Yiliang Wang, J. Ghaboussi, Cameron Hoerig, M. Insana
The Autoprogressive (AutoP) method is a data-driven inverse method that leverages finite element analysis (FEA) and machine learning (ML) techniques to build constitutive relationships from measured force and displacement data. Previous applications of AutoP in tissue-like media have focused on linear elastic mechanical behavior as the target object is infinitesimally compressed. In this study, we extended the application of AutoP in characterizing nonlinear elastic mechanical behavior as the target object undergoes finite compressive deformation. Guided by the prior of nonlinear media, we modified the training data generated by AutoP to speed its ability to learn to model deformations. AutoP training was validated using both synthetic and experimental data recorded from 3D objects. Force-displacement measurements were obtained using ultrasonic imaging from heterogeneous agar-gelatin phantoms. Measurement on samples of phantom components were analyzed to obtain independent measurements of material properties. Comparisons validated the material properties found from neural network constitutive models (NNCMs) trained using AutoP. Results were found to be robust to measurement errors and spatial variations in material properties.
{"title":"A data-driven approach to characterizing nonlinear elastic behavior of soft materials.","authors":"Yiliang Wang, J. Ghaboussi, Cameron Hoerig, M. Insana","doi":"10.2139/ssrn.4015084","DOIUrl":"https://doi.org/10.2139/ssrn.4015084","url":null,"abstract":"The Autoprogressive (AutoP) method is a data-driven inverse method that leverages finite element analysis (FEA) and machine learning (ML) techniques to build constitutive relationships from measured force and displacement data. Previous applications of AutoP in tissue-like media have focused on linear elastic mechanical behavior as the target object is infinitesimally compressed. In this study, we extended the application of AutoP in characterizing nonlinear elastic mechanical behavior as the target object undergoes finite compressive deformation. Guided by the prior of nonlinear media, we modified the training data generated by AutoP to speed its ability to learn to model deformations. AutoP training was validated using both synthetic and experimental data recorded from 3D objects. Force-displacement measurements were obtained using ultrasonic imaging from heterogeneous agar-gelatin phantoms. Measurement on samples of phantom components were analyzed to obtain independent measurements of material properties. Comparisons validated the material properties found from neural network constitutive models (NNCMs) trained using AutoP. Results were found to be robust to measurement errors and spatial variations in material properties.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"92 1","pages":"105178"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91339036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myat Myat-Htun, A. M. Mohd Noor, M. Kawashita, Y. B. Baba Ismail
Dense iron-doped akermanite ceramics with 0.3, 0.6 and 0.9 mol% of Fe3+ were synthesized via high-speed planetary ball milling and subsequently subjected to sintering at 1200 and 1250 °C. The aim of the current work was to investigate the effect of trivalent iron (Fe3+) in tuning the physicomechanical and in vitro biological properties of akermanite. The incorporation of Fe3+ into akermanite host and sintering at a high temperature of 1200 °C resulted in a synergistic effect in enhancing the sinterability and densification of akermanite ceramics. Although varying the Fe3+ content, it was found that similar densification and mechanical properties (i.e., diametral tensile strength, Vickers microhardness and fracture toughness) were observed for the doped ceramics at 1250 °C, indicating that this newly developed formulation is temperature-dependent. Fe3+-doped akermanite ceramics revealed greater in vitro bioactivity as compared to undoped akermanite, demonstrated by better coverage of needle-like apatite precipitates after 21 days of immersion in simulated body fluid. Additionally, Rat-1 cells cultured in direct contact with Fe3+-doped akermanite ceramics showed almost double levels of cell proliferation than their undoped counterpart on both 3 and 7 days of culture. Our finding suggests that 0.9Fe-AK ceramic is a suitable formulation to be considered for future bone substitute material as it provides sufficient mechanical strength as well as good bioactivity and the ability to encourage cell proliferation.
{"title":"Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material.","authors":"Myat Myat-Htun, A. M. Mohd Noor, M. Kawashita, Y. B. Baba Ismail","doi":"10.2139/ssrn.3962042","DOIUrl":"https://doi.org/10.2139/ssrn.3962042","url":null,"abstract":"Dense iron-doped akermanite ceramics with 0.3, 0.6 and 0.9 mol% of Fe3+ were synthesized via high-speed planetary ball milling and subsequently subjected to sintering at 1200 and 1250 °C. The aim of the current work was to investigate the effect of trivalent iron (Fe3+) in tuning the physicomechanical and in vitro biological properties of akermanite. The incorporation of Fe3+ into akermanite host and sintering at a high temperature of 1200 °C resulted in a synergistic effect in enhancing the sinterability and densification of akermanite ceramics. Although varying the Fe3+ content, it was found that similar densification and mechanical properties (i.e., diametral tensile strength, Vickers microhardness and fracture toughness) were observed for the doped ceramics at 1250 °C, indicating that this newly developed formulation is temperature-dependent. Fe3+-doped akermanite ceramics revealed greater in vitro bioactivity as compared to undoped akermanite, demonstrated by better coverage of needle-like apatite precipitates after 21 days of immersion in simulated body fluid. Additionally, Rat-1 cells cultured in direct contact with Fe3+-doped akermanite ceramics showed almost double levels of cell proliferation than their undoped counterpart on both 3 and 7 days of culture. Our finding suggests that 0.9Fe-AK ceramic is a suitable formulation to be considered for future bone substitute material as it provides sufficient mechanical strength as well as good bioactivity and the ability to encourage cell proliferation.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"128 1","pages":"105122"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44212323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bitencourt, B. Hatton, N. Bastos-Bitencourt, Daniela Micheline Dos Santos, A. Pesqueira, G. de Souza
PURPOSE To develop and to characterize a hybrid interface between yttria-stabilized zirconia (Y-TZP) transformed layer and silica-based nanofilm to enable a better bonding between Y-TZP and a veneering ceramic. MATERIAL AND METHODS Sixty-six fully-sintered rectangular Y-TZP specimens were distributed into 6 groups, according to the surface treatment applied: C (control): no treatment; Al: 27 μm-alumina particle abrasion; Ht: hydrothermal treatment in autoclave for 15h; Si20: 20 cycles of silica deposition using room-temperature atomic layer deposition (RT-ALD); Si40: 40 cycles of RT-ALD; Ht + Si40: hydrothermal treatment followed by 40 cycles of RT-ALD. RT-ALD was performed by the sequential exposure of specimens to vapor of tetramethoxysilane orthosilicate (TMOS) and ammonium hydroxide (NH4OH). Y-TZP surface wettability and shear bond strength (SBS) between Y-TZP and the veneering ceramic were analyzed for all groups after surface treatments. One-way ANOVA and Tukey's HSD test were used for data analysis (p ≤ 0.05). RESULTS The highest contact angle was observed for the control group (64.46 ± 6.09 θ), while the lowest values (p < 0.001) were presented after Si20 (29.85 ± 4.23 θ) and Si40 (30.37 ± 5.51 θ) treatments. Hydrothermal treatment (49.3 ± 2.69 θ) and alumina abrasion (45.84 ± 4.12 θ) resulted in intermediate contact angle values. The highest SBS values were observed for Al (16.74 ± 1.68 MPa) and Ht (15.27 ± 2.11 MPa) groups (p < 0.018). Groups Si20 (9.66 ± 1.22 MPa), Si40 (9.33 ± 2.11 MPa), Ht + Si40 (9.37 ± 1.02 MPa) and C (12.54 ± 2.64 MPa) all resulted in similar SBS results (p > 0.998). CONCLUSION The experimental treatments proposed enhanced surface wettability, but shear bond strength between Y-TZP and veneering ceramic was not improved. Alumina particle-abrasion improved SBS values while a decrease in wettability was observed.
{"title":"Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic.","authors":"S. Bitencourt, B. Hatton, N. Bastos-Bitencourt, Daniela Micheline Dos Santos, A. Pesqueira, G. de Souza","doi":"10.2139/ssrn.4030484","DOIUrl":"https://doi.org/10.2139/ssrn.4030484","url":null,"abstract":"PURPOSE\u0000To develop and to characterize a hybrid interface between yttria-stabilized zirconia (Y-TZP) transformed layer and silica-based nanofilm to enable a better bonding between Y-TZP and a veneering ceramic.\u0000\u0000\u0000MATERIAL AND METHODS\u0000Sixty-six fully-sintered rectangular Y-TZP specimens were distributed into 6 groups, according to the surface treatment applied: C (control): no treatment; Al: 27 μm-alumina particle abrasion; Ht: hydrothermal treatment in autoclave for 15h; Si20: 20 cycles of silica deposition using room-temperature atomic layer deposition (RT-ALD); Si40: 40 cycles of RT-ALD; Ht + Si40: hydrothermal treatment followed by 40 cycles of RT-ALD. RT-ALD was performed by the sequential exposure of specimens to vapor of tetramethoxysilane orthosilicate (TMOS) and ammonium hydroxide (NH4OH). Y-TZP surface wettability and shear bond strength (SBS) between Y-TZP and the veneering ceramic were analyzed for all groups after surface treatments. One-way ANOVA and Tukey's HSD test were used for data analysis (p ≤ 0.05).\u0000\u0000\u0000RESULTS\u0000The highest contact angle was observed for the control group (64.46 ± 6.09 θ), while the lowest values (p < 0.001) were presented after Si20 (29.85 ± 4.23 θ) and Si40 (30.37 ± 5.51 θ) treatments. Hydrothermal treatment (49.3 ± 2.69 θ) and alumina abrasion (45.84 ± 4.12 θ) resulted in intermediate contact angle values. The highest SBS values were observed for Al (16.74 ± 1.68 MPa) and Ht (15.27 ± 2.11 MPa) groups (p < 0.018). Groups Si20 (9.66 ± 1.22 MPa), Si40 (9.33 ± 2.11 MPa), Ht + Si40 (9.37 ± 1.02 MPa) and C (12.54 ± 2.64 MPa) all resulted in similar SBS results (p > 0.998).\u0000\u0000\u0000CONCLUSION\u0000The experimental treatments proposed enhanced surface wettability, but shear bond strength between Y-TZP and veneering ceramic was not improved. Alumina particle-abrasion improved SBS values while a decrease in wettability was observed.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"129 1","pages":"105142"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43316320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alberto Terzolo, L. Bailly, Laurent Orgéas, T. Cochereau, Nathalie Henrich Bernardoni
Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.
{"title":"A micro-mechanical model for the fibrous tissues of vocal folds.","authors":"Alberto Terzolo, L. Bailly, Laurent Orgéas, T. Cochereau, Nathalie Henrich Bernardoni","doi":"10.2139/ssrn.3962822","DOIUrl":"https://doi.org/10.2139/ssrn.3962822","url":null,"abstract":"Composed of collagen, elastin and muscular fibrous networks, vocal folds are soft laryngeal multi-layered tissues owning remarkable vibro-mechanical performances. However, the impact of their histological features on their overall mechanical properties still remains elusive. Thereby, this study presents a micro-mechanical hyperelastic model able to describe the 3D fibrous architecture and the surrounding matrices of the vocal-fold sublayers, and to predict their mechanical behavior. For each layer, the model parameters were identified using available histo-mechanical data, including their quasi-static response for key physiological loading paths, i.e., longitudinal tension, transverse compression and longitudinal shear. Regardless of the loading path, it is shown how macroscale nonlinear, anisotropic tissue responses are inherited from the fiber scale. Scenarios of micro-mechanisms are predicted, highlighting the major role of 3D fiber orientation in tension, steric hindrance in compression, and matrix contribution in shear. Finally, combining these predictions to vibrating hyperelastic Timoshenko beam's theory, the impact of the fibrous architecture of the upper layers on vocal-fold vibratory properties is emphasized.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"128 1","pages":"105118"},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42020213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Yuan, Yubin Xu, T. Lu, F. He, Luhui Zhang, Qixuan He, Jiandong Ye
Although hydroxyapatite (HA) bioceramic has excellent biocompatibility and osteoconductivity, its high chemical stability results in slow degradation which affects osteogenesis, angiogenesis and clinical applications. Silica-based bioglass (BG) with superior biological performance has been introduced into HA bioceramic to overcome this insufficiency; however, the composite bioceramics are usually prepared by traditional mechanical mixture of HA and BG powders, which tremendously weakens their mechanical performance. In this research, BG-modified HA bioceramics were prepared by the use of BG sol encapsulated HA powders. The results showed that introducing 1 and 3 wt% BG allowed the HA-based bioceramics to maintain the high compressive strength (>300 MPa), improved the apatite mineralization activity, and played an important role in cellular response. The bioceramic modified with 1 wt% BG (1BG/HA) remarkably enhanced in vitro cell proliferation, osteogenic and angiogenic activities. This present work provides a new strategy to improve the biological performance of bioceramics and the HA-based bioceramics with 1 wt% BG can be as a promising candidate material for bone repair.
{"title":"Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol.","authors":"X. Yuan, Yubin Xu, T. Lu, F. He, Luhui Zhang, Qixuan He, Jiandong Ye","doi":"10.2139/ssrn.3981401","DOIUrl":"https://doi.org/10.2139/ssrn.3981401","url":null,"abstract":"Although hydroxyapatite (HA) bioceramic has excellent biocompatibility and osteoconductivity, its high chemical stability results in slow degradation which affects osteogenesis, angiogenesis and clinical applications. Silica-based bioglass (BG) with superior biological performance has been introduced into HA bioceramic to overcome this insufficiency; however, the composite bioceramics are usually prepared by traditional mechanical mixture of HA and BG powders, which tremendously weakens their mechanical performance. In this research, BG-modified HA bioceramics were prepared by the use of BG sol encapsulated HA powders. The results showed that introducing 1 and 3 wt% BG allowed the HA-based bioceramics to maintain the high compressive strength (>300 MPa), improved the apatite mineralization activity, and played an important role in cellular response. The bioceramic modified with 1 wt% BG (1BG/HA) remarkably enhanced in vitro cell proliferation, osteogenic and angiogenic activities. This present work provides a new strategy to improve the biological performance of bioceramics and the HA-based bioceramics with 1 wt% BG can be as a promising candidate material for bone repair.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"128 1","pages":"105104"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44391377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Zargar, Qing Li, Chiedu Nwaobi, M. Pharr, S. Finlayson, A. Muliana
Sorghum [Sorghum bicolor (L.) Moench] is a tropical grass that can be used as a bioenergy crop but commonly suffers from stem structural failure (lodging) when exposed to mechanical stimuli, such as rain and wind. Mechanical stimulation can trigger adaptive growth in plant stems (thigmomorphogenesis) by activating regulatory networks of hormones, proteins, transcription factors, and targeted genes, which ultimately alters their physiology, morphology, and biomechanical properties. The goals of this study are 1) to investigate differences in the morpho-anatomical-biomechanical properties of internodes from control and mechanically-stimulated plants and 2) to examine whether the changes also depend on the plant developmental stages at the time of stimulation. The sweet sorghum cultivar Della was grown in a greenhouse under two growth conditions: with and without mechanical stimulation. The mechanical stimulation involved periodic bending of the stems in one direction during a seven-week growth period. At maturity, the anatomical traits of the stimulated and non-stimulated stems were characterized, including internode lengths and diameters, and biomechanical properties, including elastic (instantaneous) modulus, flexural stiffness, strength, and time-dependent compliance under bending. The morpho-anatomical and biomechanical characteristics of two internodes of the stems that were at different stages of development at the time of mechanical stimulation were examined. Younger internodes were more responsive and experienced more pronounced changes in length due to the stimulation when compared to the older internodes. Statistical analyses showed differences between the stimulated and non-stimulated stems in terms of both their anatomical and biomechanical properties. Mechanical stimulation produced shorter internodes with slightly larger diameters, as well as softer (more compliant) and stronger stems.
{"title":"Thigmostimulation alters anatomical and biomechanical properties of bioenergy sorghum stems.","authors":"O. Zargar, Qing Li, Chiedu Nwaobi, M. Pharr, S. Finlayson, A. Muliana","doi":"10.2139/ssrn.3957953","DOIUrl":"https://doi.org/10.2139/ssrn.3957953","url":null,"abstract":"Sorghum [Sorghum bicolor (L.) Moench] is a tropical grass that can be used as a bioenergy crop but commonly suffers from stem structural failure (lodging) when exposed to mechanical stimuli, such as rain and wind. Mechanical stimulation can trigger adaptive growth in plant stems (thigmomorphogenesis) by activating regulatory networks of hormones, proteins, transcription factors, and targeted genes, which ultimately alters their physiology, morphology, and biomechanical properties. The goals of this study are 1) to investigate differences in the morpho-anatomical-biomechanical properties of internodes from control and mechanically-stimulated plants and 2) to examine whether the changes also depend on the plant developmental stages at the time of stimulation. The sweet sorghum cultivar Della was grown in a greenhouse under two growth conditions: with and without mechanical stimulation. The mechanical stimulation involved periodic bending of the stems in one direction during a seven-week growth period. At maturity, the anatomical traits of the stimulated and non-stimulated stems were characterized, including internode lengths and diameters, and biomechanical properties, including elastic (instantaneous) modulus, flexural stiffness, strength, and time-dependent compliance under bending. The morpho-anatomical and biomechanical characteristics of two internodes of the stems that were at different stages of development at the time of mechanical stimulation were examined. Younger internodes were more responsive and experienced more pronounced changes in length due to the stimulation when compared to the older internodes. Statistical analyses showed differences between the stimulated and non-stimulated stems in terms of both their anatomical and biomechanical properties. Mechanical stimulation produced shorter internodes with slightly larger diameters, as well as softer (more compliant) and stronger stems.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"127 1","pages":"105090"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41662661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient diamond machining of zirconia requires a comprehensive understanding of repetitive diamond indentation mechanics. This paper reports on in-situ cyclic nanoindentations of pre-sintered and sintered zirconia materials performed inside a scanning electron microscope (SEM). In-situ SEM imaging of cyclic indentation processes and high-magnification SEM mapping of indentation imprints were conducted. The elastic and plastic behaviors of pre-sintered and sintered zirconia materials were investigated as a function of the cyclic nanoindentation number using the Sakai and Sakai-Nowak models. For pre-sintered zirconia, cyclic nanoindentation induced quasi-plastic deformation, causing localized agglomeration of zirconia crystals with microcracks and large cracking along the indentation edge. Severely compressed, fragmented, and pulverized zirconia crystals and smeared surfaces were also observed. For sintered zirconia, shear bands dominated quasi-plastic deformation with the formation of edge pile-ups and localized microfractures occurred at indentation apex and diagonals. All elastic and plastic behaviors for pre-sintered and sintered zirconia materials revealed significantly microstructure-dependent. Pre-sintered zirconia yielded significantly lower contact hardness, Young's moduli, resistance to plasticity, elastic deformation components, and resistance to machining-induced cracking, and higher elastic and plastic displacements than sintered state. Meanwhile, all the behaviors for the two materials were independent from the cyclic nanoindentation number. A model was proposed for cyclic nanoindentation mechanics, revealing their cyclic indentation-induced microstructural changes in the two zirconia materials. This study advances the fundamental understanding of nanoindentation mechanics of zirconia materials.
{"title":"In-situ SEM cyclic nanoindentation of pre-sintered and sintered zirconia materials.","authors":"Afifah Z. Juri, A. Basak, Ling Yin","doi":"10.2139/ssrn.3963727","DOIUrl":"https://doi.org/10.2139/ssrn.3963727","url":null,"abstract":"Efficient diamond machining of zirconia requires a comprehensive understanding of repetitive diamond indentation mechanics. This paper reports on in-situ cyclic nanoindentations of pre-sintered and sintered zirconia materials performed inside a scanning electron microscope (SEM). In-situ SEM imaging of cyclic indentation processes and high-magnification SEM mapping of indentation imprints were conducted. The elastic and plastic behaviors of pre-sintered and sintered zirconia materials were investigated as a function of the cyclic nanoindentation number using the Sakai and Sakai-Nowak models. For pre-sintered zirconia, cyclic nanoindentation induced quasi-plastic deformation, causing localized agglomeration of zirconia crystals with microcracks and large cracking along the indentation edge. Severely compressed, fragmented, and pulverized zirconia crystals and smeared surfaces were also observed. For sintered zirconia, shear bands dominated quasi-plastic deformation with the formation of edge pile-ups and localized microfractures occurred at indentation apex and diagonals. All elastic and plastic behaviors for pre-sintered and sintered zirconia materials revealed significantly microstructure-dependent. Pre-sintered zirconia yielded significantly lower contact hardness, Young's moduli, resistance to plasticity, elastic deformation components, and resistance to machining-induced cracking, and higher elastic and plastic displacements than sintered state. Meanwhile, all the behaviors for the two materials were independent from the cyclic nanoindentation number. A model was proposed for cyclic nanoindentation mechanics, revealing their cyclic indentation-induced microstructural changes in the two zirconia materials. This study advances the fundamental understanding of nanoindentation mechanics of zirconia materials.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"126 1","pages":"105068"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49568968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyung-Ho Ko, Hyeon-Goo Kang, Yoon-Hyuk Huh, Chan-Jin Park, L. Cho
The mechanical properties and residual stress of dental Co-Cr-Mo (CCM) alloy depend on the manufacturing and post-processing methods, which affect the prognosis of dental prostheses. Two CCM alloys manufactured by casting and selective laser melting (SLM) were compared, and the effect of heat treatment temperature for CCM alloys manufactured by SLM method was evaluated. Specimens were fabricated by casting (Cast Co-Cr) and SLM (SLM Co-Cr). SLM Co-Cr specimens were heat treated at 750, 950, and 1150 °C to compare their properties. Microstructures were analyzed via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction (EBSD), and the residual stress was measured via x-ray diffraction (XRD). Mechanical properties were evaluated by a Vickers hardness test and a tensile test; fractography was performed after this. The SLM Co-Cr group exhibited a decrease in porosity, grain size, increase in solid solution limit, and high residual stress compared to Cast Co-Cr; the ultimate tensile strength, yield strength, and hardness were also higher. The microstructures, residual stresses, and mechanical properties differed significantly depending on the heat treatment, and the strength and hardness showed a tendency inverse to that of the elongation. Type I residual stresses mostly decreased after 750 °C heat treatment, however type II and III residual stresses remained even after 1150 °C heat treatment. SLM presented superior mechanical properties to casting. Considering the reduction of tensile residual stress and increased ductility, CCM alloys should be heat treated at a temperature of 950 °C or higher.
{"title":"Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting.","authors":"Kyung-Ho Ko, Hyeon-Goo Kang, Yoon-Hyuk Huh, Chan-Jin Park, L. Cho","doi":"10.2139/ssrn.3962044","DOIUrl":"https://doi.org/10.2139/ssrn.3962044","url":null,"abstract":"The mechanical properties and residual stress of dental Co-Cr-Mo (CCM) alloy depend on the manufacturing and post-processing methods, which affect the prognosis of dental prostheses. Two CCM alloys manufactured by casting and selective laser melting (SLM) were compared, and the effect of heat treatment temperature for CCM alloys manufactured by SLM method was evaluated. Specimens were fabricated by casting (Cast Co-Cr) and SLM (SLM Co-Cr). SLM Co-Cr specimens were heat treated at 750, 950, and 1150 °C to compare their properties. Microstructures were analyzed via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction (EBSD), and the residual stress was measured via x-ray diffraction (XRD). Mechanical properties were evaluated by a Vickers hardness test and a tensile test; fractography was performed after this. The SLM Co-Cr group exhibited a decrease in porosity, grain size, increase in solid solution limit, and high residual stress compared to Cast Co-Cr; the ultimate tensile strength, yield strength, and hardness were also higher. The microstructures, residual stresses, and mechanical properties differed significantly depending on the heat treatment, and the strength and hardness showed a tendency inverse to that of the elongation. Type I residual stresses mostly decreased after 750 °C heat treatment, however type II and III residual stresses remained even after 1150 °C heat treatment. SLM presented superior mechanical properties to casting. Considering the reduction of tensile residual stress and increased ductility, CCM alloys should be heat treated at a temperature of 950 °C or higher.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"126 1","pages":"105051"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45428741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting-Yu Wu, Xinyue Zhang, Kai Chen, Qin Chen, Zhenyang Yu, Cunao Feng, J. Qi, Dekun Zhang
Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.
{"title":"The antibacterial and wear-resistant nano-ZnO/PEEK composites were constructed by a simple two-step method.","authors":"Ting-Yu Wu, Xinyue Zhang, Kai Chen, Qin Chen, Zhenyang Yu, Cunao Feng, J. Qi, Dekun Zhang","doi":"10.2139/ssrn.3949517","DOIUrl":"https://doi.org/10.2139/ssrn.3949517","url":null,"abstract":"Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"126 1","pages":"104986"},"PeriodicalIF":0.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48495550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of shear wave propagation to noninvasively measure material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue's composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers' toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.
{"title":"Sensitivity of the shear wave speed-stress relationship to soft tissue material properties and fiber alignment.","authors":"Jonathon L. Blank, D. Thelen, M. Allen, J. Roth","doi":"10.31224/osf.io/54btr","DOIUrl":"https://doi.org/10.31224/osf.io/54btr","url":null,"abstract":"The use of shear wave propagation to noninvasively measure material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue's composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers' toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"125 1","pages":"104964"},"PeriodicalIF":0.0,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49130037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}