.
.
.
.
.
.
Gallbaldder disorders represent a prevalent pathology encounterd in daily practice, both in emergency and ambulatory settings. Transabdominal ultrasound has a high accuracy for the diagnosis of gallstones and acute cholecystitis. Contrast enhanced ultrasound (CEUS) can depict and characterized the vascular pattern in cases of inflammatory or malignant processes. In an emergency situation such as acute cholecystitis in patients with comorbidities, CEUS can acurate identify a gangrenous cholecystitis; subsequently the medical management can rely on this technique. The differential diagnosis of benign vs malignant pathology, in cases of segmental or diffuse wall thickening, can also benefit from CEUS. In this paper we aimed to discuss and to illustrate the role of CEUS in gallbladder pathology.
VEXAS syndrome is a recently described condition characterized by systemic inflammation, predisposition to hematologic malignancy and a high rate of venous thrombosis. Here we report the case of an elderly male with erythema nodosumlike lesions, ankle arthralgia, and general symptoms. B-mode and Doppler ultrasound of the subcutis diagnosed superficial thrombophlebitis of the lower limbs, which turned out to be the manifestation of a paucisymptomatic VEXAS syndrome. VEXAS should be considered in any patient who presents with unexplained superficial thrombophlebitis, macrocytic anemia and unexplained systemic inflammation.
Aim: This study aimed to evaluate the correlation between the elasticity of the anterior and posterior walls of the radial artery in different sections using velocity vector imaging.
Material and methods: In this retrospective analysis, 30 healthy people who underwent physical examination in our hospital from January 2022 to January 2023 were analyzed offline by velocity vector imaging technology. The following parameters were assessed: peak systolic strain (Ss; %), peak diastolic strain (Sd; %), peak systolic strain rate (SRs; 1/s), and peak diastolic strain rate (SRd; 1/s). Elastic function was evaluated by analyzing the systolic and diastolic motion of the arterial walls.
Result: In the long-axis sections, there was a significant positive correlation between Ss, SRs, and SRd of both the anterior and posterior walls (r=0.531, r=0.803, and r=0.898, all p<0.01). Additionally, Sd showed a positive correlation (r=0.402, p<0.05). In the short-axis sections, there was a significant and positive correlation between SRs and SRd of both walls (r=0.762, r=0.667, both p<0.01). Furthermore, a positive correlation was found between SRd in the long-axis and short-axis sections of the anterior wall (r=0.382, p<0.05).
Conclusions: Velocity vector imaging is a valuable tool for assessing the elasticity of the radial artery in different sections, and the longitudinal SRd in the long-axis section may serve as a highly sensitive and accurate parameter for assessing changes in wall elastic function during the occurrence of radial artery lesions.
.