitated liver regeneration. The therapeutic effect of eLO was additionally proved in acetaminophen-induced liver failure. Furthermore, we performed assessments of toxicity and biodistribution, demonstrating that eLO had no adverse effects on animals and remained non-tumorigenic.
藻酸盐包裹肝细胞移植是治疗肝功能衰竭的一种很有前景的策略。然而,由于缺乏原代人类肝细胞且难以控制其质量,其临床应用受到了阻碍。我们曾报道过增殖人肝细胞(ProliHHs)。在这里,我们批量生产了质量可控的 ProliHHs,并将其设计为肝脏器官组织,以提高其成熟度。将封装的ProliHHs肝脏器官组织(eLO)腹腔移植治疗肝衰竭动物。值得注意的是,eLO治疗提高了肝切除术后肝衰竭(PHLF)小鼠的存活率,并通过提供肝功能改善了高氨血症和低血糖症。此外,eLO 还能保护肠道免受 PHLF 导致的渗透性增强的影响,并使增加的血清内毒素和炎症反应恢复正常,从而促进肝脏再生。在对乙酰氨基酚诱导的肝衰竭中,eLO 的治疗效果也得到了证实。此外,我们还对毒性和生物分布进行了评估,结果表明 eLO 对动物没有不良影响,也不会致癌。
{"title":"Preclinical efficacy and safety of encapsulated proliferating human hepatocyte organoids in treating liver failure.","authors":"Xiang Yuan, Jingqi Wu, Zhen Sun, Jin Cen, Yajing Shu, Chenhua Wang, Hong Li, Dongni Lin, Kun Zhang, Baihua Wu, Anil Dhawan, Ludi Zhang, Lijian Hui","doi":"10.1016/j.stem.2024.02.005","DOIUrl":"10.1016/j.stem.2024.02.005","url":null,"abstract":"<p><p>Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs). Here, quality-controlled ProliHHs were produced in mass and engineered as liver organoids to improve their maturity. Encapsulated ProliHHs liver organoids (eLO) were intraperitoneally transplanted to treat liver failure animals. Notably, eLO treatment increased the survival of mice with post-hepatectomy liver failure (PHLF) and ameliorated hyperammonemia and hypoglycemia by providing liver functions. Additionally, eLO treatment protected the gut from PHLF-augmented permeability and normalized the increased serum endotoxin and inflammatory response, which facilitated liver regeneration. The therapeutic effect of eLO was additionally proved in acetaminophen-induced liver failure. Furthermore, we performed assessments of toxicity and biodistribution, demonstrating that eLO had no adverse effects on animals and remained non-tumorigenic.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"484-498.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04Epub Date: 2024-03-22DOI: 10.1016/j.stem.2024.02.011
Christopher S Morrow, Kelsey Tweed, Sabina Farhadova, Alex J Walsh, Bo P Lear, Avtar Roopra, Ryan D Risgaard, Payton C Klosa, Zachary P Arndt, Ella R Peterson, Michelle M Chi, Allison G Harris, Melissa C Skala, Darcie L Moore
Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.
{"title":"Autofluorescence is a biomarker of neural stem cell activation state.","authors":"Christopher S Morrow, Kelsey Tweed, Sabina Farhadova, Alex J Walsh, Bo P Lear, Avtar Roopra, Ryan D Risgaard, Payton C Klosa, Zachary P Arndt, Ella R Peterson, Michelle M Chi, Allison G Harris, Melissa C Skala, Darcie L Moore","doi":"10.1016/j.stem.2024.02.011","DOIUrl":"10.1016/j.stem.2024.02.011","url":null,"abstract":"<p><p>Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"570-581.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.
{"title":"Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques.","authors":"Byung-Chul Lee, Ashley Gin, Chuanfeng Wu, Komudi Singh, Max Grice, Ryland Mortlock, Diana Abraham, Xing Fan, Yifan Zhou, Aisha AlJanahi, Uimook Choi, Suk See DeRavin, Taehoon Shin, Sogun Hong, Cynthia E Dunbar","doi":"10.1016/j.stem.2024.02.010","DOIUrl":"10.1016/j.stem.2024.02.010","url":null,"abstract":"<p><p>For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"455-466.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07Epub Date: 2024-02-15DOI: 10.1016/j.stem.2024.01.007
Kavita Raniga, Aishah Nasir, Nguyen T N Vo, Ravi Vaidyanathan, Sarah Dickerson, Simon Hilcove, Diogo Mosqueira, Gary R Mirams, Peter Clements, Ryan Hicks, Amy Pointon, Will Stebbeds, Jo Francis, Chris Denning
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
{"title":"Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes.","authors":"Kavita Raniga, Aishah Nasir, Nguyen T N Vo, Ravi Vaidyanathan, Sarah Dickerson, Simon Hilcove, Diogo Mosqueira, Gary R Mirams, Peter Clements, Ryan Hicks, Amy Pointon, Will Stebbeds, Jo Francis, Chris Denning","doi":"10.1016/j.stem.2024.01.007","DOIUrl":"10.1016/j.stem.2024.01.007","url":null,"abstract":"<p><p>Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"292-311"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07Epub Date: 2024-02-08DOI: 10.1016/j.stem.2024.02.001
Xiaomeng Hu, Kathy White, Chi Young, Ari G Olroyd, Paul Kievit, Andrew J Connolly, Tobias Deuse, Sonja Schrepfer
Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.
{"title":"Hypoimmune islets achieve insulin independence after allogeneic transplantation in a fully immunocompetent non-human primate.","authors":"Xiaomeng Hu, Kathy White, Chi Young, Ari G Olroyd, Paul Kievit, Andrew J Connolly, Tobias Deuse, Sonja Schrepfer","doi":"10.1016/j.stem.2024.02.001","DOIUrl":"10.1016/j.stem.2024.02.001","url":null,"abstract":"<p><p>Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M<sup>-/-</sup>, CIITA<sup>-/-</sup>, CD47<sup>+</sup>), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":" ","pages":"334-340.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.stem.2024.02.006
Mallory Ryan, Justin A McDonough, Michael E Ward, Mark R Cookson, William C Skarnes, Florian T Merkle
{"title":"Large structural variants in KOLF2.1J are unlikely to compromise neurological disease modeling.","authors":"Mallory Ryan, Justin A McDonough, Michael E Ward, Mark R Cookson, William C Skarnes, Florian T Merkle","doi":"10.1016/j.stem.2024.02.006","DOIUrl":"10.1016/j.stem.2024.02.006","url":null,"abstract":"","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":"31 3","pages":"290-291"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.stem.2024.02.004
Massimo Bonora, Claudia Morganti, Nick van Gastel, Kyoko Ito, Enrica Calura, Ilaria Zanolla, Letizia Ferroni, Yang Zhang, Yookyung Jung, Gabriele Sales, Paolo Martini, Takahisa Nakamura, Francesco Massimo Lasorsa, Toren Finkel, Charles P Lin, Barbara Zavan, Paolo Pinton, Irene Georgakoudi, Chiara Romualdi, David T Scadden, Keisuke Ito
Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.
线粒体脂肪酸氧化(FAO)是造血干细胞自我更新的必要条件;然而,线粒体代谢控制造血干细胞命运的机制仍然未知。在这里,我们发现在造血干细胞系中,造血干细胞拥有最大的线粒体NADPH池,这是造血干细胞正常命运和平衡所必需的。造血干细胞转录组的生物信息学分析、生化试验以及 FAO 的基因失活均表明,FAO 产生的 NADPH 可促进造血干细胞中胆固醇的合成。干扰 FAO 会扰乱线粒体 NADPH 在单个造血干细胞分裂时向相应子细胞的分离。重要的是,我们发现 FAO-NADPH- 胆固醇轴驱动着造血干细胞中细胞外囊泡(EV)的生物生成和释放,而抑制 EV 信号传导会损害造血干细胞的自我更新。这些数据揭示了线粒体 NADPH- 胆固醇轴对造血稳态所需的 EV 生物发生的作用,并强调了造血干细胞命运决定的非随机性。
{"title":"A mitochondrial NADPH-cholesterol axis regulates extracellular vesicle biogenesis to support hematopoietic stem cell fate.","authors":"Massimo Bonora, Claudia Morganti, Nick van Gastel, Kyoko Ito, Enrica Calura, Ilaria Zanolla, Letizia Ferroni, Yang Zhang, Yookyung Jung, Gabriele Sales, Paolo Martini, Takahisa Nakamura, Francesco Massimo Lasorsa, Toren Finkel, Charles P Lin, Barbara Zavan, Paolo Pinton, Irene Georgakoudi, Chiara Romualdi, David T Scadden, Keisuke Ito","doi":"10.1016/j.stem.2024.02.004","DOIUrl":"10.1016/j.stem.2024.02.004","url":null,"abstract":"<p><p>Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":"31 3","pages":"359-377.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.stem.2024.02.003
Yuwei Huang, Haopeng Wang
Aiming to improve the effector function of CAR-T cells, Zhao et al.1 report that IL-10 metabolically reprograms CAR-T cells, and this promotes their effectiveness against solid tumors and challenges IL-10's perceived role as merely immunosuppressive. This simple but promising strategy fosters durable immune memory and eagerly awaits validation in clinical trials.
{"title":"From suppressor to enhancer: IL-10's alternative role in CAR-T cell therapies against solid tumors.","authors":"Yuwei Huang, Haopeng Wang","doi":"10.1016/j.stem.2024.02.003","DOIUrl":"10.1016/j.stem.2024.02.003","url":null,"abstract":"<p><p>Aiming to improve the effector function of CAR-T cells, Zhao et al.<sup>1</sup> report that IL-10 metabolically reprograms CAR-T cells, and this promotes their effectiveness against solid tumors and challenges IL-10's perceived role as merely immunosuppressive. This simple but promising strategy fosters durable immune memory and eagerly awaits validation in clinical trials.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":"31 3","pages":"285-287"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.stem.2024.02.008
Eduardo Leyva-Díaz, Emily S Wilson, Guillermina López-Bendito
Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.
{"title":"Development has the answer: Unraveling psychiatric disorders via thalamocortical organoids.","authors":"Eduardo Leyva-Díaz, Emily S Wilson, Guillermina López-Bendito","doi":"10.1016/j.stem.2024.02.008","DOIUrl":"10.1016/j.stem.2024.02.008","url":null,"abstract":"<p><p>Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":"31 3","pages":"283-284"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.stem.2024.02.002
Wenyan Wang, Yang-Xin Fu
Kastenschmidt et al.1 present a groundbreaking organoid culture model for follicular lymphoma, which is capable of maintaining stable compositions of B and T cells. This model is utilized in testing bispecific antibodies in effective killing of tumor B cells with the activation of T cells.
卡斯滕施密特(Kastenschmidt)等人1 提出了一种突破性的滤泡淋巴瘤类器官培养模型,该模型能够保持 B 细胞和 T 细胞的稳定组成。该模型可用于测试双特异性抗体在激活 T 细胞的同时有效杀伤肿瘤 B 细胞的能力。
{"title":"Promises and challenges of organoids: From humanized to human derived.","authors":"Wenyan Wang, Yang-Xin Fu","doi":"10.1016/j.stem.2024.02.002","DOIUrl":"10.1016/j.stem.2024.02.002","url":null,"abstract":"<p><p>Kastenschmidt et al.<sup>1</sup> present a groundbreaking organoid culture model for follicular lymphoma, which is capable of maintaining stable compositions of B and T cells. This model is utilized in testing bispecific antibodies in effective killing of tumor B cells with the activation of T cells.</p>","PeriodicalId":93928,"journal":{"name":"Cell stem cell","volume":"31 3","pages":"281-282"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140066375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}