Ziyuan Zhao, Zhao Liu, Mark T. Edmonds and Nikhil V. Medhekar
Two-dimensional (2D) magnetic materials offer a promising platform for nanoscale spintronics and for exploration of novel physical phenomena. Here, we predict a diverse range of magnetic orders in cobalt-based 2D single septuple layers CoX2Y4, namely, CoBi2Te4, CoBi2Se2Te2, CoBi2Se4, and CoSb2Te4. Notably, CoBi2Te4 presents intrinsic non-collinear antiferromagnetism (AFM), while the others display collinear AFM. The emergence of AFM in all CoX2Y4 materials is attributed to the antiferromagnetic 90° Co–Te(Se)–Co superexchange coupling. The origin of non-collinear/collinear orders lies in competing Heisenberg exchange interactions within the Co triangular lattice. A pivotal factor governing the non-collinear order of CoBi2Te4 is the vanishingly small ratio of exchange coupling between next-nearest neighbour Co and the nearest neighbour Co (J2/J1 ∼ 0.01). Furthermore, our investigation into strain effects on CoX2Y4 lattices demonstrates the tunability of the magnetic state of CoSb2Te4 from collinear to non-collinear. Our prediction of the unique non-collinear AFM in 2D suggests the potential for observing extraordinary magnetic phenomena in 2D, including non-collinear scattering and magnetic domain walls.
二维(2D)磁性材料为纳米级自旋电子学和探索新型物理现象提供了一个前景广阔的平台。在这里,我们预测了钴基二维单七层 CoX2Y4(即 CoBi2Te4、CoBi2Se2Te2、CoBi2Se4 和 CoSb2Te4)中的各种磁序。值得注意的是,CoBi2Te4 表现出固有的非共轭反铁磁性(AFM),而其他的则表现出共轭反铁磁性。所有 CoX2Y4 材料中出现的 AFM 都归因于反铁磁性 90° Co-Te(Se)-Co 超交换耦合。非共线/共线阶的起源在于 Co 三角晶格内相互竞争的海森堡交换相互作用。影响 CoBi2Te4 非共线阶的一个关键因素是近邻 Co 与最近邻 Co 之间的交换耦合比非常小(J2/J1 ~ 0.01)。此外,我们对 CoX2Y4 晶格应变效应的研究表明,CoSb2Te4 的磁性状态可从共线到非共线进行调整。我们对二维中独特的非共线性 AFM 的预测表明,在二维中观察非同寻常的磁现象(包括非共线散射和磁畴壁)是有潜力的。
{"title":"CoX2Y4: a family of two-dimensional magnets with versatile magnetic order†","authors":"Ziyuan Zhao, Zhao Liu, Mark T. Edmonds and Nikhil V. Medhekar","doi":"10.1039/D4NH00103F","DOIUrl":"10.1039/D4NH00103F","url":null,"abstract":"<p >Two-dimensional (2D) magnetic materials offer a promising platform for nanoscale spintronics and for exploration of novel physical phenomena. Here, we predict a diverse range of magnetic orders in cobalt-based 2D single septuple layers CoX<small><sub>2</sub></small>Y<small><sub>4</sub></small>, namely, CoBi<small><sub>2</sub></small>Te<small><sub>4</sub></small>, CoBi<small><sub>2</sub></small>Se<small><sub>2</sub></small>Te<small><sub>2</sub></small>, CoBi<small><sub>2</sub></small>Se<small><sub>4</sub></small>, and CoSb<small><sub>2</sub></small>Te<small><sub>4</sub></small>. Notably, CoBi<small><sub>2</sub></small>Te<small><sub>4</sub></small> presents intrinsic non-collinear antiferromagnetism (AFM), while the others display collinear AFM. The emergence of AFM in all CoX<small><sub>2</sub></small>Y<small><sub>4</sub></small> materials is attributed to the antiferromagnetic 90° Co–Te(Se)–Co superexchange coupling. The origin of non-collinear/collinear orders lies in competing Heisenberg exchange interactions within the Co triangular lattice. A pivotal factor governing the non-collinear order of CoBi<small><sub>2</sub></small>Te<small><sub>4</sub></small> is the vanishingly small ratio of exchange coupling between next-nearest neighbour Co and the nearest neighbour Co (<em>J</em><small><sub>2</sub></small>/<em>J</em><small><sub>1</sub></small> ∼ 0.01). Furthermore, our investigation into strain effects on CoX<small><sub>2</sub></small>Y<small><sub>4</sub></small> lattices demonstrates the tunability of the magnetic state of CoSb<small><sub>2</sub></small>Te<small><sub>4</sub></small> from collinear to non-collinear. Our prediction of the unique non-collinear AFM in 2D suggests the potential for observing extraordinary magnetic phenomena in 2D, including non-collinear scattering and magnetic domain walls.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1804-1812"},"PeriodicalIF":8.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Durgesh Kumar, Ramu Maddu, Hong Jing Chung, Hasibur Rahaman, Tianli Jin, Sabpreet Bhatti, Sze Ter Lim, Rachid Sbiaa and S. N. Piramanayagam
Neuromorphic computing (NC) architecture has shown its suitability for energy-efficient computation. Amongst several systems, spin–orbit torque (SOT) based domain wall (DW) devices are one of the most energy-efficient contenders for NC. To realize spin-based NC architecture, the computing elements such as synthetic neurons and synapses need to be developed. However, there are very few experimental investigations on DW neurons and synapses. The present study demonstrates the energy-efficient operations of neurons and synapses by using novel reading and writing strategies. We have used a W/CoFeB-based energy-efficient SOT mechanism to drive the DWs at low current densities. We have used the concept of meander devices for achieving synaptic functions. By doing this, we have achieved 9 different resistive states in experiments. We have experimentally demonstrated the functional spike and step neurons. Additionally, we have engineered the anomalous Hall bars by incorporating several pairs, in comparison to conventional Hall crosses, to increase the sensitivity as well as signal-to-noise ratio (SNR). We have performed micromagnetic simulations and transport measurements to demonstrate the above-mentioned functionalities.
神经形态计算(NC)架构已显示出其适用于高能效计算的特性。在多个系统中,基于自旋轨道力矩(SOT)的域壁(DW)设备是数控技术中最节能的竞争者之一。要实现基于自旋的数控架构,需要开发合成神经元和突触等计算元件。然而,有关 DW 神经元和突触的实验研究却很少。本研究利用新颖的读写策略展示了神经元和突触的节能操作。我们使用基于 W/CoFeB 的高能效 SOT 机制在低电流密度下驱动 DW。我们利用蜿蜒装置的概念来实现突触功能。通过这种方法,我们在实验中实现了 9 种不同的电阻状态。我们通过实验证明了功能性尖峰神经元和阶跃神经元。此外,与传统的霍尔十字架相比,我们还设计了多对反常霍尔条,以提高灵敏度和信噪比(SNR)。我们进行了微磁模拟和传输测量,以证明上述功能。
{"title":"Emulation of neuron and synaptic functions in spin–orbit torque domain wall devices†","authors":"Durgesh Kumar, Ramu Maddu, Hong Jing Chung, Hasibur Rahaman, Tianli Jin, Sabpreet Bhatti, Sze Ter Lim, Rachid Sbiaa and S. N. Piramanayagam","doi":"10.1039/D3NH00423F","DOIUrl":"10.1039/D3NH00423F","url":null,"abstract":"<p >Neuromorphic computing (NC) architecture has shown its suitability for energy-efficient computation. Amongst several systems, spin–orbit torque (SOT) based domain wall (DW) devices are one of the most energy-efficient contenders for NC. To realize spin-based NC architecture, the computing elements such as synthetic neurons and synapses need to be developed. However, there are very few experimental investigations on DW neurons and synapses. The present study demonstrates the energy-efficient operations of neurons and synapses by using novel reading and writing strategies. We have used a W/CoFeB-based energy-efficient SOT mechanism to drive the DWs at low current densities. We have used the concept of meander devices for achieving synaptic functions. By doing this, we have achieved 9 different resistive states in experiments. We have experimentally demonstrated the functional spike and step neurons. Additionally, we have engineered the anomalous Hall bars by incorporating several pairs, in comparison to conventional Hall crosses, to increase the sensitivity as well as signal-to-noise ratio (SNR). We have performed micromagnetic simulations and transport measurements to demonstrate the above-mentioned functionalities.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 1962-1977"},"PeriodicalIF":8.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Feng, Shuai Yuan, Jianxun Zou, Zuheng Wu, Xing Li, Wenbin Guo, Su Tan, Haochen Wang, Yang Hao, Hao Ruan, Zhihao Lin, Zuyu Xu, Yunlai Zhu, Guodong Wei and Yuehua Dai
Visual adaptation is essential for optimizing the image quality and sensitivity of artificial vision systems in real-world lighting conditions. However, additional modules, leading to time delays and potentially increasing power consumption, are needed for traditional artificial vision systems to implement visual adaptation. Here, an ITO/PMMA/SiC-NWs/ITO photoelectric synaptic device is developed for compact artificial vision systems with the visual adaption function. The theoretical calculation and experimental results demonstrated that the heating effect, induced by the increment light intensity, leads to the photoelectric synaptic device enabling the visual adaption function. Additionally, a visual adaptation artificial neuron (VAAN) circuit was implemented by incorporating the photoelectric synaptic device into a LIF neuron circuit. The output frequency of this VAAN circuit initially increases and then decreases with gradual light intensification, reflecting the dynamic process of visual adaptation. Furthermore, a visual adaptation spiking neural network (VASNN) was constructed to evaluate the photoelectric synaptic device based visual system for perception tasks. The results indicate that, in the task of traffic sign detection under extreme weather conditions, an accuracy of 97% was achieved (which is approximately 12% higher than that without a visual adaptation function). Our research provides a biologically plausible hardware solution for visual adaptation in neuromorphic computing.
{"title":"Harnessing a silicon carbide nanowire photoelectric synaptic device for novel visual adaptation spiking neural networks†","authors":"Zhe Feng, Shuai Yuan, Jianxun Zou, Zuheng Wu, Xing Li, Wenbin Guo, Su Tan, Haochen Wang, Yang Hao, Hao Ruan, Zhihao Lin, Zuyu Xu, Yunlai Zhu, Guodong Wei and Yuehua Dai","doi":"10.1039/D4NH00230J","DOIUrl":"10.1039/D4NH00230J","url":null,"abstract":"<p >Visual adaptation is essential for optimizing the image quality and sensitivity of artificial vision systems in real-world lighting conditions. However, additional modules, leading to time delays and potentially increasing power consumption, are needed for traditional artificial vision systems to implement visual adaptation. Here, an ITO/PMMA/SiC-NWs/ITO photoelectric synaptic device is developed for compact artificial vision systems with the visual adaption function. The theoretical calculation and experimental results demonstrated that the heating effect, induced by the increment light intensity, leads to the photoelectric synaptic device enabling the visual adaption function. Additionally, a visual adaptation artificial neuron (VAAN) circuit was implemented by incorporating the photoelectric synaptic device into a LIF neuron circuit. The output frequency of this VAAN circuit initially increases and then decreases with gradual light intensification, reflecting the dynamic process of visual adaptation. Furthermore, a visual adaptation spiking neural network (VASNN) was constructed to evaluate the photoelectric synaptic device based visual system for perception tasks. The results indicate that, in the task of traffic sign detection under extreme weather conditions, an accuracy of 97% was achieved (which is approximately 12% higher than that without a visual adaptation function). Our research provides a biologically plausible hardware solution for visual adaptation in neuromorphic computing.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1813-1822"},"PeriodicalIF":8.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongmei Liang, Haonan Lian, Yaqiang Li, Dan Liu, Baochen Han, Jian Qi and Dongxiao Ma
As a new-type magnetic state, the cluster glass state in manganite is arousing considerable attention due to its important theoretical value and extensive application prospects in condensed matter physics and spintronics. Due to the complex magnetic interactions, the cluster glass state is difficult to form and regulate in single films. Studies report a new phenomenon that epitaxial strain can regulate the formation of the cluster glass state in LaMnO3 (LMO) films. Comparing LMO thin films with different thicknesses grown on a (001)-oriented LaAlO3 (LAO) single crystal substrate, we found that the 20-nm-thick LMO film is more likely to form the cluster glass state than the 60-nm-thick and 120-nm-thick films. This can be attributed to the uneven distribution of strain and Mn ions in the depth profile. Our work demonstrates that thickness is an important method for regulating the formation of the cluster glass state in LMO films.
{"title":"Epitaxial strain manipulation of the cluster glass state in LaMnO3 films","authors":"Yongmei Liang, Haonan Lian, Yaqiang Li, Dan Liu, Baochen Han, Jian Qi and Dongxiao Ma","doi":"10.1039/D4NH00090K","DOIUrl":"10.1039/D4NH00090K","url":null,"abstract":"<p >As a new-type magnetic state, the cluster glass state in manganite is arousing considerable attention due to its important theoretical value and extensive application prospects in condensed matter physics and spintronics. Due to the complex magnetic interactions, the cluster glass state is difficult to form and regulate in single films. Studies report a new phenomenon that epitaxial strain can regulate the formation of the cluster glass state in LaMnO<small><sub>3</sub></small> (LMO) films. Comparing LMO thin films with different thicknesses grown on a (001)-oriented LaAlO<small><sub>3</sub></small> (LAO) single crystal substrate, we found that the 20-nm-thick LMO film is more likely to form the cluster glass state than the 60-nm-thick and 120-nm-thick films. This can be attributed to the uneven distribution of strain and Mn ions in the depth profile. Our work demonstrates that thickness is an important method for regulating the formation of the cluster glass state in LMO films.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1785-1791"},"PeriodicalIF":8.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eoin Caffrey, Jose M. Munuera, Tian Carey and Jonathan N. Coleman
Printed networks of 2D nanosheets have found a range of applications in areas including electronic devices, energy storage systems and sensors. For example, the ability to print graphene networks onto flexible substrates enables the production of high-performance strain sensors. The network resistivity is known to be sensitive to the nanosheet dimensions which implies the piezoresistance might also be size-dependent. In this study, the effect of nanosheet thickness on the piezoresistive response of nanosheet networks has been investigated. To achieve this, we liquid-exfoliated graphene nanosheets which were then subjected to centrifugation-based size selection followed by spray deposition onto flexible substrates. The resultant devices show increasing resistivity and gauge factor with increasing nanosheet thickness. We analyse the resistivity versus thickness data using a recently reported model and develop a new model to fit the gauge factor versus thickness data. This analysis allowed us to differentiate between the effect of strain on inter-nanosheet junctions and the straining of the individual nanosheets within the network. Surprisingly, our data implies the nanosheets themselves to display a negative piezo response.
{"title":"Quantifying the effect of nanosheet dimensions on the piezoresistive response of printed graphene nanosheet networks†","authors":"Eoin Caffrey, Jose M. Munuera, Tian Carey and Jonathan N. Coleman","doi":"10.1039/D4NH00224E","DOIUrl":"10.1039/D4NH00224E","url":null,"abstract":"<p >Printed networks of 2D nanosheets have found a range of applications in areas including electronic devices, energy storage systems and sensors. For example, the ability to print graphene networks onto flexible substrates enables the production of high-performance strain sensors. The network resistivity is known to be sensitive to the nanosheet dimensions which implies the piezoresistance might also be size-dependent. In this study, the effect of nanosheet thickness on the piezoresistive response of nanosheet networks has been investigated. To achieve this, we liquid-exfoliated graphene nanosheets which were then subjected to centrifugation-based size selection followed by spray deposition onto flexible substrates. The resultant devices show increasing resistivity and gauge factor with increasing nanosheet thickness. We analyse the resistivity <em>versus</em> thickness data using a recently reported model and develop a new model to fit the gauge factor <em>versus</em> thickness data. This analysis allowed us to differentiate between the effect of strain on inter-nanosheet junctions and the straining of the individual nanosheets within the network. Surprisingly, our data implies the nanosheets themselves to display a negative piezo response.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1774-1784"},"PeriodicalIF":8.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00224e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Alemán, A. A. Awad, S. Muralidhar, R. Khymyn, A. Kumar, A. Houshang, D. Hanstorp and J. Åkerman
Coherent optical detection is a powerful technique for characterizing a wide range of physical excitations. Here, we use two optical approaches (fundamental and parametric pumping) to microscopically characterize the high-frequency auto-oscillations of single and multiple nano-constriction spin Hall nano-oscillators (SHNOs). To validate the technique and demonstrate its robustness, we study SHNOs made from two different material stacks, NiFe/Pt and W/CoFeB/MgO, and investigate the influence of both the RF injection power and the laser power on the measurements, comparing the optical results to conventional electrical measurements. To demonstrate the key features of direct, non-invasive, submicron, spatial, and phase-resolved characterization of the SHNO magnetodynamics, we map out the auto-oscillation magnitude and phase of two phase-binarized SHNOs used in Ising machines. This proof-of-concept platform establishes a strong foundation for further extensions, contributing to the ongoing development of crucial characterization techniques for emerging computing technologies based on spintronics devices.
{"title":"Phase and frequency-resolved microscopy of operating spin Hall nano-oscillator arrays","authors":"A. Alemán, A. A. Awad, S. Muralidhar, R. Khymyn, A. Kumar, A. Houshang, D. Hanstorp and J. Åkerman","doi":"10.1039/D4NH00260A","DOIUrl":"10.1039/D4NH00260A","url":null,"abstract":"<p >Coherent optical detection is a powerful technique for characterizing a wide range of physical excitations. Here, we use two optical approaches (fundamental and parametric pumping) to microscopically characterize the high-frequency auto-oscillations of single and multiple nano-constriction spin Hall nano-oscillators (SHNOs). To validate the technique and demonstrate its robustness, we study SHNOs made from two different material stacks, NiFe/Pt and W/CoFeB/MgO, and investigate the influence of both the RF injection power and the laser power on the measurements, comparing the optical results to conventional electrical measurements. To demonstrate the key features of direct, non-invasive, submicron, spatial, and phase-resolved characterization of the SHNO magnetodynamics, we map out the auto-oscillation magnitude and phase of two phase-binarized SHNOs used in Ising machines. This proof-of-concept platform establishes a strong foundation for further extensions, contributing to the ongoing development of crucial characterization techniques for emerging computing technologies based on spintronics devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1732-1739"},"PeriodicalIF":8.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00260a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graciela Villalpando, Jiaze Xie, Nitish Mathur, Guangming Cheng, Nan Yao and Leslie M. Schoop
Magnetic two-dimensional (2D) materials are a unique class of quantum materials that can exhibit interesting magnetic phenomena, such as layer-dependent magnetism. The most significant barrier to 2D magnet discovery and study lies in our ability to exfoliate materials down to the monolayer limit. Therefore designing exfoliation methods that produce clean, monolayer sheets is crucial for the growth of 2D material research. In this work, we develop a facile chemical exfoliation method using lithium naphthalenide for obtaining 2D nanosheets of magnetic van der Waals material CrOCl. Using our optimized method, we obtain freestanding monolayers of CrOCl, with the thinnest measured height to date. We also provide magnetic characterization of bulk, intercalated intermediate, and nanosheet pellet CrOCl, showing that exfoliated nanosheets of CrOCl exhibit magnetic order. The results of this study highlight the tunability of the chemical exfoliation method, along with providing a simple method for obtaining 2D CrOCl.
{"title":"Freestanding monolayer CrOCl through chemical exfoliation†","authors":"Graciela Villalpando, Jiaze Xie, Nitish Mathur, Guangming Cheng, Nan Yao and Leslie M. Schoop","doi":"10.1039/D4NH00137K","DOIUrl":"10.1039/D4NH00137K","url":null,"abstract":"<p >Magnetic two-dimensional (2D) materials are a unique class of quantum materials that can exhibit interesting magnetic phenomena, such as layer-dependent magnetism. The most significant barrier to 2D magnet discovery and study lies in our ability to exfoliate materials down to the monolayer limit. Therefore designing exfoliation methods that produce clean, monolayer sheets is crucial for the growth of 2D material research. In this work, we develop a facile chemical exfoliation method using lithium naphthalenide for obtaining 2D nanosheets of magnetic van der Waals material CrOCl. Using our optimized method, we obtain freestanding monolayers of CrOCl, with the thinnest measured height to date. We also provide magnetic characterization of bulk, intercalated intermediate, and nanosheet pellet CrOCl, showing that exfoliated nanosheets of CrOCl exhibit magnetic order. The results of this study highlight the tunability of the chemical exfoliation method, along with providing a simple method for obtaining 2D CrOCl.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1766-1773"},"PeriodicalIF":8.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00137k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kivanc Gungor, Onur Erdem, Burak Guzelturk, Emre Unal, Shinae Jun, Eunjoo Jang and Hilmi Volkan Demir
Colloidal quantum dots (QDs) offer high color purity essential to high-quality liquid crystal displays (LCDs), which enables unprecedented levels of color enrichment in LCD-TVs today. However, for LCDs requiring polarized backplane illumination in operation, highly polarized light generation using inherently isotropic QDs remains a fundamental challenge. Here, we show strongly polarized color conversion of isotropic QDs coupled to Fano resonances of v-grooved surfaces compatible with surface-normal LED illumination for next-generation QD-TVs. This architecture overcomes the critically oblique excitation of surface plasmon coupled emission by using v-shapes imprinted on the backlight unit (BLU). With isotropic QDs coated on the proposed v-BLU surface, we experimentally measured a far-field polarization contrast ratio of ∼10. Full electromagnetic solution shows Fano line-shape transmission in transverse magnetic polarization allowing for high transmission as an indication for forward-scattering configuration. Of these QDs coupled to the surface plasmon-polariton modes, we observed strong modifications in their emission kinetics revealed by time-resolved photoluminescence spectroscopy and via dipole orientations identified by back focal plane imaging. This collection of findings indicates conclusively that these isotropic QDs are forced to radiate in a linearly polarized state from the patterned planar surface under surface-normal excitation. For next-generation QD-TVs, the proposed polarized color-converting isotropic QDs on such v-BLUs can be deployed in bendable electronic displays.
胶体量子点(QDs)具有高品质液晶显示器(LCD)所必需的高色彩纯度,使当今液晶电视的色彩丰富度达到了前所未有的水平。然而,对于需要在工作中使用偏振背板照明的液晶显示器来说,使用固有各向同性的 QD 生成高度偏振光仍然是一项基本挑战。在这里,我们展示了各向同性 QD 与 V 形凹槽表面的法诺共振耦合的强偏振色彩转换,它与下一代 QD-TV 的表面正常 LED 照明兼容。这种结构通过使用印在背光单元(BLU)上的 V 形来克服表面等离子体耦合发射的临界斜激发。利用镀在拟议的 v-BLU 表面上的各向同性 QD,我们通过实验测得远场偏振对比度为 ∼10。全电磁解显示了横向磁极化中的法诺线形传输,允许高传输作为正向散射配置的指示。在这些与表面等离子体-极化子模式耦合的 QDs 中,我们通过时间分辨光致发光光谱和后焦平面成像确定的偶极取向,观察到它们的发射动力学发生了强烈变化。这一系列发现明确表明,在表面法向激励下,这些各向同性的 QDs 被迫以线性极化状态从图案化的平面上辐射出来。就下一代 QD-TV 而言,这种 v-BLU 上的各向同性 QD 可用于可弯曲电子显示器。
{"title":"Strongly polarized color conversion of isotropic colloidal quantum dots coupled to fano resonances†","authors":"Kivanc Gungor, Onur Erdem, Burak Guzelturk, Emre Unal, Shinae Jun, Eunjoo Jang and Hilmi Volkan Demir","doi":"10.1039/D4NH00101J","DOIUrl":"10.1039/D4NH00101J","url":null,"abstract":"<p >Colloidal quantum dots (QDs) offer high color purity essential to high-quality liquid crystal displays (LCDs), which enables unprecedented levels of color enrichment in LCD-TVs today. However, for LCDs requiring polarized backplane illumination in operation, highly polarized light generation using inherently isotropic QDs remains a fundamental challenge. Here, we show strongly polarized color conversion of isotropic QDs coupled to Fano resonances of v-grooved surfaces compatible with surface-normal LED illumination for next-generation QD-TVs. This architecture overcomes the critically oblique excitation of surface plasmon coupled emission by using v-shapes imprinted on the backlight unit (BLU). With isotropic QDs coated on the proposed v-BLU surface, we experimentally measured a far-field polarization contrast ratio of ∼10. Full electromagnetic solution shows Fano line-shape transmission in transverse magnetic polarization allowing for high transmission as an indication for forward-scattering configuration. Of these QDs coupled to the surface plasmon-polariton modes, we observed strong modifications in their emission kinetics revealed by time-resolved photoluminescence spectroscopy and <em>via</em> dipole orientations identified by back focal plane imaging. This collection of findings indicates conclusively that these isotropic QDs are forced to radiate in a linearly polarized state from the patterned planar surface under surface-normal excitation. For next-generation QD-TVs, the proposed polarized color-converting isotropic QDs on such v-BLUs can be deployed in bendable electronic displays.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1756-1765"},"PeriodicalIF":8.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Ma, Huanrong Liang, Xinyi Guan, Shuhua Xu, Meiling Tao, Xinyue Liu, Zhaoqiang Zheng, Jiandong Yao and Guowei Yang
With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.
{"title":"Two-dimensional layered material photodetectors: what could be the upcoming downstream applications beyond prototype devices?","authors":"Yuhang Ma, Huanrong Liang, Xinyi Guan, Shuhua Xu, Meiling Tao, Xinyue Liu, Zhaoqiang Zheng, Jiandong Yao and Guowei Yang","doi":"10.1039/D4NH00170B","DOIUrl":"10.1039/D4NH00170B","url":null,"abstract":"<p >With distinctive advantages spanning excellent flexibility, rich physical properties, strong electrostatic tunability, dangling-bond-free surface, and ease of integration, 2D layered materials (2DLMs) have demonstrated tremendous potential for photodetection. However, to date, most of the research enthusiasm has been merely focused on developing novel prototype devices. In the past few years, researchers have also been devoted to developing various downstream applications based on 2DLM photodetectors to contribute to promoting them from fundamental research to practical commercialization, and extensive accomplishments have been realized. In spite of the remarkable advancements, these fascinating research findings are relatively scattered. To date, there is still a lack of a systematic and profound summarization regarding this fast-evolving domain. This is not beneficial to researchers, especially researchers just entering this research field, who want to have a quick, timely, and comprehensive inspection of this fascinating domain. To address this issue, in this review, the emerging downstream applications of 2DLM photodetectors in extensive fields, including imaging, health monitoring, target tracking, optoelectronic logic operation, ultraviolet monitoring, optical communications, automatic driving, and acoustic signal detection, have been systematically summarized, with the focus on the underlying working mechanisms. At the end, the ongoing challenges of this rapidly progressing domain are identified, and the potential schemes to address them are envisioned, which aim at navigating the future exploration as well as fully exerting the pivotal roles of 2DLMs towards the practical optoelectronic industry.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1599-1629"},"PeriodicalIF":8.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ernest Ubasart, Irene Mustieles Marin, Juan Manuel Asensio, Gabriel Mencia, Ángela M. López-Vinasco, Cristina García-Simón, Iker del Rosal, Romuald Poteau, Bruno Chaudret and Xavi Ribas
Correction for ‘Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters’ by Ernest Ubasart et al., Nanoscale Horiz., 2022, 7, 607–615, https://doi.org/10.1039/D1NH00677K.
{"title":"Correction: Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters","authors":"Ernest Ubasart, Irene Mustieles Marin, Juan Manuel Asensio, Gabriel Mencia, Ángela M. López-Vinasco, Cristina García-Simón, Iker del Rosal, Romuald Poteau, Bruno Chaudret and Xavi Ribas","doi":"10.1039/D4NH90054E","DOIUrl":"10.1039/D4NH90054E","url":null,"abstract":"<p >Correction for ‘Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters’ by Ernest Ubasart <em>et al.</em>, <em>Nanoscale Horiz.</em>, 2022, <strong>7</strong>, 607–615, https://doi.org/10.1039/D1NH00677K.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1587-1587"},"PeriodicalIF":8.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh90054e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}