Citations allow quickly identifying related research. If multiple publications are selected as seeds, specifc suggestions for related literature can be made based on the number of incoming and outgoing citation links to this selection. Interactively adding recommended publications to the selection refnes the next suggestion and incrementally builds a relevant collection of publications. Following this approach, the paper presents a search and foraging approach, PUREsuggest, which combines citation-based suggestions with augmented visualizations of the citation network. The focus and novelty of the approach is, frst, the transparency of how the rankings are explained visually and, second, that the process can be steered through user-defned keywords, which refect topics of interests. The system can be used to build new literature collections, to update and assess existing ones, as well as to use the collected literature for identifying relevant experts in the feld. We evaluated the recommendation approach through simulated sessions and performed a user study investigating search strategies and usage patterns supported by the interface.
In recent years, the global adoption of electric vehicles (EVs) has surged, prompting a corresponding rise in the installation of charging stations. This proliferation has underscored the importance of expediting the deployment of charging infrastructure. Both academia and industry have thus devoted to addressing the charging station location problem (CSLP) to streamline this process. However, prevailing algorithms addressing CSLP are hampered by restrictive assumptions and computational overhead, leading to a dearth of comprehensive evaluations in the spatiotemporal dimensions. Consequently, their practical viability is restricted. Moreover, the placement of charging stations exerts a significant impact on both the road network and the power grid, which necessitates the evaluation of the potential post-deployment impacts on these interconnected networks holistically. In this study, we propose CSLens, a visual analytics system designed to inform charging station deployment decisions through the lens of coupled transportation and power networks. CSLens offers multiple visualizations and interactive features, empowering users to delve into the existing charging station layout, explore alternative deployment solutions, and assess the ensuring impact. To validate the efficacy of CSLens, we conducted two case studies and engaged in interviews with domain experts. Through these efforts, we substantiated the usability and practical utility of CSLens in enhancing the decision-making process surrounding charging station deployment. Our findings underscore CSLens's potential to serve as a valuable asset in navigating the complexities of charging infrastructure planning.
Translating natural language to visualization (NL2VIS) has shown great promise for visual data analysis, but it remains a challenging task that requires multiple low-level implementations, such as natural language processing and visualization design. Recent advancements in pre-trained large language models (LLMs) are opening new avenues for generating visualizations from natural language. However, the lack of a comprehensive and reliable benchmark hinders our understanding of LLMs' capabilities in visualization generation. In this paper, we address this gap by proposing a new NL2VIS benchmark called VisEval. Firstly, we introduce a high-quality and large-scale dataset. This dataset includes 2,524 representative queries covering 146 databases, paired with accurately labeled ground truths. Secondly, we advocate for a comprehensive automated evaluation methodology covering multiple dimensions, including validity, legality, and readability. By systematically scanning for potential issues with a number of heterogeneous checkers, VisEval provides reliable and trustworthy evaluation outcomes. We run VisEval on a series of state-of-the-art LLMs. Our evaluation reveals prevalent challenges and delivers essential insights for future advancements.
Tactics play an important role in team sports by guiding how players interact on the field. Both sports fans and experts have a demand for analyzing sports tactics. Existing approaches allow users to visually perceive the multivariate tactical effects. However, these approaches require users to experience a complex reasoning process to connect the multiple interactions within each tactic to the final tactical effect. In this work, we collaborate with basketball experts and propose a progressive approach to help users gain a deeper understanding of how each tactic works and customize tactics on demand. Users can progressively sketch on a tactic board, and a coach agent will simulate the possible actions in each step and present the simulation to users with facet visualizations. We develop an extensible framework that integrates large language models (LLMs) and visualizations to help users communicate with the coach agent with multimodal inputs. Based on the framework, we design and develop Smartboard, an agent-based interactive visualization system for fine-grained tactical analysis, especially for play design. Smartboard provides users with a structured process of setup, simulation, and evolution, allowing for iterative exploration of tactics based on specific personalized scenarios. We conduct case studies based on real-world basketball datasets to demonstrate the effectiveness and usefulness of our system.