首页 > 最新文献

Current drug delivery最新文献

英文 中文
A Comprehensive Analysis of Liposomal-Based Nanocarriers for Treating Skin and Soft Tissue Infection. 全面分析用于治疗皮肤和软组织感染的脂质体纳米载体
Pub Date : 2024-08-12 DOI: 10.2174/0115672018328954240801110200
Dyala M Khasawneh, Rami J Oweis, Mo'tasem Alsmadi

Bacterial skin and soft tissue infections (SSTIs) are widespread microbic invasions of the skin and deeper tissues. Topical drug delivery systems are the most favored administration pathway when treating SSTIs. This is down to their minimal risk of inducing systemic adverse events, reduced development of bacterial resistance, and ease of application. However, they have several drawbacks, including the lack of control over the drug release profile, skin irritations, and the limited permeability of certain compounds through the skin. To address these limitations, several nanocarrier systems were developed, with nanoliposomes standing out as the leading delivery system for the topical management of SSTIs. Despite considerable research into liposomes over the past decade, there remains a gap in detailed knowledge about designing these carriers specifically for SSTIs. Consequently, there is a pressing need for comprehensive research that focuses on the use of nanoliposomes for SSTIs and offers an extensive understanding of both SSTIs and liposomal formulations. This review explores bacterial SSTIs, covering their epidemiology, classification, microbiology, and management. It emphasizes the contribution of liposome-based nanovesicles in enhancing the local administration of antibiotics and natural antibacterial compounds for SSTI management. It also delves into the effects of liposomal formulation changes on the disease therapeutic outcomes. Additionally, it provides a guide for aligning the characteristics of the liposomes with the infection types, depths, properties, and causative agents. This signifies a substantial leap forward in the domains of drug design, development, and delivery.

细菌性皮肤和软组织感染(SSTI)是皮肤和深层组织的广泛微生物入侵。局部给药系统是治疗 SSTI 最受欢迎的给药途径。这是因为外用给药系统诱发全身性不良反应的风险极低,可减少细菌耐药性的产生,而且易于使用。然而,它们也有一些缺点,包括对药物释放曲线缺乏控制、皮肤刺激以及某些化合物在皮肤中的渗透性有限。为了解决这些局限性,人们开发了几种纳米载体系统,其中纳米脂质体是用于局部治疗 SSTI 的主要给药系统。尽管在过去十年中对脂质体进行了大量研究,但在设计这些专门用于 SSTI 的载体的详细知识方面仍然存在差距。因此,我们迫切需要开展全面的研究,重点关注纳米脂质体在治疗 SSTI 方面的应用,并广泛了解 SSTI 和脂质体制剂。本综述探讨了细菌性 SSTI,涵盖其流行病学、分类、微生物学和管理。它强调了基于脂质体的纳米颗粒在加强局部给药抗生素和天然抗菌化合物以治疗 SSTI 方面的贡献。报告还深入探讨了脂质体配方变化对疾病治疗效果的影响。此外,它还提供了将脂质体的特性与感染类型、深度、性质和致病因子相匹配的指南。这标志着药物设计、开发和递送领域的重大飞跃。
{"title":"A Comprehensive Analysis of Liposomal-Based Nanocarriers for Treating Skin and Soft Tissue Infection.","authors":"Dyala M Khasawneh, Rami J Oweis, Mo'tasem Alsmadi","doi":"10.2174/0115672018328954240801110200","DOIUrl":"https://doi.org/10.2174/0115672018328954240801110200","url":null,"abstract":"<p><p>Bacterial skin and soft tissue infections (SSTIs) are widespread microbic invasions of the skin and deeper tissues. Topical drug delivery systems are the most favored administration pathway when treating SSTIs. This is down to their minimal risk of inducing systemic adverse events, reduced development of bacterial resistance, and ease of application. However, they have several drawbacks, including the lack of control over the drug release profile, skin irritations, and the limited permeability of certain compounds through the skin. To address these limitations, several nanocarrier systems were developed, with nanoliposomes standing out as the leading delivery system for the topical management of SSTIs. Despite considerable research into liposomes over the past decade, there remains a gap in detailed knowledge about designing these carriers specifically for SSTIs. Consequently, there is a pressing need for comprehensive research that focuses on the use of nanoliposomes for SSTIs and offers an extensive understanding of both SSTIs and liposomal formulations. This review explores bacterial SSTIs, covering their epidemiology, classification, microbiology, and management. It emphasizes the contribution of liposome-based nanovesicles in enhancing the local administration of antibiotics and natural antibacterial compounds for SSTI management. It also delves into the effects of liposomal formulation changes on the disease therapeutic outcomes. Additionally, it provides a guide for aligning the characteristics of the liposomes with the infection types, depths, properties, and causative agents. This signifies a substantial leap forward in the domains of drug design, development, and delivery.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capecitabine-loaded NLC for Breast Cancer Treatment: Preparation, Characterization, and In vitro Evaluation. 用于乳腺癌治疗的卡培他滨负载 NLC:制备、表征和体外评估。
Pub Date : 2024-07-29 DOI: 10.2174/0115672018309370240708113038
Muhammad Hadi Sultan, Yosif Almoshari, Syam Mohan, Mohamed Ahmed Al-Kasim, Hamad S Alyami, Mohammad Azam Ansari, Mohammad Intakhab Alam

Background: Cancer treatment often involves the use of potent antineoplastic drugs like Capecitabine [CAP], which can lead to serious toxicities. There is a need for dosage forms to manage these toxicities that can deliver the medication effectively to the target site while maintaining therapeutic efficacy at lower doses. To achieve the aforesaid objective, NLC containing capecitabine [NANOBIN] was prepared and evaluated. Different formulations of NANOBIN, denoted as CaTS, CaT1S, CaT2S, CaTS1, and CaTS2, were designed and evaluated to improve drug delivery and therapeutic outcomes.

Methods: The NANOBIN formulations were prepared using the hot homogenization method. The characterization of these formulations was conducted based on various parameters such as particle size, Polydispersity Index [PDI], Zeta Potential [ZP], Transmission Electron Microscopy [TEM] imaging, and Encapsulation Efficiency [EE]. In vitro evaluations included stability testing, release studies to assess drug release kinetics, and a cytotoxicity assay [MTT assay] to evaluate the efficacy of these formulations against human breast cancer cells [MCF-7].

Results: The characterization results revealed that all NANOBIN formulations exhibited particle sizes ranging from 65 to 193 nm, PDI values within the range of 0.26-0.37, ZP values between 46.47 to 61.87 mV [-ve], and high EE percentages ranging from 94.121% to 96.64%. Furthermore, all NANOBIN formulations demonstrated sustained and slow-release profiles of CAP. The MTT assay showed that the NANOBINs exhibited significantly enhanced cytotoxic efficacy, approximately 10 times greater than free CAP when tested on MCF-7 cells. These findings indicate the potential of NANOBINs to deliver CAP effectively to the target site, enabling prolonged drug availability and enhanced therapeutic effects at lower doses.

Conclusion: The study demonstrates that NANOBINs can effectively deliver CAP to target sites, prolonging drug exposure and enhancing therapeutic efficacy while reducing the required dose. Further studies are necessary to validate these findings and establish NANOBINs as a preferred treatment option for cancer therapy.

背景:癌症治疗通常需要使用卡培他滨[CAP]等强效抗肿瘤药物,这可能会导致严重的毒性反应。因此需要一种剂型来控制这些毒性,既能有效地将药物输送到靶点,又能在较低剂量下保持疗效。为了实现上述目标,我们制备并评估了含有卡培他滨的 NLC [NANOBIN]。设计并评估了 NANOBIN 的不同配方,分别称为 CaTS、CaT1S、CaT2S、CaTS1 和 CaTS2,以改善药物输送和治疗效果:方法:采用热均质法制备 NANOBIN 制剂。这些制剂的表征基于各种参数,如粒度、多分散指数(PDI)、Zeta 电位(ZP)、透射电子显微镜(TEM)成像和包封效率(EE)。体外评估包括稳定性测试、评估药物释放动力学的释放研究,以及评估这些制剂对人类乳腺癌细胞 MCF-7 的疗效的细胞毒性试验[MTT 试验]:表征结果显示,所有 NANOBIN 制剂的粒径范围为 65 至 193 nm,PDI 值在 0.26 至 0.37 之间,ZP 值在 46.47 至 61.87 mV [-ve] 之间,EE 百分比在 94.121% 至 96.64% 之间。此外,所有 NANOBIN 制剂都显示出 CAP 的持续缓释特性。MTT 试验表明,NANOBINs 的细胞毒性功效明显增强,在 MCF-7 细胞上测试时,其细胞毒性大约是游离 CAP 的 10 倍。这些研究结果表明,NANOBINs 有潜力将 CAP 有效递送至靶点,从而延长药物的可用性,并以较低的剂量提高治疗效果:该研究表明,NANOBINs 能有效地将 CAP 送达靶点,延长药物暴露时间,提高疗效,同时降低所需剂量。有必要开展进一步的研究来验证这些发现,并将 NANOBINs 确立为癌症治疗的首选治疗方案。
{"title":"Capecitabine-loaded NLC for Breast Cancer Treatment: Preparation, Characterization, and In vitro Evaluation.","authors":"Muhammad Hadi Sultan, Yosif Almoshari, Syam Mohan, Mohamed Ahmed Al-Kasim, Hamad S Alyami, Mohammad Azam Ansari, Mohammad Intakhab Alam","doi":"10.2174/0115672018309370240708113038","DOIUrl":"10.2174/0115672018309370240708113038","url":null,"abstract":"<p><strong>Background: </strong>Cancer treatment often involves the use of potent antineoplastic drugs like Capecitabine [CAP], which can lead to serious toxicities. There is a need for dosage forms to manage these toxicities that can deliver the medication effectively to the target site while maintaining therapeutic efficacy at lower doses. To achieve the aforesaid objective, NLC containing capecitabine [NANOBIN] was prepared and evaluated. Different formulations of NANOBIN, denoted as CaTS, CaT1S, CaT2S, CaTS1, and CaTS2, were designed and evaluated to improve drug delivery and therapeutic outcomes.</p><p><strong>Methods: </strong>The NANOBIN formulations were prepared using the hot homogenization method. The characterization of these formulations was conducted based on various parameters such as particle size, Polydispersity Index [PDI], Zeta Potential [ZP], Transmission Electron Microscopy [TEM] imaging, and Encapsulation Efficiency [EE]. In vitro evaluations included stability testing, release studies to assess drug release kinetics, and a cytotoxicity assay [MTT assay] to evaluate the efficacy of these formulations against human breast cancer cells [MCF-7].</p><p><strong>Results: </strong>The characterization results revealed that all NANOBIN formulations exhibited particle sizes ranging from 65 to 193 nm, PDI values within the range of 0.26-0.37, ZP values between 46.47 to 61.87 mV [-ve], and high EE percentages ranging from 94.121% to 96.64%. Furthermore, all NANOBIN formulations demonstrated sustained and slow-release profiles of CAP. The MTT assay showed that the NANOBINs exhibited significantly enhanced cytotoxic efficacy, approximately 10 times greater than free CAP when tested on MCF-7 cells. These findings indicate the potential of NANOBINs to deliver CAP effectively to the target site, enabling prolonged drug availability and enhanced therapeutic effects at lower doses.</p><p><strong>Conclusion: </strong>The study demonstrates that NANOBINs can effectively deliver CAP to target sites, prolonging drug exposure and enhancing therapeutic efficacy while reducing the required dose. Further studies are necessary to validate these findings and establish NANOBINs as a preferred treatment option for cancer therapy.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141794474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Iron Deficiency Anaemia Management: Exploring Novel Drug Delivery Systems and Future Perspectives. 缺铁性贫血管理的进展:探索新型给药系统和未来展望》。
Pub Date : 2024-07-25 DOI: 10.2174/0115672018300804240426070552
Muskan Saini, Karan Trehan, Shubham Thakur, Anuj Modi, Subheet Kumar Jain

Iron Deficiency Anaemia (IDA) is a prevalent global health issue characterized by inadequate iron levels in the body, leading to impaired red blood cell production and subsequent anaemia. Traditional treatment approaches for IDA, such as oral iron supplementation, often encounter challenges related to poor compliance, gastrointestinal side effects, and variable absorption rates. As a result, there is a growing interest in exploring novel drug delivery systems to enhance iron therapy efficacy and patient outcomes. This review discusses recent advances in IDA management, focusing on developing and utilizing innovative drug delivery systems for iron supplementation. Various strategies, including nanoformulations, microparticles, liposomes, and hydrogels, are explored for their potential to improve iron bioavailability, reduce adverse effects, and optimize therapeutic outcomes. Furthermore, promising strategies for the future management of IDA are explored, including the utilization of advanced technologies such as targeted drug delivery systems, controlled release mechanisms, and combination therapies. The integration of these novel drug delivery systems with advancements in diagnostics, personalized medicine, and patient-centered care holds great potential to revolutionize the management of IDA and improve the quality of life for individuals affected by this condition.

缺铁性贫血(IDA)是全球普遍存在的健康问题,其特点是体内铁含量不足,导致红细胞生成障碍,进而引发贫血。传统的 IDA 治疗方法(如口服铁质补充剂)经常遇到依从性差、胃肠道副作用和吸收率不稳定等难题。因此,人们对探索新型给药系统以提高铁治疗效果和患者预后的兴趣与日俱增。本综述讨论了 IDA 治疗的最新进展,重点是开发和利用创新的给药系统来补充铁剂。文中探讨了各种策略,包括纳米制剂、微颗粒、脂质体和水凝胶,以了解它们在提高铁的生物利用度、减少不良反应和优化治疗效果方面的潜力。此外,还探讨了未来治疗 IDA 的可行策略,包括利用靶向给药系统、控释机制和联合疗法等先进技术。将这些新型给药系统与诊断、个性化医疗和以患者为中心的护理等方面的进步相结合,有望彻底改变 IDA 的治疗方法,并提高受此疾病影响的患者的生活质量。
{"title":"Advances in Iron Deficiency Anaemia Management: Exploring Novel Drug Delivery Systems and Future Perspectives.","authors":"Muskan Saini, Karan Trehan, Shubham Thakur, Anuj Modi, Subheet Kumar Jain","doi":"10.2174/0115672018300804240426070552","DOIUrl":"https://doi.org/10.2174/0115672018300804240426070552","url":null,"abstract":"<p><p>Iron Deficiency Anaemia (IDA) is a prevalent global health issue characterized by inadequate iron levels in the body, leading to impaired red blood cell production and subsequent anaemia. Traditional treatment approaches for IDA, such as oral iron supplementation, often encounter challenges related to poor compliance, gastrointestinal side effects, and variable absorption rates. As a result, there is a growing interest in exploring novel drug delivery systems to enhance iron therapy efficacy and patient outcomes. This review discusses recent advances in IDA management, focusing on developing and utilizing innovative drug delivery systems for iron supplementation. Various strategies, including nanoformulations, microparticles, liposomes, and hydrogels, are explored for their potential to improve iron bioavailability, reduce adverse effects, and optimize therapeutic outcomes. Furthermore, promising strategies for the future management of IDA are explored, including the utilization of advanced technologies such as targeted drug delivery systems, controlled release mechanisms, and combination therapies. The integration of these novel drug delivery systems with advancements in diagnostics, personalized medicine, and patient-centered care holds great potential to revolutionize the management of IDA and improve the quality of life for individuals affected by this condition.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction-Responsive Polyprodrug Nanoplatform Based on Curcumin for Tumor-Targeted Therapy. 基于姜黄素的还原反应性多药纳米平台用于肿瘤靶向治疗
Pub Date : 2024-07-24 DOI: 10.2174/0115672018314506240723080113
Ziyi Zhang, Jinyuan Tian, Xiaoqing Xu, Wei Shi, Yajuan Qi, Zhanjun Liu

Introduction: Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.

Objective: This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.

Methods: The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.

Results: The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug-carrying capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug-carrying capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (P< 0.05) in vivo and in vitro and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.

Conclusion: The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.

导言:聚合物原药纳米颗粒因其高载药量而成为癌症治疗中一种新兴的给药系统。然而,其药物释放性差和缺乏肿瘤细胞靶向性限制了其临床应用:本研究旨在制备基于姜黄素(CUR)的靶向性还原反应聚药纳米载体,用于联合递送多柔比星(DOX),标记为 DOX/HAPCS NPs,并研究其抗癌活性:方法:采用化学方法合成并表征了聚合物。方法:采用化学方法合成了聚合物并对其进行了表征,测定了聚合物纳米颗粒中 DOX 和 CUR 的载药量和药物释放行为。此外,还利用 MTT 实验和肿瘤抑制实验评估了聚合物纳米颗粒的抗肿瘤效果,并探讨了 DOX 和 CUR 共给药的协同效应:结果:DOX/HAPCS NPs的粒径为152.5nm,电位约为-26.74 mV。DOX和CUR的载药量分别约为7.56%和34.75%,显示出较高的载药量和良好的稳定性。DOX和CUR在肿瘤环境中24小时内的释放率超过90%。与游离 DOX 相比,DOX/HAPCS NPs 在体内和体外对细胞和肿瘤的抑制作用明显增强(P< 0.05),并改变了药物分布,避免了对正常组织的毒副作用。综合指标显示,DOX 和 CUR 在一定比例下具有协同抗癌作用:制备的还原响应靶向聚合物纳米药物 DOX/HAPCS NPs 具有协同抗癌作用,载药量大,能按比例释放药物,是一种很有前景的聚合物纳米颗粒给药系统。
{"title":"Reduction-Responsive Polyprodrug Nanoplatform Based on Curcumin for Tumor-Targeted Therapy.","authors":"Ziyi Zhang, Jinyuan Tian, Xiaoqing Xu, Wei Shi, Yajuan Qi, Zhanjun Liu","doi":"10.2174/0115672018314506240723080113","DOIUrl":"https://doi.org/10.2174/0115672018314506240723080113","url":null,"abstract":"<p><strong>Introduction: </strong>Polymer prodrug nanoparticles have become an emerging drug delivery system in cancer therapy due to their high drug loading. However, their poor drug release and lack of tumor cell targeting limit their clinical application.</p><p><strong>Objective: </strong>This study aimed to prepare targeted and reduction-reactive polyprodrug nanocarriers based on curcumin (CUR) for co-delivery of doxorubicin (DOX), labeled as DOX/HAPCS NPs, and to investigate their anticancer activity.</p><p><strong>Methods: </strong>The polymer was synthesized and characterized by chemical method. The drug loading and drug release behavior of DOX and CUR in polymer nanoparticles were determined. Moreover, the antitumor effects of polymer nanoparticles were evaluated using an MTT experiment and tumor inhibition experiment, and the synergistic effect of co-delivered DOX and CUR was explored.</p><p><strong>Results: </strong>The particle size of DOX/HAPCS NPs was 152.5nm, and the potential was about -26.74 mV. The drug-carrying capacity of DOX and CUR was about 7.56% and 34.75%, respectively, indicating high drug-carrying capacity and good stability. DOX and CUR released over 90% within 24 hours in the tumor environment. Compared with free DOX, DOX/HAPCS NPs demonstrated significantly enhanced cell and tumor inhibitory effects (P&#60; 0.05) in vivo and in vitro and changed drug distribution to avoid toxic side effects on normal tissues. The combined index showed that DOX and CUR showed synergistic anticancer effects at a set ratio.</p><p><strong>Conclusion: </strong>The prepared reduction-responsive targeted polymer nanomedical DOX/HAPCS NPs exhibited a synergistic anti-cancer effect, with high drug loading capacity and the ability to release drugs in proportion, making it a promising polymer nanoparticle drug delivery system.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginger Extract-Loaded Chitosan Nanoparticles: Investigating their Impact on Lipid Metabolism and Obesity in a Rat Model through In vitro and In vivo Analysis. 生姜提取物负载壳聚糖纳米颗粒:通过体内外分析研究其对大鼠模型脂质代谢和肥胖的影响
Pub Date : 2024-07-18 DOI: 10.2174/0115672018315676240715065750
Rui Gao, Qunbin Fan, Saeed Rohani

Introduction: Obesity has become a pressing global health crisis, reaching alarming proportions and bearing significant consequences for public health on a global scale.

Aim: In this research, chitosan nanoparticles were employed to encapsulate ginger extract, and the impact of this formulation on lipid metabolism and obesity was investigated using a rat model.

Methods: In vitro experiments, encompassing assessments of cell viability, microstructure, anti-inflammatory activity, and release dynamics, were conducted to comprehensively evaluate the nanoformulation. The study extended to examining the potential anti-obesity efficacy of the developed nanoformulation in rats induced with obesity through a high-fat diet.

Results: In vitro findings affirmed the safety of the carriers and revealed their robust anti-inflammatory properties. The average particle size for ginger-loaded and ginger-free chitosan nanoparticles was measured to be 458.92 ± 139.35 nm and 466.29 ± 142.71 nm, respectively. The in vivo investigation demonstrated the dose-dependent effects of ginger extract-loaded chitosan nanoparticles, manifesting in a reduction of obesity and improvement in liver function.

Conclusion: These promising results suggest that the developed nanoformulation could be considered a viable therapeutic option for individuals struggling with obesity.

简介:肥胖症已成为紧迫的全球健康危机,达到了令人震惊的程度,对全球公共卫生造成了重大影响:目的:本研究采用壳聚糖纳米颗粒封装生姜提取物,并利用大鼠模型研究了该制剂对脂质代谢和肥胖的影响:方法:进行了体外实验,包括评估细胞活力、微观结构、抗炎活性和释放动力学,以全面评估纳米制剂。研究还扩展到通过高脂肪饮食诱发肥胖的大鼠身上,检测所开发的纳米制剂潜在的抗肥胖功效:结果:体外研究结果证实了载体的安全性,并揭示了其强大的抗炎特性。经测量,含生姜和不含生姜的壳聚糖纳米粒子的平均粒径分别为 458.92 ± 139.35 nm 和 466.29 ± 142.71 nm。体内研究表明,生姜提取物载体壳聚糖纳米粒子具有剂量依赖性效应,可减轻肥胖和改善肝功能:这些令人鼓舞的结果表明,所开发的纳米制剂可被视为肥胖症患者的一种可行的治疗选择。
{"title":"Ginger Extract-Loaded Chitosan Nanoparticles: Investigating their Impact on Lipid Metabolism and Obesity in a Rat Model through In vitro and In vivo Analysis.","authors":"Rui Gao, Qunbin Fan, Saeed Rohani","doi":"10.2174/0115672018315676240715065750","DOIUrl":"https://doi.org/10.2174/0115672018315676240715065750","url":null,"abstract":"<p><strong>Introduction: </strong>Obesity has become a pressing global health crisis, reaching alarming proportions and bearing significant consequences for public health on a global scale.</p><p><strong>Aim: </strong>In this research, chitosan nanoparticles were employed to encapsulate ginger extract, and the impact of this formulation on lipid metabolism and obesity was investigated using a rat model.</p><p><strong>Methods: </strong>In vitro experiments, encompassing assessments of cell viability, microstructure, anti-inflammatory activity, and release dynamics, were conducted to comprehensively evaluate the nanoformulation. The study extended to examining the potential anti-obesity efficacy of the developed nanoformulation in rats induced with obesity through a high-fat diet.</p><p><strong>Results: </strong>In vitro findings affirmed the safety of the carriers and revealed their robust anti-inflammatory properties. The average particle size for ginger-loaded and ginger-free chitosan nanoparticles was measured to be 458.92 ± 139.35 nm and 466.29 ± 142.71 nm, respectively. The in vivo investigation demonstrated the dose-dependent effects of ginger extract-loaded chitosan nanoparticles, manifesting in a reduction of obesity and improvement in liver function.</p><p><strong>Conclusion: </strong>These promising results suggest that the developed nanoformulation could be considered a viable therapeutic option for individuals struggling with obesity.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microneedles: An Efficient Technique to Increase Transdermal Drug Delivery System. 微针:增加透皮给药系统的有效技术。
Pub Date : 2024-07-18 DOI: 10.2174/0115672018301931240624072453
Sanjit Kr Roy, Kazi Asraf Ali, Mahua Biswas, Abhijit Dey, Amlan Bishal, Abhradeep Kuiry

Transdermal Drug Delivery Systems (TDDS) have gained attention as a viable substitute for traditional drug administration methods because of their controlled release capabilities and non-invasive design. Microneedles are a new and effective technology that has attracted a lot of attention recently to enhance the capabilities of TDDS further. The study on microneedles and their potential to improve transdermal medication delivery is thoroughly reviewed in this review article. The study initiates by clarifying the difficulties linked to traditional medication delivery techniques and the benefits provided by transdermal channels. The article then explores the development of microneedle technology, outlining the several kinds of microneedles-solid, hollow, and dissolving-as well as their uses. Because of their special capacity to penetrate the skin's protective layer painlessly and their ability to distribute drugs precisely and precisely, microneedles are a highly useful instrument in pharmaceutical research. The materials, geometry, and manufacturing processes that affect the design and creation of microneedles are critically analyzed and presented. The manuscript delves into the latest developments in microneedle technology, encompassing the utilization of biodegradable polymers, smart materials, and sensing components for in-the-- moment monitoring. This analysis concludes by highlighting the noteworthy advancements in the field of microneedles and their potential to transform transdermal drug delivery systems. This thorough knowledge seeks to further the current discussion in pharmaceutical research, encouraging creativity and opening the door for the creation of safer, more effective drug delivery systems.

透皮给药系统(TDDS)因其控释能力和非侵入性设计而备受关注,被视为传统给药方法的可行替代品。微针是一种新型而有效的技术,最近引起了广泛关注,以进一步提高透皮给药系统的能力。本综述文章全面回顾了微针研究及其改善透皮给药的潜力。研究首先阐明了与传统给药技术相关的困难以及透皮渠道带来的益处。文章随后探讨了微针技术的发展,概述了几种微针--实心、空心和溶解--及其用途。由于微针具有无痛穿透皮肤保护层的特殊能力,并能准确无误地分布药物,因此在药物研究中是一种非常有用的工具。书中对影响微针设计和制造的材料、几何形状和制造工艺进行了批判性分析和介绍。手稿深入探讨了微针技术的最新发展,包括利用可生物降解聚合物、智能材料和传感元件进行即时监测。分析报告最后强调了微针领域值得关注的进展及其改变透皮给药系统的潜力。这些全面的知识旨在推动当前的药物研究讨论,鼓励创新,为创造更安全、更有效的给药系统打开大门。
{"title":"Microneedles: An Efficient Technique to Increase Transdermal Drug Delivery System.","authors":"Sanjit Kr Roy, Kazi Asraf Ali, Mahua Biswas, Abhijit Dey, Amlan Bishal, Abhradeep Kuiry","doi":"10.2174/0115672018301931240624072453","DOIUrl":"https://doi.org/10.2174/0115672018301931240624072453","url":null,"abstract":"<p><p>Transdermal Drug Delivery Systems (TDDS) have gained attention as a viable substitute for traditional drug administration methods because of their controlled release capabilities and non-invasive design. Microneedles are a new and effective technology that has attracted a lot of attention recently to enhance the capabilities of TDDS further. The study on microneedles and their potential to improve transdermal medication delivery is thoroughly reviewed in this review article. The study initiates by clarifying the difficulties linked to traditional medication delivery techniques and the benefits provided by transdermal channels. The article then explores the development of microneedle technology, outlining the several kinds of microneedles-solid, hollow, and dissolving-as well as their uses. Because of their special capacity to penetrate the skin's protective layer painlessly and their ability to distribute drugs precisely and precisely, microneedles are a highly useful instrument in pharmaceutical research. The materials, geometry, and manufacturing processes that affect the design and creation of microneedles are critically analyzed and presented. The manuscript delves into the latest developments in microneedle technology, encompassing the utilization of biodegradable polymers, smart materials, and sensing components for in-the-- moment monitoring. This analysis concludes by highlighting the noteworthy advancements in the field of microneedles and their potential to transform transdermal drug delivery systems. This thorough knowledge seeks to further the current discussion in pharmaceutical research, encouraging creativity and opening the door for the creation of safer, more effective drug delivery systems.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding Arsenal against Ocular Diseases through Nanoemulsion: Success So Far and the Road Ahead. 通过纳米乳剂扩大防治眼部疾病的武器库:迄今为止的成功与未来之路。
Pub Date : 2024-07-15 DOI: 10.2174/0115672018286288240705064730
Bala Vikash, Shashi, Narendra Kumar Pandey, Bimlesh Kumar, Sheetu Wadhwa, Ritu Gupta, Umesh Goutam, Amit Mittal, Dileep Singh Baghel, Sachin Kumar Singh, Saurabh Singh

The eye is a most delicate organ protected by several complex biological barriers that are static and dynamic. The presence of these ocular barriers retards drug absorption from topically applied dosage forms at the conjunctival sac. The efficient topical delivery of the drug into the globe is more difficult to achieve and there is a need to develop a topical formulation that may reduce the use of injections and increase patient compliance with decreased frequency of administration. In the advancements of research in nanotechnology, nanoemulsions can be used as biocompatible carriers to deliver the drug to the ocular cavity. The lipophilic globules can increase the solubility of hydrophobic cargos which provides increased permeation ability and ocular bioavailability which can sustain drug release and corneal retention. Because of their small size, these formulations do not cause blurring of vision. Nanoemulsions (NEs) over the past decade have been used to treat several ocular diseases in the anterior eye segment. This review summarizes the economic burden, pathology of ocular diseases, formulation considerations for ocular formulations, and recent advances of these NEs as effective carriers for ocular drug delivery highlighting their performance in pre-clinical studies.

眼睛是一个最脆弱的器官,受到多种复杂的静态和动态生物屏障的保护。这些眼屏障的存在阻碍了结膜囊对局部用药剂型的药物吸收。因此,需要开发一种局部用药配方,以减少注射次数,提高患者的依从性。随着纳米技术研究的发展,纳米乳剂可用作生物相容性载体,将药物输送到眼腔。亲脂性球状物可以增加疏水性载体的溶解度,从而提高渗透能力和眼部生物利用度,维持药物释放和角膜保留。由于体积小,这些制剂不会造成视力模糊。在过去十年中,纳米乳剂(NEs)已被用于治疗前眼部分的多种眼部疾病。本综述总结了经济负担、眼部疾病的病理、眼部制剂的配制注意事项,以及作为眼部给药有效载体的纳米乳剂的最新进展,并重点介绍了它们在临床前研究中的表现。
{"title":"Expanding Arsenal against Ocular Diseases through Nanoemulsion: Success So Far and the Road Ahead.","authors":"Bala Vikash, Shashi, Narendra Kumar Pandey, Bimlesh Kumar, Sheetu Wadhwa, Ritu Gupta, Umesh Goutam, Amit Mittal, Dileep Singh Baghel, Sachin Kumar Singh, Saurabh Singh","doi":"10.2174/0115672018286288240705064730","DOIUrl":"https://doi.org/10.2174/0115672018286288240705064730","url":null,"abstract":"<p><p>The eye is a most delicate organ protected by several complex biological barriers that are static and dynamic. The presence of these ocular barriers retards drug absorption from topically applied dosage forms at the conjunctival sac. The efficient topical delivery of the drug into the globe is more difficult to achieve and there is a need to develop a topical formulation that may reduce the use of injections and increase patient compliance with decreased frequency of administration. In the advancements of research in nanotechnology, nanoemulsions can be used as biocompatible carriers to deliver the drug to the ocular cavity. The lipophilic globules can increase the solubility of hydrophobic cargos which provides increased permeation ability and ocular bioavailability which can sustain drug release and corneal retention. Because of their small size, these formulations do not cause blurring of vision. Nanoemulsions (NEs) over the past decade have been used to treat several ocular diseases in the anterior eye segment. This review summarizes the economic burden, pathology of ocular diseases, formulation considerations for ocular formulations, and recent advances of these NEs as effective carriers for ocular drug delivery highlighting their performance in pre-clinical studies.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nigella sativa Oil-loaded Ethanolic Vesicular Gel for Imiquimod-induced Plaque Psoriasis: Physicochemical Characterization, Rheological Studies, and In vivo Efficacy. 用于咪喹莫特诱导的斑块型银屑病的黑升麻油载乙醇水泡凝胶:理化特性、流变学研究和体内疗效。
Pub Date : 2024-07-02 DOI: 10.2174/0115672018246645231019131748
Samar Vihal, Swati Pundir, Charul Rathore, Uma Ranjan Lal, Gaurav Gupta, Sachin Kumar Singh, Kamal Dua, Dinesh Kumar Chellappan, Poonam Negi

Background: The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone ( < 15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions.

Aims: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.

Objective: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.

Methods: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.

Results: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).

Conclusion: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.

背景:目的:本研究旨在开发和表征黑麦草(NS)油乙醇水凝胶系统(NS EV水凝胶),以增强其抗银屑病活性:本研究旨在开发NS EV水凝胶并评估其抗银屑病活性:方法:以正己烷和乙酸乙酯为溶剂系统,采用HPTLC法测定不同NS种子提取物和市售油中的TQ含量。采用溶剂注射法制备乙醇囊泡 (EVs),并利用 Imiquad (IMQ) 诱导的斑块状银屑病动物模型评估其抗银屑病活性:结果:TQ的HPTLC色谱条带紧凑,Rf值为0.651。校正曲线在 1-10 μg/spot 范围内呈线性关系,相关系数为 0.990,表明峰面积与浓度呈良好的线性关系。在不同的 NS 来源中,市售冷榨油中的 TQ 含量较高,为 1.45±0.08mg/ml。在各种 NS 油载的 EVs 中,F6 制剂的粒径最小(278.1nm),粒度分布为对数正态分布(0.459),且具有足够的包载效率。透射电子显微镜观察到其形状不均匀。F6 配方水凝胶的粘度为 32.34 (Pa-s),表现出塑性行为。体内药效研究表明,与普通 NS 油和标准药物(倍他米松和 Dr. JRK Psorolin 油)相比,NS EV 水凝胶可减少表皮和真皮的炎症反应,并显著降低 IL-17 的水平:结论:从研究结果中可以得出结论,NS-负载EV凝胶的效果与倍他米松乳膏不相上下,但比其他治疗方法更有效。
{"title":"Nigella sativa Oil-loaded Ethanolic Vesicular Gel for Imiquimod-induced Plaque Psoriasis: Physicochemical Characterization, Rheological Studies, and In vivo Efficacy.","authors":"Samar Vihal, Swati Pundir, Charul Rathore, Uma Ranjan Lal, Gaurav Gupta, Sachin Kumar Singh, Kamal Dua, Dinesh Kumar Chellappan, Poonam Negi","doi":"10.2174/0115672018246645231019131748","DOIUrl":"https://doi.org/10.2174/0115672018246645231019131748","url":null,"abstract":"<p><strong>Background: </strong>The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone ( &#60; 15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions.</p><p><strong>Aims: </strong>This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.</p><p><strong>Objective: </strong>The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.</p><p><strong>Methods: </strong>The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.</p><p><strong>Results: </strong>A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).</p><p><strong>Conclusion: </strong>It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in Epigenetic Modification Regulating Drug Transporters in the Hypoxic Environment. 缺氧环境中调控药物转运体的表观遗传修饰研究进展。
Pub Date : 2024-06-27 DOI: 10.2174/0115672018295087240620061102
Ziqin Wei, Hongfang Mu, Xiaojing Zhang, Wenbin Li, Rong Wang

Drug transporters are critical factors influencing the pharmacokinetics of drugs under hypoxic conditions. Studies have shown significant changes in drug transporter levels in the hypoxic environment. In addition to being regulated by HIF-1, nuclear receptors, and inflammatory factors, hypoxia can also regulate transporters through epigenetic modifications, thereby affecting drug absorption, distribution, metabolism, and excretion. In recent years, increasing attention has been paid to the role of epigenetic modifications in regulating drug transporters under hypoxic conditions at high altitude. In this paper, we comprehensively review the effects of hypoxia on drug transporters and epigenetic modifications and explore the regulatory mechanism of epigenetic modifications on drug transporter expression under hypoxic conditions. The aim is to provide a reference for exploring the epigenetic regulation mechanism of drug transporter expression in the hypoxic environment at high altitude, and then guide the study of pharmacokinetics and promote effective and safe medication at high altitude.

药物转运体是影响缺氧条件下药物药代动力学的关键因素。研究表明,在缺氧环境下,药物转运体的水平会发生明显变化。除了受 HIF-1、核受体和炎症因子的调控外,缺氧还能通过表观遗传修饰调控转运体,从而影响药物的吸收、分布、代谢和排泄。近年来,人们越来越关注表观遗传修饰在高海拔缺氧条件下对药物转运体的调控作用。本文全面综述了缺氧对药物转运体及表观遗传修饰的影响,探讨了缺氧条件下表观遗传修饰对药物转运体表达的调控机制。旨在为探索高海拔缺氧环境下药物转运体表达的表观遗传调控机制提供参考,进而指导药代动力学研究,促进高海拔地区的有效安全用药。
{"title":"Progress in Epigenetic Modification Regulating Drug Transporters in the Hypoxic Environment.","authors":"Ziqin Wei, Hongfang Mu, Xiaojing Zhang, Wenbin Li, Rong Wang","doi":"10.2174/0115672018295087240620061102","DOIUrl":"https://doi.org/10.2174/0115672018295087240620061102","url":null,"abstract":"<p><p>Drug transporters are critical factors influencing the pharmacokinetics of drugs under hypoxic conditions. Studies have shown significant changes in drug transporter levels in the hypoxic environment. In addition to being regulated by HIF-1, nuclear receptors, and inflammatory factors, hypoxia can also regulate transporters through epigenetic modifications, thereby affecting drug absorption, distribution, metabolism, and excretion. In recent years, increasing attention has been paid to the role of epigenetic modifications in regulating drug transporters under hypoxic conditions at high altitude. In this paper, we comprehensively review the effects of hypoxia on drug transporters and epigenetic modifications and explore the regulatory mechanism of epigenetic modifications on drug transporter expression under hypoxic conditions. The aim is to provide a reference for exploring the epigenetic regulation mechanism of drug transporter expression in the hypoxic environment at high altitude, and then guide the study of pharmacokinetics and promote effective and safe medication at high altitude.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review. 机器学习驱动的靶向给药脂质体制剂的进步:叙述性文献综述。
Pub Date : 2024-06-27 DOI: 10.2174/0115672018302321240620072039
Benyamin Hoseini, Mahmoud Reza Jaafari, Amin Golabpour, Zahra Rahmatinejad, Maryam Karimi, Saeid Eslami

Nanoliposomal formulations, utilizing lipid bilayers to encapsulate therapeutic agents, hold promise for targeted drug delivery. Recent studies have explored the application of machine learning (ML) techniques in this field. This study aims to elucidate the motivations behind integrating ML into liposomal formulations, providing a nuanced understanding of its applications and highlighting potential advantages. The review begins with an overview of liposomal formulations and their role in targeted drug delivery. It then systematically progresses through current research on ML in this area, discussing the principles guiding ML adaptation for liposomal preparation and characterization. Additionally, the review proposes a conceptual model for effective ML incorporation. The review explores popular ML techniques, including ensemble learning, decision trees, instance- based learning, and neural networks. It discusses feature extraction and selection, emphasizing the influence of dataset nature and ML method choice on technique relevance. The review underscores the importance of supervised learning models for structured liposomal formulations, where labeled data is essential. It acknowledges the merits of K-fold cross-validation but notes the prevalent use of single train/test splits in liposomal formulation studies. This practice facilitates the visualization of results through 3D plots for practical interpretation. While highlighting the mean absolute error as a crucial metric, the review emphasizes consistency between predicted and actual values. It clearly demonstrates ML techniques' effectiveness in optimizing critical formulation parameters such as encapsulation efficiency, particle size, drug loading efficiency, polydispersity index, and liposomal flux. In conclusion, the review navigates the nuances of various ML algorithms, illustrating ML's role as a decision support system for liposomal formulation development. It proposes a structured framework involving experimentation, physicochemical analysis, and iterative ML model refinement through human-centered evaluation, guiding future studies. Emphasizing meticulous experimentation, interdisciplinary collaboration, and continuous validation, the review advocates seamless ML integration into liposomal drug delivery research for robust advancements. Future endeavors are encouraged to uphold these principles.

利用脂质双层膜包裹治疗药物的纳米脂质体制剂有望实现靶向给药。最近的研究探索了机器学习(ML)技术在这一领域的应用。本研究旨在阐明将 ML 集成到脂质体制剂中的动机,提供对其应用的细致理解,并强调其潜在优势。综述首先概述了脂质体制剂及其在靶向给药中的作用。然后,系统地介绍了该领域目前对 ML 的研究,讨论了指导 ML 适应脂质体制备和表征的原则。此外,该综述还提出了有效结合 ML 的概念模型。综述探讨了流行的 ML 技术,包括集合学习、决策树、基于实例的学习和神经网络。它讨论了特征提取和选择,强调了数据集性质和 ML 方法选择对技术相关性的影响。综述强调了监督学习模型对于结构化脂质体配方的重要性,在这种配方中,标记数据至关重要。它承认 K 倍交叉验证的优点,但指出在脂质体制剂研究中普遍使用单一的训练/测试分割。这种做法有利于通过三维图对结果进行可视化的实际解释。在强调平均绝对误差这一关键指标的同时,综述还强调了预测值与实际值之间的一致性。综述清楚地展示了 ML 技术在优化封装效率、粒度、药物负载效率、多分散指数和脂质体通量等关键制剂参数方面的有效性。总之,综述介绍了各种 ML 算法的细微差别,说明了 ML 作为脂质体制剂开发决策支持系统的作用。它提出了一个结构化框架,包括实验、理化分析以及通过以人为本的评估迭代完善 ML 模型,为未来的研究提供指导。该综述强调细致的实验、跨学科合作和持续验证,主张将 ML 无缝集成到脂质体给药研究中,以实现强劲的进步。我们鼓励未来的努力坚持这些原则。
{"title":"Machine Learning-Driven Advancements in Liposomal Formulations for Targeted Drug Delivery: A Narrative Literature Review.","authors":"Benyamin Hoseini, Mahmoud Reza Jaafari, Amin Golabpour, Zahra Rahmatinejad, Maryam Karimi, Saeid Eslami","doi":"10.2174/0115672018302321240620072039","DOIUrl":"https://doi.org/10.2174/0115672018302321240620072039","url":null,"abstract":"<p><p>Nanoliposomal formulations, utilizing lipid bilayers to encapsulate therapeutic agents, hold promise for targeted drug delivery. Recent studies have explored the application of machine learning (ML) techniques in this field. This study aims to elucidate the motivations behind integrating ML into liposomal formulations, providing a nuanced understanding of its applications and highlighting potential advantages. The review begins with an overview of liposomal formulations and their role in targeted drug delivery. It then systematically progresses through current research on ML in this area, discussing the principles guiding ML adaptation for liposomal preparation and characterization. Additionally, the review proposes a conceptual model for effective ML incorporation. The review explores popular ML techniques, including ensemble learning, decision trees, instance- based learning, and neural networks. It discusses feature extraction and selection, emphasizing the influence of dataset nature and ML method choice on technique relevance. The review underscores the importance of supervised learning models for structured liposomal formulations, where labeled data is essential. It acknowledges the merits of K-fold cross-validation but notes the prevalent use of single train/test splits in liposomal formulation studies. This practice facilitates the visualization of results through 3D plots for practical interpretation. While highlighting the mean absolute error as a crucial metric, the review emphasizes consistency between predicted and actual values. It clearly demonstrates ML techniques' effectiveness in optimizing critical formulation parameters such as encapsulation efficiency, particle size, drug loading efficiency, polydispersity index, and liposomal flux. In conclusion, the review navigates the nuances of various ML algorithms, illustrating ML's role as a decision support system for liposomal formulation development. It proposes a structured framework involving experimentation, physicochemical analysis, and iterative ML model refinement through human-centered evaluation, guiding future studies. Emphasizing meticulous experimentation, interdisciplinary collaboration, and continuous validation, the review advocates seamless ML integration into liposomal drug delivery research for robust advancements. Future endeavors are encouraged to uphold these principles.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current drug delivery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1