首页 > 最新文献

Recent advances in drug delivery and formulation最新文献

英文 中文
Tofacitinib Citrate-loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and In vitro-in Vivo Characterization. 负载柠檬酸托法替尼的纳米凝胶治疗斑秃:响应面设计、配方和体内外表征。
Pub Date : 2023-01-01 DOI: 10.2174/0126673878264814231106094853
Mounika Kuchukuntla, Venkatesan Palanivel, Ananthula Madhubabu

Objective: The purpose of this research was to optimize the design and construction of nanoparticle gel (TFN-NPs) loaded with tofacitinib citrate (TFN) using poly lactic co glycolic acid (PLGA).

Method: PLGA (A) as the polymer, polyvinyl alcohol (PVA) (B) as the stabilizer and stirring speed (C) as independent variables were used. TFN-NPs were prepared using single emulsion-solvent evaporation. Box Behnken Design (BBD) was used to determine the optimal component ratio of TFN-NPs based on point prediction.

Results: The entrapment efficiency, particle size, and cumulative drug release of the best-composed TFN-NPs were, respectively, 79.82±0.9%, 236.19±5.07 nm, and 82.31±1.23%; the PDI, zeta potential, and drug loading were, respectively, 0.297±0.21, -30.21±0.94mV, and 69.81±0.16%. Gel formulation employing Carbopol as a gelling polymer was then developed using the optimal TFN-NPs mixture. Gel characterization, drug release, permeation studies, irritation, and pharmacokinetic studies were also conducted. Further solid state and morphology were evaluated using FTIR, DSC, XRD, SEM, TEM, and AFM on the developed topical gel formulation (TFN-NPG) and TFN-NPs. The release and permeation investigations indicated that TFN was slowly released (38.42±2.87%) and had significantly enhanced penetration into the epidermal membrane of mice. The cumulative irritation score of 0.33 determined during testing suggested little discomfort. The generated nanogels are stable and have a high drug penetration profile over the skin, as shown by the findings. When compared to both pure TFN solutions, TFN-NPs and TFN-NPG demonstrated superior pharmacokinetic properties.

Conclusion: Based on the results, the NPs and NPG formulations were depicted to enhance the activity of TFN compared to the free drug solution. TFN could be a safe and effective treatment for Alopecia areata. The tofacitinib citrate NPG could be a clinically translatable, safer topical formulation for managing Alopecia areata.

目的:优化以聚乳酸共乙醇酸(PLGA)为原料,负载柠檬酸托法替尼(tofacitinib cit酸托法替尼,TFN)的纳米凝胶(TFN- nps)的设计与构建。方法:以聚乳酸(PLGA) (A)为聚合物,聚乙烯醇(PVA) (B)为稳定剂,搅拌速度(C)为自变量。采用单乳液-溶剂蒸发法制备TFN-NPs。采用Box Behnken Design (BBD),基于点预测确定TFN-NPs的最佳组成比例。结果:最佳组成的TFN-NPs包封效率为79.82±0.9%,粒径为236.19±5.07 nm,累积药物释放量为82.31±1.23%;PDI、zeta电位和载药量分别为0.297±0.21、-30.21±0.94mV和69.81±0.16%。然后使用最佳的TFN-NPs混合物开发了以卡波波尔为胶凝聚合物的凝胶配方。凝胶表征,药物释放,渗透研究,刺激和药代动力学研究也进行了。采用FTIR、DSC、XRD、SEM、TEM和AFM对制备的外用凝胶制剂(TFN-NPG)和TFN-NPs进行了进一步的固态和形貌评价。释放和渗透实验表明,TFN释放缓慢(38.42±2.87%),并能显著增强对小鼠表皮膜的渗透。在测试过程中测定的累计刺激得分为0.33,表明不舒服。正如研究结果所示,所生成的纳米凝胶是稳定的,并且在皮肤上具有很高的药物渗透性。与纯TFN溶液相比,TFN- nps和TFN- npg表现出优越的药代动力学特性。结论:与游离药物溶液相比,NPs和NPG制剂对TFN活性有增强作用。TFN是一种安全有效的治疗斑秃的方法。托法替尼柠檬酸NPG可能是一种临床可翻译的,更安全的局部配方治疗斑秃。
{"title":"Tofacitinib Citrate-loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and <i>In vitro-in Vivo</i> Characterization.","authors":"Mounika Kuchukuntla, Venkatesan Palanivel, Ananthula Madhubabu","doi":"10.2174/0126673878264814231106094853","DOIUrl":"10.2174/0126673878264814231106094853","url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this research was to optimize the design and construction of nanoparticle gel (TFN-NPs) loaded with tofacitinib citrate (TFN) using poly lactic co glycolic acid (PLGA).</p><p><strong>Method: </strong>PLGA (A) as the polymer, polyvinyl alcohol (PVA) (B) as the stabilizer and stirring speed (C) as independent variables were used. TFN-NPs were prepared using single emulsion-solvent evaporation. Box Behnken Design (BBD) was used to determine the optimal component ratio of TFN-NPs based on point prediction.</p><p><strong>Results: </strong>The entrapment efficiency, particle size, and cumulative drug release of the best-composed TFN-NPs were, respectively, 79.82±0.9%, 236.19±5.07 nm, and 82.31±1.23%; the PDI, zeta potential, and drug loading were, respectively, 0.297±0.21, -30.21±0.94mV, and 69.81±0.16%. Gel formulation employing Carbopol as a gelling polymer was then developed using the optimal TFN-NPs mixture. Gel characterization, drug release, permeation studies, irritation, and pharmacokinetic studies were also conducted. Further solid state and morphology were evaluated using FTIR, DSC, XRD, SEM, TEM, and AFM on the developed topical gel formulation (TFN-NPG) and TFN-NPs. The release and permeation investigations indicated that TFN was slowly released (38.42±2.87%) and had significantly enhanced penetration into the epidermal membrane of mice. The cumulative irritation score of 0.33 determined during testing suggested little discomfort. The generated nanogels are stable and have a high drug penetration profile over the skin, as shown by the findings. When compared to both pure TFN solutions, TFN-NPs and TFN-NPG demonstrated superior pharmacokinetic properties.</p><p><strong>Conclusion: </strong>Based on the results, the NPs and NPG formulations were depicted to enhance the activity of TFN compared to the free drug solution. TFN could be a safe and effective treatment for Alopecia areata. The tofacitinib citrate NPG could be a clinically translatable, safer topical formulation for managing Alopecia areata.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"314-331"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoemulsion-Based Strategy for Maximizing Nitrofurantoin Absorption: In-vitro and In-vivo Investigations. 基于纳米乳液的呋喃妥因最大吸收策略:体外和体内研究。
Pub Date : 2023-01-01 DOI: 10.2174/0126673878259374230921045432
Gouri Prasad Nanda, Mrunali Patel, Rashmin Patel

Background: The main objective of the current research work is to improve the absorption of Nitrofurantoin (NFT) by minimizing gastrointestinal (GI) intolerance and variations in its absorption by formulating the drug into a nanoemulsion (NE).

Method: Based on the highest saturation solubility of NFT, soybean oil, transcutol HP, and labrafil M1944CS were selected as oil, co-surfactant, and surfactant, and a Smix ratio of 1:2 was selected based on pseudoternary phase diagrams. The formulation prepared with an equal ratio of oil and Smix exhibited the lowest globule size, highest zeta potential, and higher drug release and hence was selected for further evaluation.

Result: Optimized formulation (NF5) showed improved membrane permeability against pure drug suspension (2.30 times) and marketed suspension formulation (1.43 times). NF5 exhibited similar % cell viability and % cell toxicity in Caco-2 cell lines compared to the marketed suspension. The relative bioavailability of NFT-NE was enhanced by 1.10 and 1.17 times compared to the marketed and pure drug suspension, respectively.

Conclusion: Thus, it can be concluded that the optimized nanoemulsion formulation of NFT exhibited improved membrane permeability, comparable cell viability, and increased relative bioavailability. These findings suggest the potential of the nanoemulsion approach as a strategy to overcome the variability of oral absorption and GI intolerance of NFT.

背景:当前研究工作的主要目标是通过将药物配制成纳米乳液(NE),最大限度地减少胃肠道(GI)不耐受及其吸收变化,从而提高呋喃妥因(NFT)的吸收。基于NFT的最高饱和溶解度,选择大豆油、transcutol HP和labrafil M1944CS作为油、助表面活性剂和表面活性剂,并基于假三元相图选择1:2的Smix比例。方法:用等比例的油和Smix制备的制剂表现出最低的球蛋白大小、最高的ζ电位和较高的药物释放,因此选择该制剂进行进一步评估。结果:优化制剂(NF5)对纯药物混悬液(2.30倍)和市售混悬液制剂(1.43倍)的膜透性均有改善。与市售悬浮液相比,NF5在Caco-2细胞系中表现出相似的%细胞活力和%细胞毒性。与上市和纯药物混悬液相比,NFT-NE的相对生物利用度分别提高了1.10和1.17倍。结论:因此,可以得出结论,优化的NFT纳米乳液配方具有改善的膜渗透性、相当的细胞活力和提高的相对生物利用度。这些发现表明,纳米乳液方法有可能成为克服NFT口服吸收变异性和胃肠道不耐受性的一种策略。
{"title":"Nanoemulsion-Based Strategy for Maximizing Nitrofurantoin Absorption: <i>In-vitro</i> and <i>In-vivo</i> Investigations.","authors":"Gouri Prasad Nanda, Mrunali Patel, Rashmin Patel","doi":"10.2174/0126673878259374230921045432","DOIUrl":"10.2174/0126673878259374230921045432","url":null,"abstract":"<p><strong>Background: </strong>The main objective of the current research work is to improve the absorption of Nitrofurantoin (NFT) by minimizing gastrointestinal (GI) intolerance and variations in its absorption by formulating the drug into a nanoemulsion (NE).</p><p><strong>Method: </strong>Based on the highest saturation solubility of NFT, soybean oil, transcutol HP, and labrafil M1944CS were selected as oil, co-surfactant, and surfactant, and a S<sub>mix</sub> ratio of 1:2 was selected based on pseudoternary phase diagrams. The formulation prepared with an equal ratio of oil and S<sub>mix</sub> exhibited the lowest globule size, highest zeta potential, and higher drug release and hence was selected for further evaluation.</p><p><strong>Result: </strong>Optimized formulation (NF5) showed improved membrane permeability against pure drug suspension (2.30 times) and marketed suspension formulation (1.43 times). NF5 exhibited similar % cell viability and % cell toxicity in Caco-2 cell lines compared to the marketed suspension. The relative bioavailability of NFT-NE was enhanced by 1.10 and 1.17 times compared to the marketed and pure drug suspension, respectively.</p><p><strong>Conclusion: </strong>Thus, it can be concluded that the optimized nanoemulsion formulation of NFT exhibited improved membrane permeability, comparable cell viability, and increased relative bioavailability. These findings suggest the potential of the nanoemulsion approach as a strategy to overcome the variability of oral absorption and GI intolerance of NFT.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"241-253"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Concise Review of Carbon Dots and their Pharmaceutical and Biomedical Applications. 碳点及其药物和生物医学应用简评。
Pub Date : 2023-01-01 DOI: 10.2174/0126673878237423230919070049
Ashish Kumar Parashar, Krishna Kumar Verma, Rajeev Kumar, Vandana Arora

For the last two decades, carbon dots, a revolutionary type of carbon nanomaterial with less than 10 nm diameter, have attracted considerable research interest. CDs exhibit various physicochemical properties and favorable characteristics, including excellent water solubility, unique optical properties, low cost, eco-friendliness, an abundance of reactive surface groups, and high stability. As a result, the synthesis of CDs and their applications in pharmaceutical and related disciplines have received increasing interest. Since CDs are biocompatible and biodegradable with low toxicity, they are a promising healthcare tool. CDs are extensively employed for numerous applications to date, including theranostics, bioimaging, drug delivery, biosensing, gene delivery, cancer therapy, electrochemical biosensing, and inflammatory treatment. This comprehensive review aims to explore various synthesis methods of carbon dots, including top-down and bottom-up approaches, as well as highlight the characterization techniques employed to assess their physicochemical and biological properties. Additionally, the review delves into carbon dots' pharmaceutical and biomedical applications, showcasing their potential in drug delivery, bioimaging, diagnostics, and therapeutics.

在过去的二十年里,碳点,一种直径小于10纳米的革命性碳纳米材料,吸引了相当大的研究兴趣。CDs表现出各种物理化学性质和有利的特性,包括优异的水溶性、独特的光学性质、低成本、生态友好、丰富的反应性表面基团和高稳定性。因此,CD的合成及其在制药和相关学科中的应用受到了越来越多的关注。由于CD具有生物相容性和可生物降解性,毒性低,因此是一种很有前途的医疗保健工具。到目前为止,CD被广泛用于许多应用,包括治疗学、生物成像、药物递送、生物传感、基因递送、癌症治疗、电化学生物传感和炎症治疗。本综述旨在探索碳点的各种合成方法,包括自上而下和自下而上的方法,并重点介绍用于评估其物理化学和生物特性的表征技术。此外,该综述深入研究了碳点的药物和生物医学应用,展示了它们在药物递送、生物成像、诊断和治疗方面的潜力。
{"title":"A Concise Review of Carbon Dots and their Pharmaceutical and Biomedical Applications.","authors":"Ashish Kumar Parashar, Krishna Kumar Verma, Rajeev Kumar, Vandana Arora","doi":"10.2174/0126673878237423230919070049","DOIUrl":"10.2174/0126673878237423230919070049","url":null,"abstract":"<p><p>For the last two decades, carbon dots, a revolutionary type of carbon nanomaterial with less than 10 nm diameter, have attracted considerable research interest. CDs exhibit various physicochemical properties and favorable characteristics, including excellent water solubility, unique optical properties, low cost, eco-friendliness, an abundance of reactive surface groups, and high stability. As a result, the synthesis of CDs and their applications in pharmaceutical and related disciplines have received increasing interest. Since CDs are biocompatible and biodegradable with low toxicity, they are a promising healthcare tool. CDs are extensively employed for numerous applications to date, including theranostics, bioimaging, drug delivery, biosensing, gene delivery, cancer therapy, electrochemical biosensing, and inflammatory treatment. This comprehensive review aims to explore various synthesis methods of carbon dots, including top-down and bottom-up approaches, as well as highlight the characterization techniques employed to assess their physicochemical and biological properties. Additionally, the review delves into carbon dots' pharmaceutical and biomedical applications, showcasing their potential in drug delivery, bioimaging, diagnostics, and therapeutics.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":"183-192"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Recent advances in drug delivery and formulation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1