首页 > 最新文献

Nanoscale Horizons最新文献

英文 中文
Synthesis of chiral graphene structures and their comprehensive applications: a critical review 手性石墨烯结构的合成及其综合应用:评论
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-23 DOI: 10.1039/D4NH00021H
Animesh Sinha and Hongyun So

From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.

从分子角度来看,手性是生物过程中的一个关键因素。分子的对映体具有相同的化学和物理特性,但物种中发现的手性分子在整个生命、生长和进化过程中都以一种对映体形式存在。手性石墨烯材料因其独特的结构框架、特性和可控合成,包括手性创建、分离和传输,在各个领域都具有相当大的潜力。这篇综述文章深入分析了过去十年手性石墨烯材料的合成,包括手性纳米带、手性隧道、手性二色性、手性识别和手性传递。第二部分重点介绍手性石墨烯在生物工程、电化学传感器和光电探测器中的各种应用。最后,我们讨论了研究挑战和未来的潜在用途,以及可能取得的成果。
{"title":"Synthesis of chiral graphene structures and their comprehensive applications: a critical review","authors":"Animesh Sinha and Hongyun So","doi":"10.1039/D4NH00021H","DOIUrl":"10.1039/D4NH00021H","url":null,"abstract":"<p >From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 11","pages":" 1855-1895"},"PeriodicalIF":8.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the composition of each atomic layer in the MXene/MAX phase structure – identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes† 揭示 MXene/MAX 相结构中每个原子层的组成 - 确定 MXenes 的氧碳化物、氧氮化物和氧碳氮化物亚家族
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-19 DOI: 10.1039/D4NH00151F
Paweł Piotr Michałowski

MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.

二维材料的最大家族--MXenes 以其由多种不同元素组成的复杂结构而著称。通过对每个原子层的成分进行精确的工程设计,可以对它们的特性进行微调。因此,有必要进一步发展二次离子质谱(SIMS)技术,该技术可以准确无误地识别每种元素的原子精度。通过新建立的 SIMS 数据解卷积和校准协议,可以对 MAX 相和 MXene 样品进行逐层表征,精度可达 ±1%。这样的精度对于结构中包含多种不同过渡金属的样品尤为重要。它证实了大多数 MXenes 在 X 层中含有大量的氧,因此能够识别这些材料中的氧碳化物、氧氮化物和氧碳氮化物亚族。该技术还可应用于欠蚀刻和过蚀刻样品,并确定终止层的确切成分。一般来说,SIMS 技术可为 MAX 相的合成和优化以及 MXene 研究提供宝贵的支持。
{"title":"Unraveling the composition of each atomic layer in the MXene/MAX phase structure – identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of MXenes†","authors":"Paweł Piotr Michałowski","doi":"10.1039/D4NH00151F","DOIUrl":"10.1039/D4NH00151F","url":null,"abstract":"<p >MXenes, the largest known family of 2D materials, are known for their complicated structure consisting of many different elements. Their properties can be finely tuned by precise engineering of the composition of each atomic layer. Thus it is necessary to further develop the secondary ion mass spectrometry (SIMS) technique which can unambiguously identify each element with atomic precision. The newly established protocol of deconvolution and calibration of the SIMS data enables layer-by-layer characterization of MAX phase and MXene samples with ±1% accuracy. Such precision is particularly important for samples that consist of several different transition metals in their structure. This confirms that most MXenes contain a substantial amount of oxygen in the X layers, thus enabling the identification of oxycarbide, oxynitride, and oxycarbonitride subfamilies of these materials. It can also be applied for under- and over-etched samples and to determine the exact composition of termination layers. Generally, the SIMS technique may provide invaluable support in the synthesis and optimization of MAX phase and MXene studies.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1493-1497"},"PeriodicalIF":8.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dominant higher-order vortex gyromodes in circular magnetic nanodots† 环形磁性纳米点中的主要高阶涡旋回旋。
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-19 DOI: 10.1039/D4NH00145A
Artem V. Bondarenko, Sergey A. Bunyaev, Amit K. Shukla, Arlete Apolinario, Navab Singh, David Navas, Konstantin Y. Guslienko, Adekunle O. Adeyeye and Gleb N. Kakazei

The transition to the third dimension enables the creation of spintronic nanodevices with significantly enhanced functionality compared to traditional 2D magnetic applications. In this study, we extend common two-dimensional magnetic vortex configurations, which are known for their efficient dynamical response to external stimuli without a bias magnetic field, into the third dimension. This extension results in a substantial increase in vortex frequency, reaching up to 5 GHz, compared to the typical sub-GHz range observed in planar vortex oscillators. A systematic study reveals a complex pattern of vortex excitation modes, explaining the decrease in the lowest gyrotropic mode frequency, the inversion of vortex mode intensities, and the nontrivial spatial distribution of vortex dynamical magnetization noted in previous research. These phenomena enable the optimization of both oscillation frequency and frequency reproducibility, minimizing the impact of uncontrolled size variations in those magnetic nanodevices.

与传统的二维磁性应用相比,向三维的过渡能够创造出功能显著增强的自旋电子纳米器件。在这项研究中,我们将常见的二维磁涡旋配置扩展到了三维空间,这些配置因其在没有偏置磁场的情况下对外部刺激做出高效的动态响应而闻名。与在平面涡旋振荡器中观察到的典型亚千赫范围相比,这种扩展使涡旋频率大幅提高,最高可达 5 千兆赫。系统性研究揭示了涡旋激发模式的复杂模式,解释了最低陀螺模式频率的降低、涡旋模式强度的反转以及之前研究中注意到的涡旋动态磁化的非三维空间分布。这些现象使振荡频率和频率再现性得以优化,最大程度地减少了这些磁性纳米器件中不受控制的尺寸变化的影响。
{"title":"Dominant higher-order vortex gyromodes in circular magnetic nanodots†","authors":"Artem V. Bondarenko, Sergey A. Bunyaev, Amit K. Shukla, Arlete Apolinario, Navab Singh, David Navas, Konstantin Y. Guslienko, Adekunle O. Adeyeye and Gleb N. Kakazei","doi":"10.1039/D4NH00145A","DOIUrl":"10.1039/D4NH00145A","url":null,"abstract":"<p >The transition to the third dimension enables the creation of spintronic nanodevices with significantly enhanced functionality compared to traditional 2D magnetic applications. In this study, we extend common two-dimensional magnetic vortex configurations, which are known for their efficient dynamical response to external stimuli without a bias magnetic field, into the third dimension. This extension results in a substantial increase in vortex frequency, reaching up to 5 GHz, compared to the typical sub-GHz range observed in planar vortex oscillators. A systematic study reveals a complex pattern of vortex excitation modes, explaining the decrease in the lowest gyrotropic mode frequency, the inversion of vortex mode intensities, and the nontrivial spatial distribution of vortex dynamical magnetization noted in previous research. These phenomena enable the optimization of both oscillation frequency and frequency reproducibility, minimizing the impact of uncontrolled size variations in those magnetic nanodevices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1498-1505"},"PeriodicalIF":8.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction- and phonon-induced topological phase transitions in double helical liquids† 双螺旋液体中相互作用和声子诱导的拓扑相变
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-17 DOI: 10.1039/D4NH00254G
Chen-Hsuan Hsu

Helical liquids, formed by time-reversal pairs of interacting electrons in topological edge channels, provide a platform for stabilizing topological superconductivity upon introducing local and nonlocal pairings through the proximity effect. Here, we investigate the effects of electron–electron interactions and phonons on the topological superconductivity in two parallel channels of such helical liquids. Interactions between electrons in different channels tend to reduce nonlocal pairing, suppressing the topological regime. Additionally, electron–phonon coupling breaks the self duality in the electronic subsystem and renormalizes the pairing strengths. Notably, while earlier perturbative calculations suggested that longitudinal phonons have no effect on helical liquids themselves to the leading order, our nonperturbative analysis shows that phonons can induce transitions between topological and trivial superconductivity, thereby weakening the stability of topological zero modes. Our findings highlight practical limitations in realizing topological zero modes in various systems hosting helical channels, including quantum spin Hall insulators, higher-order topological insulators, and their fractional counterparts recently observed in twisted bilayer systems.

螺旋液体是由拓扑边缘通道中相互作用的电子时间反转对形成的,通过邻近效应引入局部和非局部配对,为稳定拓扑超导提供了一个平台。在这里,我们研究了电子-电子相互作用和声子对这种螺旋液体两个平行通道中拓扑超导性的影响。不同通道中电子之间的相互作用往往会减少非局部配对,从而抑制拓扑机制。此外,电子-声子耦合打破了电子子系统的自偶性,并使配对强度重新规范化。值得注意的是,虽然早期的微扰计算表明纵向声子对螺旋液体本身到前导阶都没有影响,但我们的非微扰分析表明,声子可以诱导拓扑超导和琐碎超导之间的转换,从而削弱拓扑零模的稳定性。我们的发现凸显了在各种承载螺旋通道的系统中实现拓扑零模的实际限制,包括量子自旋霍尔绝缘体、高阶拓扑绝缘体以及在扭曲双层系统中观察到的分数对应物。
{"title":"Interaction- and phonon-induced topological phase transitions in double helical liquids†","authors":"Chen-Hsuan Hsu","doi":"10.1039/D4NH00254G","DOIUrl":"10.1039/D4NH00254G","url":null,"abstract":"<p >Helical liquids, formed by time-reversal pairs of interacting electrons in topological edge channels, provide a platform for stabilizing topological superconductivity upon introducing local and nonlocal pairings through the proximity effect. Here, we investigate the effects of electron–electron interactions and phonons on the topological superconductivity in two parallel channels of such helical liquids. Interactions between electrons in different channels tend to reduce nonlocal pairing, suppressing the topological regime. Additionally, electron–phonon coupling breaks the self duality in the electronic subsystem and renormalizes the pairing strengths. Notably, while earlier perturbative calculations suggested that longitudinal phonons have no effect on helical liquids themselves to the leading order, our nonperturbative analysis shows that phonons can induce transitions between topological and trivial superconductivity, thereby weakening the stability of topological zero modes. Our findings highlight practical limitations in realizing topological zero modes in various systems hosting helical channels, including quantum spin Hall insulators, higher-order topological insulators, and their fractional counterparts recently observed in twisted bilayer systems.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1725-1731"},"PeriodicalIF":8.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00254g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of neuromorphic computing based on NAND flash memory 基于 NAND 闪存的神经形态计算回顾。
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-17 DOI: 10.1039/D3NH00532A
Sung-Tae Lee and Jong-Ho Lee

The proliferation of data has facilitated global accessibility, which demands escalating amounts of power for data storage and processing purposes. In recent years, there has been a rise in research in the field of neuromorphic electronics, which draws inspiration from biological neurons and synapses. These electronics possess the ability to perform in-memory computing, which helps alleviate the limitations imposed by the ‘von Neumann bottleneck’ that exists between the memory and processor in the traditional von Neumann architecture. By leveraging their multi-bit non-volatility, characteristics that mimic biology, and Kirchhoff's law, neuromorphic electronics offer a promising solution to reduce the power consumption in processing vector–matrix multiplication tasks. Among all the existing nonvolatile memory technologies, NAND flash memory is one of the most competitive integrated solutions for the storage of large volumes of data. This work provides a comprehensive overview of the recent developments in neuromorphic computing based on NAND flash memory. Neuromorphic architectures using NAND flash memory for off-chip learning are presented with various quantization levels of input and weight. Next, neuromorphic architectures for on-chip learning are presented using standard backpropagation and feedback alignment algorithms. The array architecture, operation scheme, and electrical characteristics of NAND flash memory are discussed with a focus on the use of NAND flash memory in various neural network structures. Furthermore, the discrepancy of array architecture between on-chip learning and off-chip learning is addressed. This review article provides a foundation for understanding the neuromorphic computing based on the NAND flash memory and methods to utilize it based on application requirements.

数据的激增促进了全球范围内的数据访问,这就需要越来越多的电力用于数据存储和处理。近年来,从生物神经元和突触中汲取灵感的神经形态电子学领域的研究日渐兴起。这些电子产品具有内存计算能力,有助于缓解传统冯-诺依曼架构中内存与处理器之间存在的 "冯-诺依曼瓶颈 "所带来的限制。神经形态电子器件利用其多位非易失性、模仿生物学的特性和基尔霍夫定律,为降低处理矢量矩阵乘法任务的功耗提供了一种前景广阔的解决方案。在现有的所有非易失性存储器技术中,NAND 闪存是存储大量数据最具竞争力的集成解决方案之一。本作品全面概述了基于 NAND 闪存的神经形态计算的最新发展。本文介绍了使用 NAND 闪存进行片外学习的神经形态架构,以及不同量化水平的输入和权重。接下来,介绍了使用标准反向传播和反馈对齐算法进行片上学习的神经形态架构。讨论了 NAND 闪存的阵列架构、运行方案和电气特性,重点是 NAND 闪存在各种神经网络结构中的应用。此外,还讨论了片上学习和片外学习之间阵列架构的差异。这篇综述文章为了解基于 NAND 闪存的神经形态计算以及根据应用要求利用它的方法奠定了基础。
{"title":"Review of neuromorphic computing based on NAND flash memory","authors":"Sung-Tae Lee and Jong-Ho Lee","doi":"10.1039/D3NH00532A","DOIUrl":"10.1039/D3NH00532A","url":null,"abstract":"<p >The proliferation of data has facilitated global accessibility, which demands escalating amounts of power for data storage and processing purposes. In recent years, there has been a rise in research in the field of neuromorphic electronics, which draws inspiration from biological neurons and synapses. These electronics possess the ability to perform in-memory computing, which helps alleviate the limitations imposed by the ‘von Neumann bottleneck’ that exists between the memory and processor in the traditional von Neumann architecture. By leveraging their multi-bit non-volatility, characteristics that mimic biology, and Kirchhoff's law, neuromorphic electronics offer a promising solution to reduce the power consumption in processing vector–matrix multiplication tasks. Among all the existing nonvolatile memory technologies, NAND flash memory is one of the most competitive integrated solutions for the storage of large volumes of data. This work provides a comprehensive overview of the recent developments in neuromorphic computing based on NAND flash memory. Neuromorphic architectures using NAND flash memory for off-chip learning are presented with various quantization levels of input and weight. Next, neuromorphic architectures for on-chip learning are presented using standard backpropagation and feedback alignment algorithms. The array architecture, operation scheme, and electrical characteristics of NAND flash memory are discussed with a focus on the use of NAND flash memory in various neural network structures. Furthermore, the discrepancy of array architecture between on-chip learning and off-chip learning is addressed. This review article provides a foundation for understanding the neuromorphic computing based on the NAND flash memory and methods to utilize it based on application requirements.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1475-1492"},"PeriodicalIF":8.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications 将 MXene 纳米结构与电纺纤维协同整合,实现先进的生物医学工程应用
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-16 DOI: 10.1039/D4NH00209A
Xiaobo Li, Shan Wang, Minyan Zheng, Zhanying Ma, Yan Chen, Lingjuan Deng, Weixia Xu, Guang Fan, Sanaz Khademolqorani, Seyedeh Nooshin Banitaba and Ahmed I. Osman

MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.

基于二甲苯的结构因其显著的物理化学和电磁特性,已在多个领域,尤其是医疗保健领域铺平了道路。对二亚甲基二氧化锡结构的改性,以及将其与聚合物网络的结合,也获得了相当大的重视,以进一步提高其特性。在这个时代,将电纺丝纤维与 MXene 面层相结合将大有可为,因为电纺丝已被宣布为一项成熟的技术,目前正被应用于商业生物医学领域。在电纺纤维框架中引入 MXene 已在各种生物医学应用中取得了突出成果,包括癌症治疗、可控药物输送、抗菌靶标、传感器和组织工程。因此,本综述介绍了制备电纺构型和具有美妙特性的 MXene 纳米结构所采用的策略。然后,全面阐述了MXene装饰电纺纤维在生物医学应用中的优势。根据研究,MXene 的丰富表面官能团、亲水性、大表面积、光热特性以及抗菌和抑菌活性可协同电纺层的性能,从而设计出多功能的生物医学靶标。此外,该研究还明确了未来的发展方向,以应对用 MXene 纳米片装饰的电纺纤维所面临的挑战。
{"title":"Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications","authors":"Xiaobo Li, Shan Wang, Minyan Zheng, Zhanying Ma, Yan Chen, Lingjuan Deng, Weixia Xu, Guang Fan, Sanaz Khademolqorani, Seyedeh Nooshin Banitaba and Ahmed I. Osman","doi":"10.1039/D4NH00209A","DOIUrl":"10.1039/D4NH00209A","url":null,"abstract":"<p >MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1703-1724"},"PeriodicalIF":8.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d4nh00209a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement† 通过阳离子肽加速链位移增强 DNA 纳米器件的活化能力
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-13 DOI: 10.1039/D4NH00252K
Xianxue Zhang, Ruikai Du, Shichao Xu, Xinyue Wang and Zhen-Gang Wang

Dynamic DNA-based nanodevices offer versatile molecular-level operations, but the majority of them suffer from sluggish kinetics, impeding the advancement of device complexity. In this work, we present the self-assembly of a cationic peptide with DNA to expedite toehold-mediated DNA strand displacement (TMSD) reactions, a fundamental mechanism enabling the dynamic control and actuation of DNA nanostructures. The target DNA is modified with a fluorophore and a quencher, so that the TMSD process can be monitored by recording the time-dependent fluorescence changes. The boosting effect of the peptides is found to be dependent on the peptide/DNA N/P ratio, the toehold/invader binding affinity, and the ionic strength with stronger effects observed at lower ionic strengths, suggesting that electrostatic interactions play a key role. Furthermore, we demonstrate that the cationic peptide enhances the responsiveness and robustness of DNA machinery tweezers or logic circuits (AND and OR) involving multiple strand displacement reactions in parallel and cascade, highlighting its broad utility across DNA-based systems of varying complexity. This work offers a versatile approach to enhance the efficiency of toehold-mediated DNA nanodevices, facilitating flexible design and broader applications.

基于 DNA 的动态纳米器件提供了多功能的分子级操作,但其中大多数器件都存在动力学缓慢的问题,阻碍了器件复杂性的提高。在这项工作中,我们介绍了阳离子肽与DNA的自组装,以加速趾hold介导的DNA链位移(TMSD)反应,这是实现DNA纳米结构动态控制和驱动的基本机制。目标 DNA 经荧光团和淬灭剂修饰后,可通过观察随时间变化的荧光变化来监测 TMSD 过程。研究发现,肽的增效作用取决于肽/DNA N/P比、趾持/入侵者结合亲和力以及离子强度,在离子强度较低时观察到的增效作用更强,这表明静电相互作用发挥了关键作用。此外,我们还证明了阳离子肽能提高 DNA 机械镊子或逻辑电路(AND 和 OR)的响应速度和稳健性,这些电路涉及并行和级联的多链置换反应,突出了它在不同复杂程度的 DNA 系统中的广泛用途。这项工作提供了一种多功能方法来提高趾持介导的 DNA 纳米器件的效率,从而促进灵活的设计和更广泛的应用。
{"title":"Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement†","authors":"Xianxue Zhang, Ruikai Du, Shichao Xu, Xinyue Wang and Zhen-Gang Wang","doi":"10.1039/D4NH00252K","DOIUrl":"10.1039/D4NH00252K","url":null,"abstract":"<p >Dynamic DNA-based nanodevices offer versatile molecular-level operations, but the majority of them suffer from sluggish kinetics, impeding the advancement of device complexity. In this work, we present the self-assembly of a cationic peptide with DNA to expedite toehold-mediated DNA strand displacement (TMSD) reactions, a fundamental mechanism enabling the dynamic control and actuation of DNA nanostructures. The target DNA is modified with a fluorophore and a quencher, so that the TMSD process can be monitored by recording the time-dependent fluorescence changes. The boosting effect of the peptides is found to be dependent on the peptide/DNA N/P ratio, the toehold/invader binding affinity, and the ionic strength with stronger effects observed at lower ionic strengths, suggesting that electrostatic interactions play a key role. Furthermore, we demonstrate that the cationic peptide enhances the responsiveness and robustness of DNA machinery tweezers or logic circuits (AND and OR) involving multiple strand displacement reactions in parallel and cascade, highlighting its broad utility across DNA-based systems of varying complexity. This work offers a versatile approach to enhance the efficiency of toehold-mediated DNA nanodevices, facilitating flexible design and broader applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1582-1586"},"PeriodicalIF":8.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular RNA oligonucleotides: enzymatic synthesis and scaffolding for nanoconstruction† 环状 RNA 寡核苷酸:酶法合成和纳米结构支架
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-12 DOI: 10.1039/D4NH00236A
Shijie Li, Yanxin Chu, Xin Guo, Chengde Mao and Shou-Jun Xiao

We report the efficient synthesis of monomeric circular RNAs (circRNAs) in the size range of 16–44 nt with a novel DNA dumbbell splinting plus T4 DNA ligation strategy. Such a DNA dumbbell splinting strategy was developed by one group among ours recently for near-quantitative conversion of short linear DNAs into monomeric circular ones. Furthermore, using the 44 nt circRNA as scaffold strands, we constructed hybrid RNA:DNA and pure RNA:RNA double crossover tiles and their assemblies of nucleic acid nanotubes and flat arrays.

我们报告了利用一种新颖的 DNA 哑铃拼接加 T4 DNA 连接策略高效合成大小范围为 16-44 nt 的单体环状 RNA(circRNA)的情况。我们中的一个研究小组最近开发出了这种 DNA 哑铃拼接策略,可将短线性 DNA 近乎定量地转化为单体环状 DNA。此外,我们还以 44 nt circRNA 为支架链,构建了混合 RNA:DNA 和纯 RNA:RNA 双交叉瓦片及其核酸纳米管和扁平阵列组装体。
{"title":"Circular RNA oligonucleotides: enzymatic synthesis and scaffolding for nanoconstruction†","authors":"Shijie Li, Yanxin Chu, Xin Guo, Chengde Mao and Shou-Jun Xiao","doi":"10.1039/D4NH00236A","DOIUrl":"10.1039/D4NH00236A","url":null,"abstract":"<p >We report the efficient synthesis of monomeric circular RNAs (circRNAs) in the size range of 16–44 nt with a novel DNA dumbbell splinting plus T4 DNA ligation strategy. Such a DNA dumbbell splinting strategy was developed by one group among ours recently for near-quantitative conversion of short linear DNAs into monomeric circular ones. Furthermore, using the 44 nt circRNA as scaffold strands, we constructed hybrid RNA:DNA and pure RNA:RNA double crossover tiles and their assemblies of nucleic acid nanotubes and flat arrays.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1749-1755"},"PeriodicalIF":8.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron beam lithography of GeTe through polymorphic phase transformation† 通过多晶相变实现 GeTe 的电子束光刻技术
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-12 DOI: 10.1039/D4NH00035H
Hu Zhang, Meng Li, Shao-Bo Mi, Shao-Dong Cheng, Lu Lu and Zhi-Gang Chen

We report two previously undiscovered phases of GeTe including the sphalerite (c-) phase and the hexagonal (h-) phase with interlayer van der Waals gaps. A polymorphic phase transformation from rhombohedral α-GeTe to c- and h-GeTe at near room temperature is first realized via electron beam irradiation. Their underlying thermodynamics and kinetics are illustrated using the in situ heating experiments and molecular dynamics simulations. Density-functional theory calculations indicate that c-GeTe exhibits typical metallic behavior and h-GeTe is a narrow-gap semiconductor with a strong spin–orbital coupling effect. Our findings shed light on a strategy for designing GeTe-based quantum devices compromising nanopillars and heterostructures via an atomic-scale electron beam lithography technique.

我们报告了两种以前未被发现的 GeTe 相,包括闪锌矿(c-)相和具有层间范德华间隙的六方(h-)相。通过电子束辐照,在室温附近首次实现了从斜方体α-GeTe到c-和h-GeTe的多晶相变。原位加热实验和分子动力学模拟说明了它们的基本热力学和动力学。密度泛函理论计算表明,c-GeTe 具有典型的金属特性,而 h-GeTe 则是一种具有强烈自旋轨道耦合效应的窄隙半导体。我们的研究结果为通过原子尺度电子束光刻技术设计基于 GeTe 的量子器件(包括纳米柱和异质结构)提供了策略启示。
{"title":"Electron beam lithography of GeTe through polymorphic phase transformation†","authors":"Hu Zhang, Meng Li, Shao-Bo Mi, Shao-Dong Cheng, Lu Lu and Zhi-Gang Chen","doi":"10.1039/D4NH00035H","DOIUrl":"10.1039/D4NH00035H","url":null,"abstract":"<p >We report two previously undiscovered phases of GeTe including the sphalerite (c-) phase and the hexagonal (h-) phase with interlayer van der Waals gaps. A polymorphic phase transformation from rhombohedral α-GeTe to c- and h-GeTe at near room temperature is first realized <em>via</em> electron beam irradiation. Their underlying thermodynamics and kinetics are illustrated using the <em>in situ</em> heating experiments and molecular dynamics simulations. Density-functional theory calculations indicate that c-GeTe exhibits typical metallic behavior and h-GeTe is a narrow-gap semiconductor with a strong spin–orbital coupling effect. Our findings shed light on a strategy for designing GeTe-based quantum devices compromising nanopillars and heterostructures <em>via</em> an atomic-scale electron beam lithography technique.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 9","pages":" 1574-1581"},"PeriodicalIF":8.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine 氧化应激调节纳米材料及其在纳米医学中的生化作用
IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-07-10 DOI: 10.1039/D4NH00171K
Kapil D. Patel, Zalike Keskin-Erdogan, Prasad Sawadkar, Nik Syahirah Aliaa Nik Sharifulden, Mark Robert Shannon, Madhumita Patel, Lady Barrios Silva, Rajkumar Patel, David Y. S. Chau, Jonathan C. Knowles, Adam W. Perriman and Hae-Won Kim

Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.

许多病理状况主要与活性氧(ROS)引起的氧化应激有关;因此,调节氧化还原活动一直是恢复正常组织功能的关键策略。目前的方法包括通过施用治疗药物和氧化还原活性纳米材料(RANs)来建立有利的细胞氧化还原环境。特别是,氧化还原活性纳米材料不仅能提供稳定可靠的治疗给药方式,还能精细调节各种相互关联的成分,包括自由基、酶、蛋白质、转录因子和代谢物。在这里,我们将讨论工程 RANs 在癌症、神经退行性疾病、感染和炎症等一系列病理情况中发挥的作用。我们直观地展示了 RANs 作为 ROS 生成器和清除器的双重功能,强调了它们对各种细胞功能的深远影响。本综述的重点仅在于无机氧化还原活性纳米材料(无机 RANs)。此外,我们还探讨了当前基于 RANs 的方法所面临的挑战,并为其未来的临床转化提出了潜在的研究方向。
{"title":"Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine","authors":"Kapil D. Patel, Zalike Keskin-Erdogan, Prasad Sawadkar, Nik Syahirah Aliaa Nik Sharifulden, Mark Robert Shannon, Madhumita Patel, Lady Barrios Silva, Rajkumar Patel, David Y. S. Chau, Jonathan C. Knowles, Adam W. Perriman and Hae-Won Kim","doi":"10.1039/D4NH00171K","DOIUrl":"10.1039/D4NH00171K","url":null,"abstract":"<p >Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 10","pages":" 1630-1682"},"PeriodicalIF":8.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanoscale Horizons
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1