Anticancer therapies can induce cellular senescence or drug-tolerant persistence, two types of proliferative arrest that differ in their stability. While senescence is highly stable, persister cells efficiently resume proliferation upon therapy termination, resulting in tumor relapse. Here, we used an ATP-competitive mTOR inhibitor to induce and characterize persistence in human cancer cells of various origins. Using this model and previously described models of senescence, we compared the same cancer cell lines under the two types of proliferative arrest. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (senescence-associated secretory phenotype or SASP). A genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacologic inhibition of serine hydroxymethyltransferase, a key enzyme that feeds methyl groups from serine into 1C metabolism. Investigation into the relationship between 1C metabolism and the epigenetic regulation of transcription uncovered the presence of the repressive heterochromatic mark H4K20me3 at the promoters of SASP and IFN response genes in persister cells, whereas it was absent in senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study identifies distinctive features and actionable vulnerabilities of persister cancer cells and provides mechanistic insight into their low inflammatory activity. Significance: Cell persistence and senescence are distinct states of proliferative arrest induced by cancer therapy, with persister cells being characterized by the silencing of inflammatory genes through the heterochromatic mark H4K20me3. See related commentary by Schmitt, p. 7.
Epithelial-to-mesenchymal transition (EMT) is known to play roles in orchestrating cellular plasticity across many physiological and pathological contexts. Partial EMT, wherein cells maintain both epithelial and mesenchymal features, is gaining recognition for its functional importance in cancer in recent years. There are many factors regulating both partial and full EMT, and the precise mechanisms underlying these processes vary depending on the biological context. Furthermore, how different EMT states cooperate to create a heterogeneous tumor population and promote different pro-malignant features remains largely undefined. In a recent study published in Nature Cancer, Youssef and colleagues described how two disparate EMT programs, active in either organ fibrosis or embryonic development, are utilized within different cells within the same murine mammary tumor model. This work provides mechanistic insight into the development of intratumoral heterogeneity, providing evidence for the cooperation between the two EMT trajectories.
Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EEC), the neuroendocrine cells of the normal colon epithelium, as compared with non-mCRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. In this study, single-cell multiomics uncovered epigenetic alterations that accompany EEC differentiation, identified STAT3 as a regulator of EEC specification, and discovered a rare cancer-specific cell type with enteric neuron-like characteristics. Furthermore, lysine-specific demethylase 1 (LSD1) and CoREST2 mediated STAT3 demethylation and enhanced STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. Collectively, these results provide a rationale for developing LSD1 inhibitors that target the interaction between LSD1 and STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC. Significance: STAT3 activity mediated by LSD1 and CoREST2 induces enteroendocrine cell specification in mucinous colorectal cancer, suggesting disrupting interaction among LSD1, CoREST2, and STAT3 as a therapeutic strategy to target neuroendocrine differentiation.
Castration-resistant prostate cancer (CRPC) is incurable and fatal, making prostate cancer the second leading cancer-related cause of death for American men. CRPC results from therapeutic resistance to standard-of-care androgen deprivation (AD) treatments, through incompletely understood molecular mechanisms, and lacks durable therapeutic options. In this study, we identified enhanced soluble guanylyl cyclase (sGC) signaling as a mechanism that restrains CRPC initiation and growth. Patients with aggressive, fatal CRPC exhibited significantly lower serum levels of the sGC catalytic product cyclic GMP (cGMP) compared with the castration-sensitive stage. In emergent castration-resistant cells isolated from castration-sensitive prostate cancer populations, the obligate sGC heterodimer was repressed via methylation of its β subunit. Genetically abrogating sGC complex formation in castration-sensitive prostate cancer cells promoted evasion of AD-induced senescence and concomitant castration-resistant tumor growth. In established castration-resistant cells, the sGC complex was present but in a reversibly oxidized and inactive state. Subjecting CRPC cells to AD regenerated the functional complex, and cotreatment with riociguat, an FDA-approved sGC agonist, evoked redox stress-induced apoptosis. Riociguat decreased castration-resistant tumor growth and increased apoptotic markers, with elevated cGMP levels correlating significantly with lower tumor burden. Riociguat treatment reorganized the tumor vasculature and eliminated hypoxic tumor niches, decreasing CD44+ tumor progenitor cells and increasing the radiosensitivity of castration-resistant tumors. Thus, this study showed that enhancing sGC activity can inhibit CRPC emergence and progression through tumor cell-intrinsic and extrinsic effects. Riociguat can be repurposed to overcome CRPC, with noninvasive monitoring of cGMP levels as a marker for on-target efficacy. Significance: Soluble guanylyl cyclase signaling inhibits castration-resistant prostate cancer emergence and can be stimulated with FDA-approved riociguat to resensitize resistant tumors to androgen deprivation, providing a strategy to prevent and treat castration resistance.
Emerging evidence suggests that TGFβ1 can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the antiangiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiologic angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the antiangiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating antiangiogenic factor thrombospondin 1 (TSP1) in endothelial cells (EC) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced miR145 expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma displayed increased miR145 and decreased SMAD3 and TSP1 compared with ECs from adjacent nontumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in hepatocellular carcinoma tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis. Significance: Suppression of angiogenesis by TGFβ1 is mediated by TSP1 upregulation in endothelial cells and abrogated by HIF1α-miR145 activity in the hypoxic tumor microenvironment, providing potential targets to remodel the tumor vasculature.
Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention.