Pub Date : 2024-06-24DOI: 10.2174/0115672018306882240618093152
Omar Awad Alsaidan
Nanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, etc. We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.
基于纳米粒子的递送系统已成为寡核苷酸疗法中前景广阔的工具,可促进精确和靶向递送,以治疗多种疾病。基于纳米粒子的寡核苷酸递送技术涉及多个方面,包括递送系统中纳米技术的基本方面、各类寡核苷酸以及不断发展的基于 ON 的疗法。这些基于 ON 的疗法可用于靶向细胞内的特定基因序列,通过调节基因表达或干扰特定细胞过程来治疗各种疾病,前景广阔。由于纳米技术系统错综复杂,因此将纳米技术融入给药系统具有多种优势。寡核苷酸是一类多种多样的制剂,为支持治疗干预的每一类制剂提供了广泛的潜在用途。基于寡核苷酸的平台已经证明了其在分子靶向和干预策略方面的多功能性。此外,寡核苷酸疗法的复杂性和递送难题有望通过应用纳米技术平台来克服。由于纳米颗粒可以克服生物障碍,提高生物利用度、稳定性和特异性,因此它们在开发寡核苷酸递送系统中的作用备受重视。纳米颗粒所提供的创新解决方案是解决棘手障碍的有效策略。这些策略克服了酶降解、细胞吸收和免疫反应等障碍,从而为提高疗效铺平了道路。本综述旨在探讨纳米粒子介导的寡核苷酸递送在各种疾病中的各种应用。它概述了这些系统带来的治疗方法的发展前景,包括癌症、遗传性疾病、神经退行性疾病等。我们强调了基于纳米粒子的递送系统在发掘寡核苷酸疗法的全部潜力方面所起的关键作用,从而促进了精准医学和靶向疗法的发展。
{"title":"Nanocarriers: Exploring the Potential of Oligonucleotide Delivery.","authors":"Omar Awad Alsaidan","doi":"10.2174/0115672018306882240618093152","DOIUrl":"https://doi.org/10.2174/0115672018306882240618093152","url":null,"abstract":"<p><p>Nanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, etc. We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.2174/0115672018305677240611080910
Hooman Hatami, Vahid Reza Askari, Vafa Baradaran Rahimi, Md Saquib Hasnain, Amit Kumar Nayak
Insulin is a peptide hormone that is essential for regulating body homeostasis. Furthermore, it is involved in various neurological functions such as memory, behaviors, and cognition. The ubiquitous distribution of insulin receptors on various brain cells, such as neurons, microglia, astrocytes, and oligodendrocytes, and their differential localization across various brain regions, including the hippocampus, hypothalamus, and olfactory bulb, collectively underscore the crucial involvement of insulin in the modulation of cerebral functions. Along with ageing, in some pathological conditions such as diabetes and brain insulin resistance, the need for exogenous insulin is felt to compensate for insulin deficiency. In these cases, the biggest obstacle to the delivery of insulin to the brain is the blood-brain barrier (a physical barrier consisting of endothelial cells with tight junctions), which prevents the direct entry of most substances possessing high molecular weight, like insulin, into the brain. Therefore, different delivery methods have been proposed by researchers for insulin delivery that directly or indirectly cause the transfer of insulin to the brain. Some of these methods lack high efficiency and cause many side effects for the patient. In this regard, many new technologies have come to the aid of researchers and have introduced more effective delivery strategies, including the use of nanocarriers. Despite the promising outcomes demonstrated in the experimental models, the utilization of these techniques in human studies remains at a nascent stage and necessitates further comprehensive investigation. This review article aims to examine the diverse methods of insulin administration to the brain by gathering extensive information on insulin and its obstacles to brain delivery.
{"title":"The Dilemma of Insulin Delivery into the Brain: A Comprehensive Review.","authors":"Hooman Hatami, Vahid Reza Askari, Vafa Baradaran Rahimi, Md Saquib Hasnain, Amit Kumar Nayak","doi":"10.2174/0115672018305677240611080910","DOIUrl":"https://doi.org/10.2174/0115672018305677240611080910","url":null,"abstract":"<p><p>Insulin is a peptide hormone that is essential for regulating body homeostasis. Furthermore, it is involved in various neurological functions such as memory, behaviors, and cognition. The ubiquitous distribution of insulin receptors on various brain cells, such as neurons, microglia, astrocytes, and oligodendrocytes, and their differential localization across various brain regions, including the hippocampus, hypothalamus, and olfactory bulb, collectively underscore the crucial involvement of insulin in the modulation of cerebral functions. Along with ageing, in some pathological conditions such as diabetes and brain insulin resistance, the need for exogenous insulin is felt to compensate for insulin deficiency. In these cases, the biggest obstacle to the delivery of insulin to the brain is the blood-brain barrier (a physical barrier consisting of endothelial cells with tight junctions), which prevents the direct entry of most substances possessing high molecular weight, like insulin, into the brain. Therefore, different delivery methods have been proposed by researchers for insulin delivery that directly or indirectly cause the transfer of insulin to the brain. Some of these methods lack high efficiency and cause many side effects for the patient. In this regard, many new technologies have come to the aid of researchers and have introduced more effective delivery strategies, including the use of nanocarriers. Despite the promising outcomes demonstrated in the experimental models, the utilization of these techniques in human studies remains at a nascent stage and necessitates further comprehensive investigation. This review article aims to examine the diverse methods of insulin administration to the brain by gathering extensive information on insulin and its obstacles to brain delivery.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.2174/0115672018312715240604054857
Mohamed T El-Sebaiy, Mohammad H Alyami, Hamad S Alyami, Mohammad Amjad Kamal, Noura Eissa, Gehan Balata, Hanan El-Nahas
Introduction: Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties.
Method: This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies.
Result: The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR).
Conclusion: The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.
{"title":"24 Factorial Design Formulation Optimization and In vitro Characterization of Desloratadine Nanosuspension Prepared Using Antisolvent Precipitation.","authors":"Mohamed T El-Sebaiy, Mohammad H Alyami, Hamad S Alyami, Mohammad Amjad Kamal, Noura Eissa, Gehan Balata, Hanan El-Nahas","doi":"10.2174/0115672018312715240604054857","DOIUrl":"https://doi.org/10.2174/0115672018312715240604054857","url":null,"abstract":"<p><strong>Introduction: </strong>Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties.</p><p><strong>Method: </strong>This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies.</p><p><strong>Result: </strong>The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR).</p><p><strong>Conclusion: </strong>The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.2174/0115672018305953240606063911
Wenshang Fu, Pingli Zhang, Wei Wang, Mengdie Du, Rui Ni, Yongshun Sun
Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.
{"title":"Frontiers of Plant-derived Exosomes from Research Methods to Pharmaceutical Applications in Plant-based Therapeutics","authors":"Wenshang Fu, Pingli Zhang, Wei Wang, Mengdie Du, Rui Ni, Yongshun Sun","doi":"10.2174/0115672018305953240606063911","DOIUrl":"10.2174/0115672018305953240606063911","url":null,"abstract":"<p><p>Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.2174/0115672018313783240603114509
Sabitri Bindhani, Amit Kumar Nayak
Different nanocarriers-based strategies are now extensively being used as an important strategy for improving drug efficacy and responsiveness, reducing toxicity issues related to drugs and harmful side effects, and overcoming the numerous significant difficulties related to absorption and bioavailability. Amongst different nanocarriers, nanovesicles are excellent and versatile systems for effectively delivering biomolecules, drugs, and targeted ligand distribution and location. Nanovesicles are nanosized self-assembling spherical capsules with an aqueous core and one/more lipid(s) layers. Several synthetic nanovesicles have been developed and investigated for their prospective uses in delivering drugs, proteins, peptides, nutrients, etc. Important procedures for nanovesicle manufacturing are thin-film hydration, unshaken method, ethanol injection, ether injection, proliposomes, freeze-drying, hot method, cold method, reverse-phase evaporation, and ultrasonication. Liposomes, liposomes, ethosomes, exosomes, and transferosomes (elastic vesicles) are the nonvesicular candidates extensively investigated to deliver antiviral drugs. This review article comprehensively reviews different nanovesicles, their compositions, manufacturing, and applications as potential carriers for effectively delivering different antiviral drugs to treat viral diseases.
{"title":"Nanovesicles as Potential Carriers for Delivery of Antiviral Drugs: A Comprehensive Review.","authors":"Sabitri Bindhani, Amit Kumar Nayak","doi":"10.2174/0115672018313783240603114509","DOIUrl":"https://doi.org/10.2174/0115672018313783240603114509","url":null,"abstract":"<p><p>Different nanocarriers-based strategies are now extensively being used as an important strategy for improving drug efficacy and responsiveness, reducing toxicity issues related to drugs and harmful side effects, and overcoming the numerous significant difficulties related to absorption and bioavailability. Amongst different nanocarriers, nanovesicles are excellent and versatile systems for effectively delivering biomolecules, drugs, and targeted ligand distribution and location. Nanovesicles are nanosized self-assembling spherical capsules with an aqueous core and one/more lipid(s) layers. Several synthetic nanovesicles have been developed and investigated for their prospective uses in delivering drugs, proteins, peptides, nutrients, etc. Important procedures for nanovesicle manufacturing are thin-film hydration, unshaken method, ethanol injection, ether injection, proliposomes, freeze-drying, hot method, cold method, reverse-phase evaporation, and ultrasonication. Liposomes, liposomes, ethosomes, exosomes, and transferosomes (elastic vesicles) are the nonvesicular candidates extensively investigated to deliver antiviral drugs. This review article comprehensively reviews different nanovesicles, their compositions, manufacturing, and applications as potential carriers for effectively delivering different antiviral drugs to treat viral diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.2174/0115672018302129240603052316
Huan-Huan Du, Li-Rong Wang, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Yawen Liu, Min Tang, Li-Li Shi, Qing-Ri Cao
Purpose: Reproducibility and scale-up production of microspheres through spray drying present significant challenges. In this study, biodegradable microspheres of Triamcinolone Acetonide Acetate (TAA) were prepared using a novel static mixing method by employing poly( lactic-co-glycolic acid) (PLGA) as the sustained-release carrier.
Methods: TAA-loaded microspheres (TAA-MSs) were prepared using a static mixing technique. The PLGA concentration, polyvinyl alcohol concentration (PVA), phase ratio of oil/water, and phase ratio of water/solidification were optimized in terms of the particle size, drug loading (DL), and encapsulation efficiency (EE) of TAA-MSs. The morphology of TAA-MSs was examined using Scanning Electron Microscopy (SEM), while the physicochemical properties were evaluated through X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FT-IR). The in vitro release of TAA-MSs was compared to that of the pure drug (TAA) using a water-bath vibration method in the medium of pH 7.4 at 37°C.
Results: The formulation composition and preparation condition for the preparation of TAA-MSs were optimized as follows: the PLGA concentration was 1%, the phase ratio of oil(dichloromethane) /water (PVA solution) was 1:3, the phase ratio of water (PVA solution)/solidification was 1:2. The optimized TAA-MSs displayed spherical particles with a size range of 30-70 μm, and DL and EE values of 27.09% and 98.67%, respectively. Moreover, the drug-loaded microspheres exhibited a significant, sustained release, with 20% of the drug released over a period of 28 days. The XRD result indicated that the crystalline form of TAA in microspheres had been partly converted into the amorphous form. DSC and FT-IR results revealed that some interactions between TAA and PLGA occurred, indicating that the drug was effectively encapsulated into PLGA microspheres.
Conclusion: TAA-loaded PLGA microspheres have been successfully prepared via the static mixing technique with enhanced EE and sustained-release manner.
{"title":"Formulation and Characterization of Triamcinolone Acetonide Acetate-Loaded Microspheres Prepared by a Static Mixing Technique.","authors":"Huan-Huan Du, Li-Rong Wang, Xin-Hong Wu, Xue-Ai Liu, Ming-Wei Huo, Xiang-Xiang Huang, Ling-Zhi Shi, Yawen Liu, Min Tang, Li-Li Shi, Qing-Ri Cao","doi":"10.2174/0115672018302129240603052316","DOIUrl":"https://doi.org/10.2174/0115672018302129240603052316","url":null,"abstract":"<p><strong>Purpose: </strong>Reproducibility and scale-up production of microspheres through spray drying present significant challenges. In this study, biodegradable microspheres of Triamcinolone Acetonide Acetate (TAA) were prepared using a novel static mixing method by employing poly( lactic-co-glycolic acid) (PLGA) as the sustained-release carrier.</p><p><strong>Methods: </strong>TAA-loaded microspheres (TAA-MSs) were prepared using a static mixing technique. The PLGA concentration, polyvinyl alcohol concentration (PVA), phase ratio of oil/water, and phase ratio of water/solidification were optimized in terms of the particle size, drug loading (DL), and encapsulation efficiency (EE) of TAA-MSs. The morphology of TAA-MSs was examined using Scanning Electron Microscopy (SEM), while the physicochemical properties were evaluated through X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FT-IR). The in vitro release of TAA-MSs was compared to that of the pure drug (TAA) using a water-bath vibration method in the medium of pH 7.4 at 37°C.</p><p><strong>Results: </strong>The formulation composition and preparation condition for the preparation of TAA-MSs were optimized as follows: the PLGA concentration was 1%, the phase ratio of oil(dichloromethane) /water (PVA solution) was 1:3, the phase ratio of water (PVA solution)/solidification was 1:2. The optimized TAA-MSs displayed spherical particles with a size range of 30-70 μm, and DL and EE values of 27.09% and 98.67%, respectively. Moreover, the drug-loaded microspheres exhibited a significant, sustained release, with 20% of the drug released over a period of 28 days. The XRD result indicated that the crystalline form of TAA in microspheres had been partly converted into the amorphous form. DSC and FT-IR results revealed that some interactions between TAA and PLGA occurred, indicating that the drug was effectively encapsulated into PLGA microspheres.</p><p><strong>Conclusion: </strong>TAA-loaded PLGA microspheres have been successfully prepared via the static mixing technique with enhanced EE and sustained-release manner.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.2174/0115672018289236240530095059
Zhu Xinle, Zhang Li, Li Jian, Zhao Hui, Gu Jinhua, Wang Hejia
Aims: In the present study, a valnemulin hydrogen fumarate prodrug was characterized, its stability was compared with valnemulin hydrochloride, and the efficacy was evaluated in Actinobacillus pleuropneumoniae-induced pneumonia in mice.
Method: Optical microscopy, X-ray powder diffraction, infrared spectroscopy, and hydrogen nuclear magnetic resonance spectroscopy were used to study the physical and chemical properties of the prodrug. The thermal stability was investigated in comparison with valnemulin hydrochloride to improve the preparation process of valnemulin hydrogen fumarate soluble powder and maximize its drug effect. Additionally, the efficacy of valnemulin hydrogen fumarate was evaluated in a challenge-treatment trial in mice using an in vitro antimicrobial susceptibility test.
Results: The valnemulin hydrogen fumarate had high crystallinity. After light irradiation for 20 days, valnemulin hydrogen fumarate did not degrade, whereas valnemulin hydrochloride did. These results showed that the valnemulin hydrogen fumarate was stable. At the same dose in drinking water, the valnemulin hydrogen fumarate was more effective than the reference drug (tiamulin fumarate) in an Actinobacillus pleuropneumoniae challenge-treatment trial.
Conclusion: Valnemulin hydrogen fumarate shows excellent potential for application as a veterinary drug.
{"title":"Characterization and In vivo Evaluation of Polymorphic Valnemulin Hydrogen Fumarate.","authors":"Zhu Xinle, Zhang Li, Li Jian, Zhao Hui, Gu Jinhua, Wang Hejia","doi":"10.2174/0115672018289236240530095059","DOIUrl":"https://doi.org/10.2174/0115672018289236240530095059","url":null,"abstract":"<p><strong>Aims: </strong>In the present study, a valnemulin hydrogen fumarate prodrug was characterized, its stability was compared with valnemulin hydrochloride, and the efficacy was evaluated in Actinobacillus pleuropneumoniae-induced pneumonia in mice.</p><p><strong>Method: </strong>Optical microscopy, X-ray powder diffraction, infrared spectroscopy, and hydrogen nuclear magnetic resonance spectroscopy were used to study the physical and chemical properties of the prodrug. The thermal stability was investigated in comparison with valnemulin hydrochloride to improve the preparation process of valnemulin hydrogen fumarate soluble powder and maximize its drug effect. Additionally, the efficacy of valnemulin hydrogen fumarate was evaluated in a challenge-treatment trial in mice using an in vitro antimicrobial susceptibility test.</p><p><strong>Results: </strong>The valnemulin hydrogen fumarate had high crystallinity. After light irradiation for 20 days, valnemulin hydrogen fumarate did not degrade, whereas valnemulin hydrochloride did. These results showed that the valnemulin hydrogen fumarate was stable. At the same dose in drinking water, the valnemulin hydrogen fumarate was more effective than the reference drug (tiamulin fumarate) in an Actinobacillus pleuropneumoniae challenge-treatment trial.</p><p><strong>Conclusion: </strong>Valnemulin hydrogen fumarate shows excellent potential for application as a veterinary drug.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.2174/0115672018300502240530064139
Yujie Wan, Li Luo, Xinzhi Xu, Qihuan Fu, Ying Li, Kaifeng Huang, Hang Zhou, Fang Li
Background: Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes.
Objective: A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the in vitro therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future in vivo treatments utilizing this approach.
Methods: PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and in vivo biosafety of various nanodelivery systems were assessed.
Results: The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. In vitro experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. In vivo safety studies demonstrated the high biosafety of the prepared nanodelivery system.
Conclusion: A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on in vivo ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.
{"title":"Mesothelin-Mediated Paclitaxel Phase-Shifted Nanodelivery System for Molecular Ultrasound Imaging and Targeted Therapy Potential in Ovarian Cancer.","authors":"Yujie Wan, Li Luo, Xinzhi Xu, Qihuan Fu, Ying Li, Kaifeng Huang, Hang Zhou, Fang Li","doi":"10.2174/0115672018300502240530064139","DOIUrl":"https://doi.org/10.2174/0115672018300502240530064139","url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes.</p><p><strong>Objective: </strong>A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the in vitro therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future in vivo treatments utilizing this approach.</p><p><strong>Methods: </strong>PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and in vivo biosafety of various nanodelivery systems were assessed.</p><p><strong>Results: </strong>The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. In vitro experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. In vivo safety studies demonstrated the high biosafety of the prepared nanodelivery system.</p><p><strong>Conclusion: </strong>A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on in vivo ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The regeneration of tissue damage involves a series of molecular and cellular events that can be mediated by various natural compounds. Recent studies have highlighted the anti-inflammatory, anti-ulcer, and skin-protecting properties of Cydonia oblonga (Quince), which are mainly attributed to phenolic compounds. These compounds may have some drawbacks when targeting wound applications, including low bioavailability at the wound site. Moreover, to overcome these limitations, surfactant-based nanovesicular systems have been developed as carriers of such compounds for wound healing.
Objective: This study aimed to highlight the possible therapeutic potential of niosome-based hydrogel from Quince extract to stabilize and deliver the related bioactive compounds to full-thickness wounds in rats.
Methods: The niosomal hydrogel was prepared using a thin-film hydration method with the fruit extract (70% methanol). The formulation was optimized by evaluating size, zeta potential, dispersion index, and drug encapsulation efficiency. Full-thickness wounds were created on the dorsal cervical area of Wistar rats, and histopathological analysis of biopsy specimens was conducted on the 12th day of treatment.
Results: Under the study conditions, niosomal hydrogel displayed good physicochemical stability. Histopathological findings demonstrated that niosomal gel promoted angiogenesis, fibroblast maturation, collagen deposition, keratinization, and epidermal layer formation more effectively than control and hydrogel base. Furthermore, niosomal gel treatment markedly reduced inflammation. The total phenol concentration was determined to be 13.34 ± 0.90 mg gallic acid equivalents per gram of dried extract.
Conclusion: The niosomal hydrogel containing C. oblonga extract shows potential as a novel approach for wound healing, warranting further investigation in this field.
{"title":"Niosome-Based Hydrogel of Quince Extract: A Promising Strategy for Expedited Full-thickness Wound Healing in Rat.","authors":"Pedram Ebrahimnejad, Paria Fadaee Heydarabadi, Fereshteh Talebpour Amiri, Fatemeh Mirzaee, Melika Ahmadi, Somayeh Shahani","doi":"10.2174/0115672018282735240528072715","DOIUrl":"https://doi.org/10.2174/0115672018282735240528072715","url":null,"abstract":"<p><strong>Background: </strong>The regeneration of tissue damage involves a series of molecular and cellular events that can be mediated by various natural compounds. Recent studies have highlighted the anti-inflammatory, anti-ulcer, and skin-protecting properties of Cydonia oblonga (Quince), which are mainly attributed to phenolic compounds. These compounds may have some drawbacks when targeting wound applications, including low bioavailability at the wound site. Moreover, to overcome these limitations, surfactant-based nanovesicular systems have been developed as carriers of such compounds for wound healing.</p><p><strong>Objective: </strong>This study aimed to highlight the possible therapeutic potential of niosome-based hydrogel from Quince extract to stabilize and deliver the related bioactive compounds to full-thickness wounds in rats.</p><p><strong>Methods: </strong>The niosomal hydrogel was prepared using a thin-film hydration method with the fruit extract (70% methanol). The formulation was optimized by evaluating size, zeta potential, dispersion index, and drug encapsulation efficiency. Full-thickness wounds were created on the dorsal cervical area of Wistar rats, and histopathological analysis of biopsy specimens was conducted on the 12th day of treatment.</p><p><strong>Results: </strong>Under the study conditions, niosomal hydrogel displayed good physicochemical stability. Histopathological findings demonstrated that niosomal gel promoted angiogenesis, fibroblast maturation, collagen deposition, keratinization, and epidermal layer formation more effectively than control and hydrogel base. Furthermore, niosomal gel treatment markedly reduced inflammation. The total phenol concentration was determined to be 13.34 ± 0.90 mg gallic acid equivalents per gram of dried extract.</p><p><strong>Conclusion: </strong>The niosomal hydrogel containing C. oblonga extract shows potential as a novel approach for wound healing, warranting further investigation in this field.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The field of nanomedicine shows promising implications in the concurrent delivery of therapeutic and diagnostic (theranostics) compounds in a single platform. Nanotheranostics is incredibly promising since it offers simultaneous non-invasive disease detection and treatment together with the exciting ability to track drug release and distribution in real-time, thereby forecasting and evaluating the efficacy of the therapy. The cancer theranostic approach improves the cancer prognosis safely and effectively. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon- based nanoparticles, and organic dye-based nanoparticles, have demonstrated enormous potential for theranostic activity. The need for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research shortly. The developments of precision theranostic nanomaterials are employed in imaging systems like, MRI, PET, and SPECT with multifunctional ability. In this review, different nanoparticles/nanomaterials that are used/developed for theranostic activity are discussed.
{"title":"Recent Advancement of Nanotheranostics in Cancer Applications.","authors":"Suphiya Parveen, R Abira, Safal Paikray, Liza Sahoo, Nigam Sekahr Tripathy, Fahima Dilnawaz","doi":"10.2174/0115672018307617240514092110","DOIUrl":"https://doi.org/10.2174/0115672018307617240514092110","url":null,"abstract":"<p><p>The field of nanomedicine shows promising implications in the concurrent delivery of therapeutic and diagnostic (theranostics) compounds in a single platform. Nanotheranostics is incredibly promising since it offers simultaneous non-invasive disease detection and treatment together with the exciting ability to track drug release and distribution in real-time, thereby forecasting and evaluating the efficacy of the therapy. The cancer theranostic approach improves the cancer prognosis safely and effectively. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon- based nanoparticles, and organic dye-based nanoparticles, have demonstrated enormous potential for theranostic activity. The need for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research shortly. The developments of precision theranostic nanomaterials are employed in imaging systems like, MRI, PET, and SPECT with multifunctional ability. In this review, different nanoparticles/nanomaterials that are used/developed for theranostic activity are discussed.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}