Pub Date : 2024-03-05DOI: 10.2174/0115672018289883240226113353
Lokesh Nagar, Nisha Gulati, Annu Saini, Sachin Singh, Gaurav Gupta, Ronan MacLoughlin, Dinesh Kumar Chellappan, Kamal Dua, Harish Dureja
Chronic Obstructive Pulmonary Disease (COPD), a chronic lung disease that causes breathing difficulties and obstructs airflow from the lungs, has a significant global health burden and affects millions of people worldwide. The use of pharmaceuticals in COPD treatment is aimed to alleviate symptoms, improve lung function, prevent exacerbations, and enhance the overall quality of life for patients. Nanotechnology holds great promise to alleviate the burden of COPD. The main goal of this review is to present the full spectrum of therapeutics based on nanostructures for the treatment and management of COPD, including nanoparticles, polymeric nanoparticles, polymeric micelles, solid-lipid nanoparticles, liposomes, exosomes, nanoemulsions, nanosuspensions, and niosomes. Nanotechnology is just one of the many areas of research that may contribute to the development of more effective and personalized treatment modalities for COPD patients in the future. Future studies may be focused on enhancing the therapeutic effectiveness of nanocarriers by conducting extensive mechanistic investigations to translate current scientific knowledge for the effective management of COPD with little or no adverse effects.
{"title":"Recent Trends and Applications of Nanostructure-based Drug Delivery in Alleviating Chronic Obstructive Pulmonary Disease (COPD).","authors":"Lokesh Nagar, Nisha Gulati, Annu Saini, Sachin Singh, Gaurav Gupta, Ronan MacLoughlin, Dinesh Kumar Chellappan, Kamal Dua, Harish Dureja","doi":"10.2174/0115672018289883240226113353","DOIUrl":"10.2174/0115672018289883240226113353","url":null,"abstract":"<p><p>Chronic Obstructive Pulmonary Disease (COPD), a chronic lung disease that causes breathing difficulties and obstructs airflow from the lungs, has a significant global health burden and affects millions of people worldwide. The use of pharmaceuticals in COPD treatment is aimed to alleviate symptoms, improve lung function, prevent exacerbations, and enhance the overall quality of life for patients. Nanotechnology holds great promise to alleviate the burden of COPD. The main goal of this review is to present the full spectrum of therapeutics based on nanostructures for the treatment and management of COPD, including nanoparticles, polymeric nanoparticles, polymeric micelles, solid-lipid nanoparticles, liposomes, exosomes, nanoemulsions, nanosuspensions, and niosomes. Nanotechnology is just one of the many areas of research that may contribute to the development of more effective and personalized treatment modalities for COPD patients in the future. Future studies may be focused on enhancing the therapeutic effectiveness of nanocarriers by conducting extensive mechanistic investigations to translate current scientific knowledge for the effective management of COPD with little or no adverse effects.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The intricate anatomical and physiological barriers that prohibit pharmaceuticals from entering the brain continue to provide a noteworthy hurdle to the efficient distribution of medications to brain tissues. These barriers prevent the movement of active therapeutic agents into the brain. The present manuscript aims to describe the various aspects of brain-targeted drug delivery through the nasal route. The primary transport mechanism for drug absorption from the nose to the brain is the paracellular/extracellular mechanism, which allows for rapid drug transfer. The transcellular/intracellular pathway involves the transfer across a lipoidal channel, which regulates the entry or exit of anions, organic cations, and peptides. Spectroscopy and PET (positron emission tomography) are two common methods used for assessing drug distribution. MRI (Magnetic resonance imaging) is another imaging method used to assess the efficacy of aerosol drug delivery from nose to brain. It can identify emphysema, drug-induced harm, mucus discharge, oedema, and vascular remodeling. The olfactory epithelium's position in the nasal cavity makes it difficult for drugs to reach the desired target. Bi-directional aerosol systems and tools like the "OptiNose" can help decrease extranasal particle deposition and increase particle deposition efficiency in the primary nasal pathway. Direct medicine administration from N-T-B, however, can reduce the dose administered and make it easier to attain an effective concentration at the site of activity, and it has the potential to be commercialized.
{"title":"Advances in Aerosol Formulation for Targeted Delivery of Therapeutic Agents from Nose to Brain.","authors":"Shristy Verma, Pramod Kumar Sharma, Rishabha Malviya","doi":"10.2174/0115672018285350240227073607","DOIUrl":"https://doi.org/10.2174/0115672018285350240227073607","url":null,"abstract":"<p><p>The intricate anatomical and physiological barriers that prohibit pharmaceuticals from entering the brain continue to provide a noteworthy hurdle to the efficient distribution of medications to brain tissues. These barriers prevent the movement of active therapeutic agents into the brain. The present manuscript aims to describe the various aspects of brain-targeted drug delivery through the nasal route. The primary transport mechanism for drug absorption from the nose to the brain is the paracellular/extracellular mechanism, which allows for rapid drug transfer. The transcellular/intracellular pathway involves the transfer across a lipoidal channel, which regulates the entry or exit of anions, organic cations, and peptides. Spectroscopy and PET (positron emission tomography) are two common methods used for assessing drug distribution. MRI (Magnetic resonance imaging) is another imaging method used to assess the efficacy of aerosol drug delivery from nose to brain. It can identify emphysema, drug-induced harm, mucus discharge, oedema, and vascular remodeling. The olfactory epithelium's position in the nasal cavity makes it difficult for drugs to reach the desired target. Bi-directional aerosol systems and tools like the \"OptiNose\" can help decrease extranasal particle deposition and increase particle deposition efficiency in the primary nasal pathway. Direct medicine administration from N-T-B, however, can reduce the dose administered and make it easier to attain an effective concentration at the site of activity, and it has the potential to be commercialized.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.2174/0115672018282264240218034853
Asha Raghav, Meenakshi Attri, Hema Chaudhary
Phytoconstituents have been widely used since ancient times to form a complex with phospholipids due to their various therapeutic actions. Despite having strong pharmacodynamic efficiency, numerous phytoconstituents have shown lower in vivo bioavailability and few adverse effects. Phytochemicals soluble in water exhibit poor absorption, leading to a limited therapeutic impact. Phytosome nanotechnology overcomes this limitation by creating a bound of phytochemicals with phospholipids. This method exhibits improved absorption because phytosomes inhibit significant herbal extract components from being degraded by gastric juices and gut flora. This improves bioavailability, increases clinical benefit, and ensures delivery to tissues without compromising nutritional stability. This review also aims to highlight those vesicular systems that could be used in phytosome technology. Additionally, this review highlights the preparation, advantage, characterization, applications, and recent development of phytosome and ethosome with a list of recent patents and marketed formulations and their uses.
{"title":"Review of Phytosomes and Ethosomes: Groundbreaking Approaches for Delivering the Phytochemical Components of Plants.","authors":"Asha Raghav, Meenakshi Attri, Hema Chaudhary","doi":"10.2174/0115672018282264240218034853","DOIUrl":"https://doi.org/10.2174/0115672018282264240218034853","url":null,"abstract":"<p><p>Phytoconstituents have been widely used since ancient times to form a complex with phospholipids due to their various therapeutic actions. Despite having strong pharmacodynamic efficiency, numerous phytoconstituents have shown lower in vivo bioavailability and few adverse effects. Phytochemicals soluble in water exhibit poor absorption, leading to a limited therapeutic impact. Phytosome nanotechnology overcomes this limitation by creating a bound of phytochemicals with phospholipids. This method exhibits improved absorption because phytosomes inhibit significant herbal extract components from being degraded by gastric juices and gut flora. This improves bioavailability, increases clinical benefit, and ensures delivery to tissues without compromising nutritional stability. This review also aims to highlight those vesicular systems that could be used in phytosome technology. Additionally, this review highlights the preparation, advantage, characterization, applications, and recent development of phytosome and ethosome with a list of recent patents and marketed formulations and their uses.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.2174/0115672018286563240223072702
Mengqi Yi, Yangxin Lin, Yuyang Li, Bei Xiong, Yunhan Huang, Wei Guo, Bo Lu
Background: The clinical efficiency of photodynamic therapy (PDT) in combination with chemotherapy has proven to be a promising strategy for tumor treatment, yet is restricted by the high glutathione (GSH) concentration at the tumor site and nonspecific drug targeting.
Objective: The goal of the current research was to create a biocompatible GSH-depleting and tumor- targeting nanoparticle (denoted as DOX/CA@PCN-224@HA) for the combined photodynamic and chemo photo-chemo) therapy.
Methods: The nanoparticles were characterized by transmission electron microscopy (TEM). A UV-vis spectrophotometer was used to measure the drug loading efficiency (DE) and encapsulation efficiency (EE). The GSH-depleting ability was measured using Ellman's test. Confocal laser scan microscopy (CLSM) was used to assess the cellular uptake. MTT was adopted to evaluate the cytotoxicity of DOX/CA@PCN-224@HA against 4T1 cells.
Results: The altered PCN-224 showed excellent monodispersing with a dimension of approximately 193 nm ± 2 nm in length and 79 nm ± 3 nm in width. The larger and spindle grid-like structure of PCN-224 obtains better dual-drug loading ability (DOX: 20.58% ± 2.60%, CA: 21.81% ± 1.98%) compared with other spherical PCN-224 nanoparticles. The ultimate cumulative drug release rates with hyaluronidase (HAase) were 74% ± 1% (DOX) and 45% ± 2% (CA) after 72 h. DOX/CA@PCN-224@HA showed GSH-consuming capability, which could improve the PDT effect. The drug-loaded nanoparticles could accurately target 4T1 cells through biological evaluations. Moreover, the released DOX and CA display cooperative effects on 4T1 cells in vitro. DOX/CA@PCN-224@HA nanoparticles showed inhibition against 4T1 cells with an IC50 value of 2.71 μg mL-1.
Conclusion: This nanosystem displays great potential for tumor-targeted enhanced (photo-chemo) therapy.
{"title":"An Enzyme-responsive Porphyrin Metal-organic Framework Nanosystem for Targeted and Enhanced Synergistic Cancer Photo-chemo Therapy.","authors":"Mengqi Yi, Yangxin Lin, Yuyang Li, Bei Xiong, Yunhan Huang, Wei Guo, Bo Lu","doi":"10.2174/0115672018286563240223072702","DOIUrl":"https://doi.org/10.2174/0115672018286563240223072702","url":null,"abstract":"<p><strong>Background: </strong>The clinical efficiency of photodynamic therapy (PDT) in combination with chemotherapy has proven to be a promising strategy for tumor treatment, yet is restricted by the high glutathione (GSH) concentration at the tumor site and nonspecific drug targeting.</p><p><strong>Objective: </strong>The goal of the current research was to create a biocompatible GSH-depleting and tumor- targeting nanoparticle (denoted as DOX/CA@PCN-224@HA) for the combined photodynamic and chemo photo-chemo) therapy.</p><p><strong>Methods: </strong>The nanoparticles were characterized by transmission electron microscopy (TEM). A UV-vis spectrophotometer was used to measure the drug loading efficiency (DE) and encapsulation efficiency (EE). The GSH-depleting ability was measured using Ellman's test. Confocal laser scan microscopy (CLSM) was used to assess the cellular uptake. MTT was adopted to evaluate the cytotoxicity of DOX/CA@PCN-224@HA against 4T1 cells.</p><p><strong>Results: </strong>The altered PCN-224 showed excellent monodispersing with a dimension of approximately 193 nm ± 2 nm in length and 79 nm ± 3 nm in width. The larger and spindle grid-like structure of PCN-224 obtains better dual-drug loading ability (DOX: 20.58% ± 2.60%, CA: 21.81% ± 1.98%) compared with other spherical PCN-224 nanoparticles. The ultimate cumulative drug release rates with hyaluronidase (HAase) were 74% ± 1% (DOX) and 45% ± 2% (CA) after 72 h. DOX/CA@PCN-224@HA showed GSH-consuming capability, which could improve the PDT effect. The drug-loaded nanoparticles could accurately target 4T1 cells through biological evaluations. Moreover, the released DOX and CA display cooperative effects on 4T1 cells in vitro. DOX/CA@PCN-224@HA nanoparticles showed inhibition against 4T1 cells with an IC50 value of 2.71 μg mL-1.</p><p><strong>Conclusion: </strong>This nanosystem displays great potential for tumor-targeted enhanced (photo-chemo) therapy.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.
近年来,利用含有植物精油的新型给药系统作为一种前景广阔的生物医学应用方法受到了广泛关注。植物精油具有多种药用特性,如抗氧化、抗微生物、抗炎、抗癌、免疫调节等,这是因为植物精油中含有各种植物成分,包括萜烯、酚类、醛类、酮类、醇类和酯类。在考虑或在给药系统中添加精油之前,还需要了解从多种植物中提取精油(EOs)的传统和先进提取技术。因此,本文总结了各种精油提取技术及其现有的局限性。环氧乙烷的内在生物应用对于治疗多种疾病具有重要的先决条件。因此,本文进一步探讨了 EO 在抗炎、抗氧化、抗菌等方面的作用机制。将精油封装在微米或纳米系统中是一种有趣的技术,可使热敏性化合物具有足够的稳定性,并使其免受可能导致化学降解的环境因素的影响。因此,这篇文章进一步总结了使用环氧乙烷的先进给药方法,以及环氧乙烷在未来生物医学应用前景中面临的挑战。
{"title":"Current Progress and Emerging Role of Essential Oils in Drug Delivery Therapeutics.","authors":"Rokeya Sultana, Sourav Mohanto, Adrija Bhunia, Aritra Biswas, Mohammad Shabib Akhtar, Vijay Mishra, Dimple Modi, Alaa Aa Aljabali, Murtaza Tambuwala, Md Faiyazuddin","doi":"10.2174/0115672018287719240214075810","DOIUrl":"https://doi.org/10.2174/0115672018287719240214075810","url":null,"abstract":"<p><p>The utilization of novel drug delivery systems loaded with essential oils has gained significant attention as a promising approach for biomedical applications in recent years. Plants possess essential oils that exhibit various medicinal properties, i.e., anti-oxidant, anti-microbial, anti- inflammatory, anti-cancer, immunomodulatory, etc., due to the presence of various phytoconstituents, including terpenes, phenols, aldehydes, ketones, alcohols, and esters. An understanding of conventional and advanced extraction techniques of Essential Oils (EOs) from several plant sources is further required before considering or loading EOs into drug delivery systems. Therefore, this article summarizes the various extraction techniques of EOs and their existing limitations. The in-built biological applications of EOs are of prerequisite importance for treating several diseases. Thus, the mechanisms of action of EOs for anti-inflammatory, anti-oxidant, anti-bacterial activities, etc., have been further explored in this article. The encapsulation of essential oils in micro or nanometric systems is an intriguing technique to render adequate stability to the thermosensitive compounds and shield them against environmental factors that might cause chemical degradation. Thus, the article further summarizes the advanced drug delivery approaches loaded with EOs and current challenges in the future outlook of EOs for biomedical applications.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139975338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.2174/0115672018295038240209055444
Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma
A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods etc. However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-to-day use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery via transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.
{"title":"Transfersomes: Recent Advances, Mechanisms, Exhaustive Applications, Clinical Trials, and Patents","authors":"Deeksha Manchanda, Manish Makhija, Parijat Pandey, Manu Sharma","doi":"10.2174/0115672018295038240209055444","DOIUrl":"10.2174/0115672018295038240209055444","url":null,"abstract":"<p><p>A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods etc. However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-to-day use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery via transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.2174/0115672018265986240209064358
Sara Ahmed, Mai Mansour, Rania A H Ishak, Nahed D Mortada
Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been withdrawn of the journal "Current Drug Delivery".
Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.
The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php
Bentham science disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.
探讨不同的制剂方法,每种方法都旨在改善白藜芦醇(RES)在治疗多种肺部疾病方面的临床应用。强调在肺部疾病的不同临床应用中使用基于白藜芦醇的给药系统的合理性。白藜芦醇(RES)是一种著名的天然多酚类芪类化合物,因其具有抗炎、抗氧化、抗细胞凋亡、抗病毒和抗癌活性,在治疗各种肺部疾病方面具有巨大潜力。由于白藜芦醇的水溶性、生物利用度和稳定性较低,而且光敏性较高,其理化特性限制了白藜芦醇的有益活动。随着人们对白藜芦醇治疗肺部疾病的有效性认识的不断深入,需要尝试并推进白藜芦醇制剂的发展,以提高其在医药应用中的参与度。本综述讨论了 RES 在治疗多种肺部疾病中的作用。首次严格介绍了不同的方法和策略,以规避其局限性,并通过各种途径将其应用于临床,治疗各种呼吸系统疾病。
{"title":"WITHDRAWN: Resveratrol-based Delivery Systems as Contemporary Nominees for Combating Pulmonary Diseases: A Comprehensive Review","authors":"Sara Ahmed, Mai Mansour, Rania A H Ishak, Nahed D Mortada","doi":"10.2174/0115672018265986240209064358","DOIUrl":"10.2174/0115672018265986240209064358","url":null,"abstract":"<p><p>Since the authors are not responding to the editor’s requests to fulfill the editorial requirement, therefore, the article has been withdrawn of the journal \"Current Drug Delivery\".</p><p><p>Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.</p><p><p>The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php</p><p><strong>Bentham science disclaimer: </strong>It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.2174/0115672018271502231226113423
Flowerlet Mathew, A Mary Saral
Objective: This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan.
Methods: In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters.
Results: X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model.
Conclusion: Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.
{"title":"Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers.","authors":"Flowerlet Mathew, A Mary Saral","doi":"10.2174/0115672018271502231226113423","DOIUrl":"https://doi.org/10.2174/0115672018271502231226113423","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan.</p><p><strong>Methods: </strong>In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters.</p><p><strong>Results: </strong>X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model.</p><p><strong>Conclusion: </strong>Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-30DOI: 10.2174/0115672018290111240119115306
Soumya Ranjan Satapathy, Rudra Narayan Sahoo, Amit Kumar Nayak
Pharmaceutical grade sugars manufactured under Current Good Manufacturing Practice (cGMP) and complied with International Pharmaceutical Excipients Council (IPEC) quality standards, also contain a significant amount of nano-particulate impurities (NPIs). This review will focus on the origin of NPIs, the mechanism of their interference with Dynamic light scattering (DLS) and endotoxin tests, filtration technology to effectively reduce the NPIs, methodologies for analytical quantification of NPIs, guidance for setting the limits of threshold concentration and the overall impact of NPIs on the therapeutic activity, performance, stability of biopharmaceuticals and protein-based formulations. NPIs with an average particle size of 100 to 200 nm are present in sugars and are a combination of various chemicals such as dextrans (with the presence of β-glucans), ash, inorganic metal salts, aromatic colorants, etc. These NPIs primarily originate from raw materials and cannot be removed during the sugar refinement process. While it is commonly believed that filtering the final formulation with a 0.22 μ sterilizing grade filter removes all microbes and particles, it is important to note that NPIs cannot be filtered using this standard sterile filtration technology. Exceeding the threshold limit of NPIs can have detrimental effects on formulations containing proteins, monoclonal Antibodies (mAbs), nucleic acids, and other biopharmaceuticals. NPIs and β-glucans have a critical impact on the functionality and therapeutic activity of biomolecules and if present below the threshold limit of reaction, stability and shelf-life of biologics formulation will be greatly improved and the risk of immunogenic reactions must be significantly decreased.
{"title":"Influence of Nano-Particulate Impurities and β-glucans on the Stability of Protein-Based Formulations.","authors":"Soumya Ranjan Satapathy, Rudra Narayan Sahoo, Amit Kumar Nayak","doi":"10.2174/0115672018290111240119115306","DOIUrl":"https://doi.org/10.2174/0115672018290111240119115306","url":null,"abstract":"<p><p>Pharmaceutical grade sugars manufactured under Current Good Manufacturing Practice (cGMP) and complied with International Pharmaceutical Excipients Council (IPEC) quality standards, also contain a significant amount of nano-particulate impurities (NPIs). This review will focus on the origin of NPIs, the mechanism of their interference with Dynamic light scattering (DLS) and endotoxin tests, filtration technology to effectively reduce the NPIs, methodologies for analytical quantification of NPIs, guidance for setting the limits of threshold concentration and the overall impact of NPIs on the therapeutic activity, performance, stability of biopharmaceuticals and protein-based formulations. NPIs with an average particle size of 100 to 200 nm are present in sugars and are a combination of various chemicals such as dextrans (with the presence of β-glucans), ash, inorganic metal salts, aromatic colorants, etc. These NPIs primarily originate from raw materials and cannot be removed during the sugar refinement process. While it is commonly believed that filtering the final formulation with a 0.22 μ sterilizing grade filter removes all microbes and particles, it is important to note that NPIs cannot be filtered using this standard sterile filtration technology. Exceeding the threshold limit of NPIs can have detrimental effects on formulations containing proteins, monoclonal Antibodies (mAbs), nucleic acids, and other biopharmaceuticals. NPIs and β-glucans have a critical impact on the functionality and therapeutic activity of biomolecules and if present below the threshold limit of reaction, stability and shelf-life of biologics formulation will be greatly improved and the risk of immunogenic reactions must be significantly decreased.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.
{"title":"Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration.","authors":"Badarinadh Kallepalli, Unnati Garg, Neha Jain, Rohan Nagpal, Sakshi Malhotra, Triveni Tiwari, Shreya Kaul, Upendra Nagaich","doi":"10.2174/0115672018278641231221051359","DOIUrl":"https://doi.org/10.2174/0115672018278641231221051359","url":null,"abstract":"<p><p>In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}