Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.11
O. Savvova, O. Fesenko, H. Voronov, Emin Salekh Ohly Bairamov
The relevance of the problem of improving the quality of life and protecting human health in the context of the successful development of the modern society was presented. A literary review of well-known modern technologies for the design and manufacture of dental prostheses was carried out, as well as the leading domestic and foreign companies that were engaged in this were given. The history of the development of materials for obtaining clinical restorations (crowns, inlays, onlays, etc.) was considered and the main directions of the development of innovative ceramic materials for dental prosthetics were outlined. Based on the analysis of the properties of various types of materials for dental prosthetics, the prospects of using glass-ceramic materials in the development of dental prostheses have been substantiated. The chemical compositions of lithium silicate glasses for the synthesis of the glass matrix have been developed and the technological parameters for the production of glass-ceramic dental prostheses have been selected (Тgl. melting = 1350–1400 °С, Тheat treatment = 600–650 °С). Preliminary heat treatment before the formation of products ensures the formation of the required number of the nucleus of crystalline phase and the prerequisites for creating a volume crystallized structure under conditions of short-term heat treatment. The glass-ceramic prosthesis with a formed interpenetrating sitallized structure was obtained by the method of hot pressing with a short exposure (18-20 min). It was found that the obtained glass-ceramic material containing lithium disilicate as a crystalline phase in an amount of 40-60 vol. %, had high values of bending strength (σ = 400 MPa) and fracture toughness. The indicated mechanical properties of the developed materials, along with the approximate values of their modulus of elasticity to natural teeth, will significantly extend the service life of products under conditions of significant alternating loads that arise during the chewing cycle. A comparative assessment of the competitiveness of the developed dental prostheses based on lithium disilicate with world analogues was carried out, in particular the products of Ivoclar Vivadent and Vita Zahnfabrik, in terms of the main operational parameters. The positive effect of the introduction of domestic developed glass-ceramic dental prostheses to reduce import dependence has been determined.
{"title":"MODERN TECHNOLOGIES FOR THE MANUFACTURE OF GLASS-CERAMIC DENTAL PROSTHESES","authors":"O. Savvova, O. Fesenko, H. Voronov, Emin Salekh Ohly Bairamov","doi":"10.20998/2079-0821.2021.02.11","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.11","url":null,"abstract":"The relevance of the problem of improving the quality of life and protecting human health in the context of the successful development of the modern society was presented. A literary review of well-known modern technologies for the design and manufacture of dental prostheses was carried out, as well as the leading domestic and foreign companies that were engaged in this were given. The history of the development of materials for obtaining clinical restorations (crowns, inlays, onlays, etc.) was considered and the main directions of the development of innovative ceramic materials for dental prosthetics were outlined. Based on the analysis of the properties of various types of materials for dental prosthetics, the prospects of using glass-ceramic materials in the development of dental prostheses have been substantiated. The chemical compositions of lithium silicate glasses for the synthesis of the glass matrix have been developed and the technological parameters for the production of glass-ceramic dental prostheses have been selected (Тgl. melting = 1350–1400 °С, Тheat treatment = 600–650 °С). Preliminary heat treatment before the formation of products ensures the formation of the required number of the nucleus of crystalline phase and the prerequisites for creating a volume crystallized structure under conditions of short-term heat treatment. The glass-ceramic prosthesis with a formed interpenetrating sitallized structure was obtained by the method of hot pressing with a short exposure (18-20 min). It was found that the obtained glass-ceramic material containing lithium disilicate as a crystalline phase in an amount of 40-60 vol. %, had high values of bending strength (σ = 400 MPa) and fracture toughness. The indicated mechanical properties of the developed materials, along with the approximate values of their modulus of elasticity to natural teeth, will significantly extend the service life of products under conditions of significant alternating loads that arise during the chewing cycle. A comparative assessment of the competitiveness of the developed dental prostheses based on lithium disilicate with world analogues was carried out, in particular the products of Ivoclar Vivadent and Vita Zahnfabrik, in terms of the main operational parameters. The positive effect of the introduction of domestic developed glass-ceramic dental prostheses to reduce import dependence has been determined.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81278875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.08
Volodymyr Kotukh, N. Kaptsova, Dmitry Donskoy, Kateryna Paleyeva
Modern gas transmission systems are power facilities based on a main pipeline, which is a continuous pipe, along which devices are placed that provide gas pumping at predetermined parameters. Unlike other linear structures, such as roads, railways, the main pipeline throughout the entire period of operation is in a complex stress state under the influence of the internal pressure of the pumped product and functions as a pressure vessel. The operational reliability, durability and environmental safety of gas transmission systems are ensured by various control devices and pipe fittings. The article discusses issues related to predicting the operation of pipe fittings during the operation of the gas transmission system, while ensuring the required reliability, durability and environmental safety. An analysis of the phenomena of technical heredity is given, with the help of which it is possible to determine the causes of deviations in the output parameters of pipe fittings in the process of their manufacture or repair. It has been proved that the main feature of technological heredity is the transfer of a certain technological property from the previous technological operation to subsequent ones, characterized by the transfer coefficient of technological heredity. An indispensable condition for the monotonicity of changes in the transmission coefficient of technological heredity in order to ensure the required quality of manufacture or repair of pipe fittings is revealed. The economic principle of predicting the quality of manufacturing or repair of products is proposed for use, a relationship is found between the initial and output technological properties of pipe fittings, a route is chosen to achieve the required quality of its manufacture or repair, including procurement and finishing technological operations.
{"title":"ASSESSMENT OF THE IMPACT OF TECHNOLOGICAL HEREDITY ON INDICATORS OF RELIABILITY, DURABILITY AND ENVIRONMENTAL SAFETY OF ELEMENTS OF GAS TRANSMISSION SYSTEMS","authors":"Volodymyr Kotukh, N. Kaptsova, Dmitry Donskoy, Kateryna Paleyeva","doi":"10.20998/2079-0821.2021.02.08","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.08","url":null,"abstract":"Modern gas transmission systems are power facilities based on a main pipeline, which is a continuous pipe, along which devices are placed that provide gas pumping at predetermined parameters. Unlike other linear structures, such as roads, railways, the main pipeline throughout the entire period of operation is in a complex stress state under the influence of the internal pressure of the pumped product and functions as a pressure vessel. The operational reliability, durability and environmental safety of gas transmission systems are ensured by various control devices and pipe fittings. \u0000The article discusses issues related to predicting the operation of pipe fittings during the operation of the gas transmission system, while ensuring the required reliability, durability and environmental safety. An analysis of the phenomena of technical heredity is given, with the help of which it is possible to determine the causes of deviations in the output parameters of pipe fittings in the process of their manufacture or repair. It has been proved that the main feature of technological heredity is the transfer of a certain technological property from the previous technological operation to subsequent ones, characterized by the transfer coefficient of technological heredity. An indispensable condition for the monotonicity of changes in the transmission coefficient of technological heredity in order to ensure the required quality of manufacture or repair of pipe fittings is revealed. The economic principle of predicting the quality of manufacturing or repair of products is proposed for use, a relationship is found between the initial and output technological properties of pipe fittings, a route is chosen to achieve the required quality of its manufacture or repair, including procurement and finishing technological operations.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86762228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.01
O. Dzevochko, M. Podustov, I. Lysachenko, A. Dzevochko, Roman Vorozhbiian
The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.
{"title":"INVESTIGATION OF THE NEUTRALIZATION PROCESS OF SULFATION PRODUCTS IN THE SURFACTANTS PRODUCTION","authors":"O. Dzevochko, M. Podustov, I. Lysachenko, A. Dzevochko, Roman Vorozhbiian","doi":"10.20998/2079-0821.2021.02.01","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.01","url":null,"abstract":"The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82481051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.04
Y. Koltsova
The study conducted the research aimed to obtaining a porous glass-crystalline materials based on glass cullet and converter slag, which was used as a gas-forming additive. In this work, the chemical and phase compositions of the studied slag were analyzed, and a differential thermal analysis of its sample was carried out. Converter slag was added to the composition of the masses in an amount of 2.5 to 30 wt%, the rest was glass cullet. Вurning of the samples was carried out in the temperature range of 850-925 ° C. For the samples under study, using a sand volumetric meter, the volume was determined and the swelling coefficient was calculated, the compressive strength was determined, and the type of structure, which depends on the average diameter of the prevailing pores, was analyzed. The dependence of the swelling coefficient of the investigated materials on the burdening composition and burning temperature has been established. To obtain porous materials with a swelling coefficient of 2.16-2.67 and uniform fine-porous structure (predominant pore size less than 0.5 mm), it is optimal to introduce converter slag into the composition of the masses in an amount of 10-15 wt%, and the recommended temperature range their burning 850-900 ° C. Analysis of the phase composition of the materials obtained indicates the presence of wollastonite as the main crystalline phase, which, due to the acicular structure of the crystals, has a reinforcing effect and contributes to an increase in strength characteristics. The developed porous glass-crystalline materials can be used as thermal insulation and aggregates in lightweight concrete.
{"title":"PRODUCTION OF POROUS GLASS-CRYSTALLINE MATERIALS BASED ON GLASS CULLET AND CONVERTER SLAG","authors":"Y. Koltsova","doi":"10.20998/2079-0821.2021.02.04","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.04","url":null,"abstract":"The study conducted the research aimed to obtaining a porous glass-crystalline materials based on glass cullet and converter slag, which was used as a gas-forming additive. In this work, the chemical and phase compositions of the studied slag were analyzed, and a differential thermal analysis of its sample was carried out. Converter slag was added to the composition of the masses in an amount of 2.5 to 30 wt%, the rest was glass cullet. Вurning of the samples was carried out in the temperature range of 850-925 ° C. For the samples under study, using a sand volumetric meter, the volume was determined and the swelling coefficient was calculated, the compressive strength was determined, and the type of structure, which depends on the average diameter of the prevailing pores, was analyzed. The dependence of the swelling coefficient of the investigated materials on the burdening composition and burning temperature has been established. To obtain porous materials with a swelling coefficient of 2.16-2.67 and uniform fine-porous structure (predominant pore size less than 0.5 mm), it is optimal to introduce converter slag into the composition of the masses in an amount of 10-15 wt%, and the recommended temperature range their burning 850-900 ° C. Analysis of the phase composition of the materials obtained indicates the presence of wollastonite as the main crystalline phase, which, due to the acicular structure of the crystals, has a reinforcing effect and contributes to an increase in strength characteristics. The developed porous glass-crystalline materials can be used as thermal insulation and aggregates in lightweight concrete.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"359 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80201943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.09
M. Sakhnenko, Yu. Zhelavska, Svitlana Zyubanova, Valeriia Proskurina
The study of existing energy-saving materials and obtaining the new ones for reducing the cost of the hydrogen production, is relevant for modern hydrogen energy industry. Such properties can be predicted for materials containing vanadium, molybdenum, tungsten and exhibiting catalytic activity for the hydrogen evolution reaction Aforementioned metals can be co-deposited from aqueous solutions with iron subgroup metal-catalysts through the formation of cluster intermetallic compounds with Me-V bond adsorbed on the cathode surface. The induced co-deposition of cobalt with vanadium from the complex citrate electrolyte was investigated in the current work. As a result of the research, it was found that the uniform microcrystalline light-gray high-quality cobalt-vanadium alloy coating is possible to precipitate from a citrate electrolyte with content of 20 g/dm3 vanadium (in terms of metal) as a citrate complex The process was carried out at a current density of 5–10 A/dm2, at a temperature of 30–40°С, pH = 2,8–3,2. The content of vanadium in the coating is 0,37–0,53 % by weight. The maximum vanadium content in the coating is observed at current densities 8–9 А/dm2. The catalytic activity study of the coating that was obtained using cobalt-vanadium alloy in the reaction of hydrogen reduction at the cathode was performed in solution of 2,5М NaOH + 0,02 M NaCl. By increasing the vanadium content in the coating from 0,37 to 0,53% the hydrogen evolution overvoltage is reduced by 0,5 V. It was found that the overvoltage of the hydrogen ion evolution reaction on cathodes from steel 20 with cobalt-vanadium coating is 0.08–0,1 V lower, and the exchange current is higher than on electrodes made of steel 20, which are used in industrial water-alkali electrolysis. This indicates the electrocatalytic activity of the investigated materials for the hydrogen evolution reaction. Electrodes with coating, obtained by cobalt-vanadium alloy can be recommended as a cathode material for the hydrogen electrochemical production. Hydrogen evolution overvoltage reduction also decrease the energy consumption for this process by 15–20 %.
{"title":"ELECTROCATALYTIC COBALT-VANADIUM COATINGS FOR THE HYDROGEN EVOLUTION REACTION","authors":"M. Sakhnenko, Yu. Zhelavska, Svitlana Zyubanova, Valeriia Proskurina","doi":"10.20998/2079-0821.2021.02.09","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.09","url":null,"abstract":"The study of existing energy-saving materials and obtaining the new ones for reducing the cost of the hydrogen production, is relevant for modern hydrogen energy industry. Such properties can be predicted for materials containing vanadium, molybdenum, tungsten and exhibiting catalytic activity for the hydrogen evolution reaction Aforementioned metals can be co-deposited from aqueous solutions with iron subgroup metal-catalysts through the formation of cluster intermetallic compounds with Me-V bond adsorbed on the cathode surface. The induced co-deposition of cobalt with vanadium from the complex citrate electrolyte was investigated in the current work. As a result of the research, it was found that the uniform microcrystalline light-gray high-quality cobalt-vanadium alloy coating is possible to precipitate from a citrate electrolyte with content of 20 g/dm3 vanadium (in terms of metal) as a citrate complex The process was carried out at a current density of 5–10 A/dm2, at a temperature of 30–40°С, pH = 2,8–3,2. The content of vanadium in the coating is 0,37–0,53 % by weight. The maximum vanadium content in the coating is observed at current densities 8–9 А/dm2. The catalytic activity study of the coating that was obtained using cobalt-vanadium alloy in the reaction of hydrogen reduction at the cathode was performed in solution of 2,5М NaOH + 0,02 M NaCl. By increasing the vanadium content in the coating from 0,37 to 0,53% the hydrogen evolution overvoltage is reduced by 0,5 V. It was found that the overvoltage of the hydrogen ion evolution reaction on cathodes from steel 20 with cobalt-vanadium coating is 0.08–0,1 V lower, and the exchange current is higher than on electrodes made of steel 20, which are used in industrial water-alkali electrolysis. This indicates the electrocatalytic activity of the investigated materials for the hydrogen evolution reaction. Electrodes with coating, obtained by cobalt-vanadium alloy can be recommended as a cathode material for the hydrogen electrochemical production. Hydrogen evolution overvoltage reduction also decrease the energy consumption for this process by 15–20 %.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"384 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80742454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.10
Mikhail Lubkov, O. Zakharchuk, V. Dmytrenko, O. Petrash
Numerical modeling of the distribution of the reservoir pressure drop in the vicinity of an operating well was carried out taking into account the inhomogeneous distribution of filtration characteristics (permeability and oil viscosity) in the near and distant zones of the well operation in order to study the practical aspects of filtration in heterogeneous oil-bearing formations based on a combined finite-element-difference method for non-stationary problem of piezoconductivity. The use of the combined finite-element-difference method enables to combine the advantages of the finite-element method and the finite difference method: to model geometrically complex areas, to find the value at any point of the object under study, while the implicit difference scheme. It is shown that the intensity of filtration processes in the vicinity of the operating well depends mainly on the permeability, and, to a lesser extent, on the viscosity of the oil. Moreover, the influence of the permeability of the oil phase in the remote zone (Rd < 5 m) is greater than the effect in the close zone (Rd > 5 m) of the operating well. In the case of low permeability of the oil phase in the vicinity of the existing well, to maintain stable oil production, it is necessary to place an injection well near the production well. Using the method suggested, it is possible to predict the effect of the injection well on the formation pressure distribution in the formation. The scientific novelty of the work lies in the study of the influence of the heterogeneous permeability and oil viscosity distribution on the reservoir pressures distribution around the wells by modeling filtration processes based on a combined finite-element-difference method. The practical significance of the research results comes down to confirming the close relationship between the heterogeneity of the porous medium and the reservoir pressures distribution around an operating producing well. The combined finite-element-difference method used in this work can be used to solve other filtration problems (for example, to calculate the gas saturation of a reservoir, create a method for calculating well flow rates, assess the effect of injection wells on filtration processes).
{"title":"MODELING OF PRODUCING PRESSURE IN HETEROGENEOUS OIL-BEARING RESERVOIRS","authors":"Mikhail Lubkov, O. Zakharchuk, V. Dmytrenko, O. Petrash","doi":"10.20998/2079-0821.2021.02.10","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.10","url":null,"abstract":"Numerical modeling of the distribution of the reservoir pressure drop in the vicinity of an operating well was carried out taking into account the inhomogeneous distribution of filtration characteristics (permeability and oil viscosity) in the near and distant zones of the well operation in order to study the practical aspects of filtration in heterogeneous oil-bearing formations based on a combined finite-element-difference method for non-stationary problem of piezoconductivity. The use of the combined finite-element-difference method enables to combine the advantages of the finite-element method and the finite difference method: to model geometrically complex areas, to find the value at any point of the object under study, while the implicit difference scheme. \u0000It is shown that the intensity of filtration processes in the vicinity of the operating well depends mainly on the permeability, and, to a lesser extent, on the viscosity of the oil. Moreover, the influence of the permeability of the oil phase in the remote zone (Rd < 5 m) is greater than the effect in the close zone (Rd > 5 m) of the operating well. In the case of low permeability of the oil phase in the vicinity of the existing well, to maintain stable oil production, it is necessary to place an injection well near the production well. Using the method suggested, it is possible to predict the effect of the injection well on the formation pressure distribution in the formation. \u0000The scientific novelty of the work lies in the study of the influence of the heterogeneous permeability and oil viscosity distribution on the reservoir pressures distribution around the wells by modeling filtration processes based on a combined finite-element-difference method. \u0000The practical significance of the research results comes down to confirming the close relationship between the heterogeneity of the porous medium and the reservoir pressures distribution around an operating producing well. The combined finite-element-difference method used in this work can be used to solve other filtration problems (for example, to calculate the gas saturation of a reservoir, create a method for calculating well flow rates, assess the effect of injection wells on filtration processes).","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90654151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.12
V. Bulavin, I. V’unik, A. Kramarenko, A. Rusinov
The type of short range solvation of Li+, Na+ K+, Rb+, Cs+, NH4+, Cl– , Br–, I–, ClO4– ions has been determined and analyzed in formamide (FA), N-methylformamide (MFA), N-dimethylformamide (DMF) at 298.15 K. In order to determine the type of ion solvation we used familiar-variable quantitative parameter (– ri), where is the translational displacement length of ion, ri is its structural radius. It was found that the difference (– ri) is equal to the coefficient of attraction friction (CAF) of ions normalized to the solvent viscosity and hydrodynamic coefficient. The sign of the CAF is determined by the sign of the algebraic sum of its ion-molecular and intermolecular components. In amide solutions the studied cations are cosmotropes (positively solvated ((– ri) > 0), structure-making ions) and anions are chaotropes (negatively solvated ((– ri) < 0 ), structure-breaking ions). In the amide series, regardless of the sign (– ri), the near-solvation enhances, which can be explained by the weakening of the specific interaction between the solvent molecules. The decrease of and respectively (– ri) with increasing cation radius in a given solvent is the result of weakening of its coordinating force due to the decrease of charge density in the series Li+–Na+–K+–Rb+–Cs+. The increase of (and (– ri), correspondingly) for the ions studied in the series FA- MFA-DMF can be explained by the weakening of intermolecular interactions in this series, which leads to the strengthening of solvation. It was found that for the halide ions in the series FA-MFA-DMF the regular growth of parameter is explained by the weakening of the solvent structure. It was shown that Li+ ion with the lowest diffusion coefficient among cations and the highest value forms kinetically stable complexes in amide solutions.
{"title":"THE INFLUENCE OF SINGLY CHARGED IONS ON THE TRANSLATIONAL MOTION OF MOLECULES IN EXTREMELY DILUTE AMIDE SOLUTIONS","authors":"V. Bulavin, I. V’unik, A. Kramarenko, A. Rusinov","doi":"10.20998/2079-0821.2021.02.12","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.12","url":null,"abstract":"The type of short range solvation of Li+, Na+ K+, Rb+, Cs+, NH4+, Cl– , Br–, I–, ClO4– ions has been determined and analyzed in formamide (FA), N-methylformamide (MFA), N-dimethylformamide (DMF) at 298.15 K. In order to determine the type of ion solvation we used familiar-variable quantitative parameter (– ri), where is the translational displacement length of ion, ri is its structural radius. It was found that the difference (– ri) is equal to the coefficient of attraction friction (CAF) of ions normalized to the solvent viscosity and hydrodynamic coefficient. The sign of the CAF is determined by the sign of the algebraic sum of its ion-molecular and intermolecular components. In amide solutions the studied cations are cosmotropes (positively solvated ((– ri) > 0), structure-making ions) and anions are chaotropes (negatively solvated ((– ri) < 0 ), structure-breaking ions). In the amide series, regardless of the sign (– ri), the near-solvation enhances, which can be explained by the weakening of the specific interaction between the solvent molecules. The decrease of and respectively (– ri) with increasing cation radius in a given solvent is the result of weakening of its coordinating force due to the decrease of charge density in the series Li+–Na+–K+–Rb+–Cs+. The increase of (and (– ri), correspondingly) for the ions studied in the series FA- MFA-DMF can be explained by the weakening of intermolecular interactions in this series, which leads to the strengthening of solvation. It was found that for the halide ions in the series FA-MFA-DMF the regular growth of parameter is explained by the weakening of the solvent structure. It was shown that Li+ ion with the lowest diffusion coefficient among cations and the highest value forms kinetically stable complexes in amide solutions.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83356696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.07
S. Digtiar, Alyona Pasenko, O. Novokhatko, O. Maznytska, O. Nykyforova
Due to the istabiity of market prices for traditional hydrocarbon energy resources and negative impact of their combustion products on the environment, recently quite rapidly develop technology that provide for, first of all, renewable energy sources. One of the promising areas of alternative energy is bioenergy is a branch of biotechnology that considers organic matter of biomass of various origins (mainly agricultural waste) as a fuel source. Among the main advantages of energy biotechnology, it should be noted the speed and relative ease of recovery of the energy substrate, as well as the fact that it is not alien to the environment, so, even if released in quantities exceeding the permissible ones, this will not lead to irreversible changes in the ecosystem. Excess biomass will quickly be incorporated into biogeochemical cycles, which is the key to minimizing environmental damage. The process of bioconversion of methane from organic substrate compounds (carbohydrates, proteins, nucleic acids, lipids, organic acids, alcohols), which in three stages, is called methanogenesis. This process involves a specific complex bacterial enzyme system, consisting of the following coenzymes: methanofuran, tetrahydro-methanopterin, coenzymes F420 and F430, coenzyme M (CoM), coenzyme B. Using of ways of processing and waste disposal, that based on alternative biological recycling methods of organic pollutants does not always allow to achieve the expected effect, in particular on artificially created ecosystems of animal farms working in a closed mode. Concentration on a small area of a significant amount of biowaste (manure, dung, process runoffs etc.) of the cattle kept in the facilities of live-stock industry, contaminates soils, water bodies and atmospheric air with microorganisms, dust, harmful gases and other decomposition products. Often, it is one of the main factors constrainting on the growth of livestock enterprises and agro-industrial complex (AIC) capacities in general, restraining the economic development of regions specializing in agricultural production. For the first time in the region, study was carried out in order to determine the most efficient way to process miskantus phytomass for the production as target products of methane-containing biogas mixture and organo-mineral fertilizer suitable for use in agriculture and forestry. An economically and ecologically attractive way of utilization of wastes of phyto- and zoogenic origin, which makes it possible significantly reduce anthropogenic pressure on the environment, has been proposed.
{"title":"THE USE OF MULTISUBSTRATE MIXTURES FOR METHANE BIOSYNTHESIS BY AN ADAPTED COMPLEX OF MICROORGANISMS FOR OBTAINING ORGANIC FERTILIZER","authors":"S. Digtiar, Alyona Pasenko, O. Novokhatko, O. Maznytska, O. Nykyforova","doi":"10.20998/2079-0821.2021.02.07","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.07","url":null,"abstract":"Due to the istabiity of market prices for traditional hydrocarbon energy resources and negative impact of their combustion products on the environment, recently quite rapidly develop technology that provide for, first of all, renewable energy sources. One of the promising areas of alternative energy is bioenergy is a branch of biotechnology that considers organic matter of biomass of various origins (mainly agricultural waste) as a fuel source. Among the main advantages of energy biotechnology, it should be noted the speed and relative ease of recovery of the energy substrate, as well as the fact that it is not alien to the environment, so, even if released in quantities exceeding the permissible ones, this will not lead to irreversible changes in the ecosystem. Excess biomass will quickly be incorporated into biogeochemical cycles, which is the key to minimizing environmental damage. The process of bioconversion of methane from organic substrate compounds (carbohydrates, proteins, nucleic acids, lipids, organic acids, alcohols), which in three stages, is called methanogenesis. This process involves a specific complex bacterial enzyme system, consisting of the following coenzymes: methanofuran, tetrahydro-methanopterin, coenzymes F420 and F430, coenzyme M (CoM), coenzyme B. Using of ways of processing and waste disposal, that based on alternative biological recycling methods of organic pollutants does not always allow to achieve the expected effect, in particular on artificially created ecosystems of animal farms working in a closed mode. Concentration on a small area of a significant amount of biowaste (manure, dung, process runoffs etc.) of the cattle kept in the facilities of live-stock industry, contaminates soils, water bodies and atmospheric air with microorganisms, dust, harmful gases and other decomposition products. Often, it is one of the main factors constrainting on the growth of livestock enterprises and agro-industrial complex (AIC) capacities in general, restraining the economic development of regions specializing in agricultural production. For the first time in the region, study was carried out in order to determine the most efficient way to process miskantus phytomass for the production as target products of methane-containing biogas mixture and organo-mineral fertilizer suitable for use in agriculture and forestry. An economically and ecologically attractive way of utilization of wastes of phyto- and zoogenic origin, which makes it possible significantly reduce anthropogenic pressure on the environment, has been proposed.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"55 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89422096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-23DOI: 10.20998/2079-0821.2021.02.13
L. Shchukina, O. Hamova, Maksym Herasev
A resource-saving technology of porous ceramic materials using low-quality non-sintering sandy loam as a basic raw material has been developed. Based on the analysis of the plastic properties of two- and three-component ceramic masses, including sandy loam, expanded clay and fuel slag in various ratios, it was found that the required level of their plasticity provides the content of the main raw material in the following range (wt%): fuel slag – 15 – 20; sandy loam – 50 – 65; expanded clay – 20 – 30. By the method of planning the experiment, the rational composition of the three-component ceramic mass was substantiated. This which contains: 62.5 wt. % sandy loam, 20 wt. % medium-sintering plastic clay as a plasticizer and 17.5 wt. % fuel slag of TPP as a porous agent. For the developed mass, the main technological properties were investigated, which made it possible to recommend the drying mode of the raw material – 60 hours, the optimal firing temperature – 950 °С. Such conditions ensure that samples are obtained without drying cracks and signs of deformation. Оn the results of dilatometric analysis of mass the rational mode of firing high-hollow semifinished products was designed. The firing mode provides for a 44-hour firing and a decrease in the heating rates in the areas of dehydration of clay minerals, direct quartz transition and intensive sintering of the mass, as well as a decrease in the cooling rate in the area of the reverse quartz transition. The proposed firing mode provides the degree of sintering and their properties necessary for ceramic materials. Based on the developed mass under the recommended drying and firing modes, porous ceramic materials with an apparent density of 1.48 g/cm3, a compressive strength of 18.2 MPa and frost resistance of 30 cycles were obtained. The developed materials belong to the group of conditionally effective, and if 50% of the voids are organized, they can be classified as effective.
{"title":"DEVELOPMENT OF RESOURCE-SAVING TECHNOLOGY OF POROUS-HOLLOW CERAMIC STONES","authors":"L. Shchukina, O. Hamova, Maksym Herasev","doi":"10.20998/2079-0821.2021.02.13","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.02.13","url":null,"abstract":"A resource-saving technology of porous ceramic materials using low-quality non-sintering sandy loam as a basic raw material has been developed. Based on the analysis of the plastic properties of two- and three-component ceramic masses, including sandy loam, expanded clay and fuel slag in various ratios, it was found that the required level of their plasticity provides the content of the main raw material in the following range (wt%): fuel slag – 15 – 20; sandy loam – 50 – 65; expanded clay – 20 – 30. By the method of planning the experiment, the rational composition of the three-component ceramic mass was substantiated. This which contains: 62.5 wt. % sandy loam, 20 wt. % medium-sintering plastic clay as a plasticizer and 17.5 wt. % fuel slag of TPP as a porous agent. For the developed mass, the main technological properties were investigated, which made it possible to recommend the drying mode of the raw material – 60 hours, the optimal firing temperature – 950 °С. Such conditions ensure that samples are obtained without drying cracks and signs of deformation. Оn the results of dilatometric analysis of mass the rational mode of firing high-hollow semifinished products was designed. The firing mode provides for a 44-hour firing and a decrease in the heating rates in the areas of dehydration of clay minerals, direct quartz transition and intensive sintering of the mass, as well as a decrease in the cooling rate in the area of the reverse quartz transition. The proposed firing mode provides the degree of sintering and their properties necessary for ceramic materials. Based on the developed mass under the recommended drying and firing modes, porous ceramic materials with an apparent density of 1.48 g/cm3, a compressive strength of 18.2 MPa and frost resistance of 30 cycles were obtained. The developed materials belong to the group of conditionally effective, and if 50% of the voids are organized, they can be classified as effective.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75702684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-15DOI: 10.20998/2079-0821.2021.01.11
L. Shchukina, Yaroslav Olegovych Halushka, L. Yashchenko, S. L. Lihezin
An integrated approach to determine the rational design of wall ceramic products based on modeling their behavior under operating conditions is proposed. This approach was used in the development of technology for heat–efficient insulating construction ceramic materials for energy–saving construction. For two models of porous–hollow ceramic products with a porous frame (40 % of voids) and a dense frame (60 % of voids), a predictive assessment of their heat–shielding and mechanical properties was carried out. Calculations of the equivalent coefficient of thermal conductivity of models based on Fourier’s law established that with a decrease in the voidness of products with a porous wall, the coefficient of their thermal conductivity decreases by 12 %, which improves the heat–shielding properties. Based on the results of computer simulation of the behavior of models under the influence of static power loads, it was determined that porosity of the ceramic framework of products leads to degradation of mechanical strength almost proportionally to a decrease in voidness. The stress–strain state of 3D models of ceramic structures with different pore geometry (spherical, globular, ellipsoidal) is analyzed and it is shown that stresses are concentrated in the contact zones of a ceramic matrix with pores. It is shown that the most durable is the structural model with spherical pores. The expediency of organizing such a structure, the need to strengthen the ceramic matrix of materials and zones surrounding the pores, as the most vulnerable structural sites, is shown. The results of predictive calculations have been experimentally confirmed in the development of technology for structural and heat–insulating composite–type ceramic materials based on low–melting loam and ash microspheres, which provide a given structural picture of the ceramic material.
{"title":"FORECAST EVALUATION OF HEAT PROTECTION AND MECHANICAL PROPERTIES OF INSULATING CONSTRUCTION CERAMIC MATERIALS","authors":"L. Shchukina, Yaroslav Olegovych Halushka, L. Yashchenko, S. L. Lihezin","doi":"10.20998/2079-0821.2021.01.11","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.01.11","url":null,"abstract":"An integrated approach to determine the rational design of wall ceramic products based on modeling their behavior under operating conditions is proposed. This approach was used in the development of technology for heat–efficient insulating construction ceramic materials for energy–saving construction. For two models of porous–hollow ceramic products with a porous frame (40 % of voids) and a dense frame (60 % of voids), a predictive assessment of their heat–shielding and mechanical properties was carried out. Calculations of the equivalent coefficient of thermal conductivity of models based on Fourier’s law established that with a decrease in the voidness of products with a porous wall, the coefficient of their thermal conductivity decreases by 12 %, which improves the heat–shielding properties. Based on the results of computer simulation of the behavior of models under the influence of static power loads, it was determined that porosity of the ceramic framework of products leads to degradation of mechanical strength almost proportionally to a decrease in voidness. The stress–strain state of 3D models of ceramic structures with different pore geometry (spherical, globular, ellipsoidal) is analyzed and it is shown that stresses are concentrated in the contact zones of a ceramic matrix with pores. It is shown that the most durable is the structural model with spherical pores. The expediency of organizing such a structure, the need to strengthen the ceramic matrix of materials and zones surrounding the pores, as the most vulnerable structural sites, is shown. The results of predictive calculations have been experimentally confirmed in the development of technology for structural and heat–insulating composite–type ceramic materials based on low–melting loam and ash microspheres, which provide a given structural picture of the ceramic material.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81974835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}