首页 > 最新文献

Cancer research最新文献

英文 中文
MTHFD2 Enhances cMYC O-GlcNAcylation to Promote Sunitinib Resistance in Renal Cell Carcinoma MTHFD2增强cMYC o - glcn酰化促进肾细胞癌舒尼替尼耐药
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-13 DOI: 10.1158/0008-5472.can-24-0050
Jinwen Liu, Gaowei Huang, Hao Lin, Rui Yang, Wenhao Zhan, Cheng Luo, Yukun Wu, Lingwu Chen, Xiaopeng Mao, Junxing Chen, Bin Huang
Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC. MTHFD2 was elevated in sunitinib resistant RCC cells, and loss of MTHDF2 conferred sensitivity to sunitinib. In patients, MTHFD2 was highly expressed in RCC and was associated with poor outcomes. Mechanistically, MTHFD2 stimulated UDP-GlcNAc biosynthesis and promoted cMYC O-GlcNAcylation by driving the folate cycle. O-GlcNAcylation enhanced cMYC stability and promoted MTHFD2 and CCND1 transcription. Targeting MTHFD2 or cyclin D1 sensitized tumor cells to sunitinib in vitro and in vivo. Consistently, development of a peptide drug capable of efficiently degrading MTHFD2 enabled reversal of sunitinib resistance in RCC. These findings identify a noncanonical metabolic function of MTHFD2 in cell signaling and response to therapy and reveal the interplay between one-carbon metabolism and sunitinib resistance in RCC. Targeting MTHFD2 could be an effective approach to overcome sunitinib resistance.
舒尼替尼是肾细胞癌(RCC)患者的一线靶向治疗,但耐药性是晚期和转移性肾细胞癌治疗的一个重大障碍。代谢重编程是RCC的一个特征,代谢过程的改变可能有助于对舒尼替尼的耐药性。在这里,我们发现MTHFD2,一种参与单碳代谢的线粒体酶,是RCC中舒尼替尼耐药的关键介质。MTHFD2在舒尼替尼耐药的RCC细胞中升高,MTHDF2的缺失使其对舒尼替尼敏感。在患者中,MTHFD2在RCC中高表达,并与不良预后相关。从机制上讲,MTHFD2通过驱动叶酸循环刺激UDP-GlcNAc生物合成并促进cMYC o - glcnac酰化。o - glcn酰化增强了cMYC的稳定性,促进了MTHFD2和CCND1的转录。靶向MTHFD2或cyclin D1使肿瘤细胞对舒尼替尼体外和体内增敏。与此同时,一种能够有效降解MTHFD2的肽药物的开发使RCC中的舒尼替尼耐药性得以逆转。这些发现确定了MTHFD2在细胞信号传导和治疗反应中的非规范代谢功能,并揭示了RCC中一碳代谢与舒尼替尼耐药之间的相互作用。靶向MTHFD2可能是克服舒尼替尼耐药的有效途径。
{"title":"MTHFD2 Enhances cMYC O-GlcNAcylation to Promote Sunitinib Resistance in Renal Cell Carcinoma","authors":"Jinwen Liu, Gaowei Huang, Hao Lin, Rui Yang, Wenhao Zhan, Cheng Luo, Yukun Wu, Lingwu Chen, Xiaopeng Mao, Junxing Chen, Bin Huang","doi":"10.1158/0008-5472.can-24-0050","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-0050","url":null,"abstract":"Sunitinib is a first-line targeted therapy for patients with renal cell carcinoma (RCC), but resistance represents a significant obstacle to the treatment of advanced and metastatic RCC. Metabolic reprogramming is a characteristic of RCC, and changes in metabolic processes might contribute to resistance to sunitinib. Here, we identified MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, as a critical mediator of sunitinib resistance in RCC. MTHFD2 was elevated in sunitinib resistant RCC cells, and loss of MTHDF2 conferred sensitivity to sunitinib. In patients, MTHFD2 was highly expressed in RCC and was associated with poor outcomes. Mechanistically, MTHFD2 stimulated UDP-GlcNAc biosynthesis and promoted cMYC O-GlcNAcylation by driving the folate cycle. O-GlcNAcylation enhanced cMYC stability and promoted MTHFD2 and CCND1 transcription. Targeting MTHFD2 or cyclin D1 sensitized tumor cells to sunitinib in vitro and in vivo. Consistently, development of a peptide drug capable of efficiently degrading MTHFD2 enabled reversal of sunitinib resistance in RCC. These findings identify a noncanonical metabolic function of MTHFD2 in cell signaling and response to therapy and reveal the interplay between one-carbon metabolism and sunitinib resistance in RCC. Targeting MTHFD2 could be an effective approach to overcome sunitinib resistance.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"28 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142975080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative Phosphorylation is a Metabolic Vulnerability of Endocrine Therapy-Tolerant Persister Cells in ER+ Breast Cancer 氧化磷酸化是雌激素受体阳性乳腺癌中内分泌耐受持续细胞的代谢脆弱性
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-08 DOI: 10.1158/0008-5472.can-24-1204
Steven Tau, Mary D. Chamberlin, Huijuan Yang, Jonathan D. Marotti, Patricia C. Muskus, Alyssa M. Roberts, Melissa M. Carmichael, Lauren Cressey, Christo Philip C. Dragnev, Eugene Demidenko, Riley A. Hampsch, Shannon M. Soucy, Fred W. Kolling, Kimberley S. Samkoe, James V. Alvarez, Arminja N. Kettenbach, Todd W. Miller
Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2- breast tumors induced by neoadjuvant endocrine therapy (NCT04568616). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Pharmacological inhibition of mitochondrial complex I suppressed the tumor-forming potential of persisters in mice and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability for treating breast cancer.
尽管有内分泌疗法的辅助治疗,雌激素受体阳性(ER+)乳腺癌在很大比例的患者中复发。复发可归因于临床上无法检测到的内分泌耐受持续性癌细胞,这些癌细胞保留了肿瘤形成的潜力。因此,针对这种持久性细胞的策略可能会预防复发性疾病。利用CRISPR-Cas9全基因组敲除筛选ER+乳腺癌细胞,我们确定了内分泌耐受持久性细胞中依赖线粒体呼吸的代谢重编程的生存机制。定量蛋白质组学分析显示,持之以恒者的糖酵解蛋白水平降低。葡萄糖的代谢追踪显示,在需要氧化磷酸化来产生ATP的持久体中,能量耗尽状态。一项II期临床试验旨在评估新辅助内分泌治疗(NCT04568616)诱导的原发性ER+/HER2-乳腺肿瘤中线粒体标志物的变化。在对32例患者肿瘤标本的分析中,芳香酶抑制剂诱导的来曲唑雌激素剥夺后,肿瘤显示残留细胞增殖,线粒体含量增加。遗传分析和条形码谱系追踪表明,内分泌耐受持久性是随机发生的,没有遗传易感性。线粒体复合物I的药理抑制抑制了小鼠持久者的肿瘤形成潜力,并与抗雌激素氟维司汀协同诱导患者来源的异种移植物消退。这些发现表明,线粒体代谢在内分泌耐受的持久性ER+乳腺癌细胞中是必不可少的,并保证了治疗策略的发展,以利用这种脆弱性来治疗乳腺癌。
{"title":"Oxidative Phosphorylation is a Metabolic Vulnerability of Endocrine Therapy-Tolerant Persister Cells in ER+ Breast Cancer","authors":"Steven Tau, Mary D. Chamberlin, Huijuan Yang, Jonathan D. Marotti, Patricia C. Muskus, Alyssa M. Roberts, Melissa M. Carmichael, Lauren Cressey, Christo Philip C. Dragnev, Eugene Demidenko, Riley A. Hampsch, Shannon M. Soucy, Fred W. Kolling, Kimberley S. Samkoe, James V. Alvarez, Arminja N. Kettenbach, Todd W. Miller","doi":"10.1158/0008-5472.can-24-1204","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-1204","url":null,"abstract":"Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2- breast tumors induced by neoadjuvant endocrine therapy (NCT04568616). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Pharmacological inhibition of mitochondrial complex I suppressed the tumor-forming potential of persisters in mice and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability for treating breast cancer.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"42 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H4K20me3-Mediated Repression of Inflammatory Genes Is a Characteristic and Targetable Vulnerability of Persister Cancer Cells. H4K20me3 介导的炎症基因抑制是顽固性癌细胞的一个特征性弱点,也是可瞄准的弱点。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-0529
Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano

Anticancer therapies can induce cellular senescence or drug-tolerant persistence, two types of proliferative arrest that differ in their stability. While senescence is highly stable, persister cells efficiently resume proliferation upon therapy termination, resulting in tumor relapse. Here, we used an ATP-competitive mTOR inhibitor to induce and characterize persistence in human cancer cells of various origins. Using this model and previously described models of senescence, we compared the same cancer cell lines under the two types of proliferative arrest. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (senescence-associated secretory phenotype or SASP). A genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacologic inhibition of serine hydroxymethyltransferase, a key enzyme that feeds methyl groups from serine into 1C metabolism. Investigation into the relationship between 1C metabolism and the epigenetic regulation of transcription uncovered the presence of the repressive heterochromatic mark H4K20me3 at the promoters of SASP and IFN response genes in persister cells, whereas it was absent in senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study identifies distinctive features and actionable vulnerabilities of persister cancer cells and provides mechanistic insight into their low inflammatory activity. Significance: Cell persistence and senescence are distinct states of proliferative arrest induced by cancer therapy, with persister cells being characterized by the silencing of inflammatory genes through the heterochromatic mark H4K20me3. See related commentary by Schmitt, p. 7.

抗癌疗法可诱导高度稳定的细胞衰老或耐药的持久性,后者可在疗法终止时有效逆转。虽然针对衰老细胞的方法已被广泛研究,但要开发抑制持久细胞存活的治疗策略,还需要进一步了解调控持久性的过程。在这里,我们利用 mTOR/PI3K 抑制技术开发了一个与各种来源的人类癌细胞的持久性相关的停滞模型,并对其进行了表征。持久癌细胞和衰老癌细胞都有一个扩大的溶酶体区和对BCL-XL抑制的超敏性。然而,持久癌细胞缺乏衰老的其他特征,例如片层 B1 的缺失、衰老相关的 β-半乳糖苷酶活性、MHC-I 的上调以及炎症和分泌表型(SASP)。通过全基因组 CRISPR/Cas9 筛选宿主细胞存活所需的基因发现,宿主细胞对抑制一碳(1C)代谢非常不敏感,这一点通过药理抑制 SHMT 得到了验证,SHMT 是将丝氨酸中的甲基基团导入 1C 代谢的关键酶。将 1C 代谢与转录的表观遗传调控联系起来,在持久性细胞中,抑制性异染色质标记 H4K20me3 在 SASP 和干扰素反应基因的启动子上富集,而在增殖或衰老细胞中则不存在。此外,持久性细胞过度表达了H4K20甲基转移酶KMT5B/C,它们的下调释放了炎症程序并影响了持久性细胞的存活。总之,这项研究定义了持久癌细胞的独特特征,确定了可操作的薄弱环节,并从机理上揭示了它们的低炎症活性。
{"title":"H4K20me3-Mediated Repression of Inflammatory Genes Is a Characteristic and Targetable Vulnerability of Persister Cancer Cells.","authors":"Valentina Ramponi, Laia Richart, Marta Kovatcheva, Camille Stephan-Otto Attolini, Jordi Capellades, Alice E Lord, Oscar Yanes, Gabriella Ficz, Manuel Serrano","doi":"10.1158/0008-5472.CAN-24-0529","DOIUrl":"10.1158/0008-5472.CAN-24-0529","url":null,"abstract":"<p><p>Anticancer therapies can induce cellular senescence or drug-tolerant persistence, two types of proliferative arrest that differ in their stability. While senescence is highly stable, persister cells efficiently resume proliferation upon therapy termination, resulting in tumor relapse. Here, we used an ATP-competitive mTOR inhibitor to induce and characterize persistence in human cancer cells of various origins. Using this model and previously described models of senescence, we compared the same cancer cell lines under the two types of proliferative arrest. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (senescence-associated secretory phenotype or SASP). A genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacologic inhibition of serine hydroxymethyltransferase, a key enzyme that feeds methyl groups from serine into 1C metabolism. Investigation into the relationship between 1C metabolism and the epigenetic regulation of transcription uncovered the presence of the repressive heterochromatic mark H4K20me3 at the promoters of SASP and IFN response genes in persister cells, whereas it was absent in senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study identifies distinctive features and actionable vulnerabilities of persister cancer cells and provides mechanistic insight into their low inflammatory activity. Significance: Cell persistence and senescence are distinct states of proliferative arrest induced by cancer therapy, with persister cells being characterized by the silencing of inflammatory genes through the heterochromatic mark H4K20me3. See related commentary by Schmitt, p. 7.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"32-51"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor Heterogeneity and Cooperating Cancer Hallmarks Driven by Divergent EMT Programs. 由不同 EMT 程序驱动的肿瘤异质性和合作性癌症标志。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-4309
Phoebe Carter, Yibin Kang

Epithelial-to-mesenchymal transition (EMT) is known to play roles in orchestrating cellular plasticity across many physiological and pathological contexts. Partial EMT, wherein cells maintain both epithelial and mesenchymal features, is gaining recognition for its functional importance in cancer in recent years. There are many factors regulating both partial and full EMT, and the precise mechanisms underlying these processes vary depending on the biological context. Furthermore, how different EMT states cooperate to create a heterogeneous tumor population and promote different pro-malignant features remains largely undefined. In a recent study published in Nature Cancer, Youssef and colleagues described how two disparate EMT programs, active in either organ fibrosis or embryonic development, are utilized within different cells within the same murine mammary tumor model. This work provides mechanistic insight into the development of intratumoral heterogeneity, providing evidence for the cooperation between the two EMT trajectories.

众所周知,上皮细胞向间充质细胞的转化(EMT)在许多生理和病理情况下都起着协调细胞可塑性的作用。近年来,部分 EMT(即细胞同时保持上皮和间质特征)在癌症中的功能重要性日益得到认可。调节部分和完全 EMT 的因素有很多,这些过程的确切机制因生物环境而异。此外,不同的 EMT 状态如何相互配合以形成异质性肿瘤群体并促进不同的促恶性特征在很大程度上仍未确定。在最近发表于《自然-癌症》(Nature Cancer)上的一项研究中,Youssef 及其同事描述了在同一鼠乳腺肿瘤模型中,两种不同的 EMT 程序是如何在不同细胞内被利用的,这两种 EMT 程序活跃于器官纤维化或胚胎发育过程中。这项工作从机理上揭示了瘤内异质性的发展,为两种EMT轨迹之间的合作提供了证据。
{"title":"Tumor Heterogeneity and Cooperating Cancer Hallmarks Driven by Divergent EMT Programs.","authors":"Phoebe Carter, Yibin Kang","doi":"10.1158/0008-5472.CAN-24-4309","DOIUrl":"10.1158/0008-5472.CAN-24-4309","url":null,"abstract":"<p><p>Epithelial-to-mesenchymal transition (EMT) is known to play roles in orchestrating cellular plasticity across many physiological and pathological contexts. Partial EMT, wherein cells maintain both epithelial and mesenchymal features, is gaining recognition for its functional importance in cancer in recent years. There are many factors regulating both partial and full EMT, and the precise mechanisms underlying these processes vary depending on the biological context. Furthermore, how different EMT states cooperate to create a heterogeneous tumor population and promote different pro-malignant features remains largely undefined. In a recent study published in Nature Cancer, Youssef and colleagues described how two disparate EMT programs, active in either organ fibrosis or embryonic development, are utilized within different cells within the same murine mammary tumor model. This work provides mechanistic insight into the development of intratumoral heterogeneity, providing evidence for the cooperation between the two EMT trajectories.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"12-14"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSD1 and CoREST2 Potentiate STAT3 Activity to Promote Enteroendocrine Cell Differentiation in Mucinous Colorectal Cancer. LSD1 和 CoREST2 可增强 STAT3 的活性,促进黏液性结直肠癌的肠内分泌细胞分化。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-0788
Christopher A Ladaika, Ahmed H Ghobashi, William C Boulton, Samuel A Miller, Heather M O'Hagan

Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EEC), the neuroendocrine cells of the normal colon epithelium, as compared with non-mCRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. In this study, single-cell multiomics uncovered epigenetic alterations that accompany EEC differentiation, identified STAT3 as a regulator of EEC specification, and discovered a rare cancer-specific cell type with enteric neuron-like characteristics. Furthermore, lysine-specific demethylase 1 (LSD1) and CoREST2 mediated STAT3 demethylation and enhanced STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. Collectively, these results provide a rationale for developing LSD1 inhibitors that target the interaction between LSD1 and STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC. Significance: STAT3 activity mediated by LSD1 and CoREST2 induces enteroendocrine cell specification in mucinous colorectal cancer, suggesting disrupting interaction among LSD1, CoREST2, and STAT3 as a therapeutic strategy to target neuroendocrine differentiation.

神经内分泌细胞与许多癌症类型的耐药性和总体生存率下降有关。与非粘液性结肠直肠癌(mCRC)相比,粘液性结肠直肠癌(mCRC)特有的肠内分泌细胞(EECs)(正常结肠上皮的神经内分泌细胞)富集。因此,针对 EEC 的分化可能对 mCRC 有临床价值。在这里,单细胞多组学发现了伴随EEC分化的表观遗传学改变,确定了STAT3是EEC分化的调控因子,并发现了一种具有肠神经元样特征的罕见癌症特异性细胞类型。此外,LSD1和CoREST2介导了STAT3去甲基化并增强了STAT3染色质结合。在正位异种移植小鼠模型中敲除 CoREST2 可减少原发性肿瘤的生长和肺转移。总之,这些结果为开发针对 LSD1 与 STAT3 或 CoREST2 之间相互作用的 LSD1 抑制剂提供了理论依据,从而可能改善 mCRC 患者的临床疗效。
{"title":"LSD1 and CoREST2 Potentiate STAT3 Activity to Promote Enteroendocrine Cell Differentiation in Mucinous Colorectal Cancer.","authors":"Christopher A Ladaika, Ahmed H Ghobashi, William C Boulton, Samuel A Miller, Heather M O'Hagan","doi":"10.1158/0008-5472.CAN-24-0788","DOIUrl":"10.1158/0008-5472.CAN-24-0788","url":null,"abstract":"<p><p>Neuroendocrine cells have been implicated in therapeutic resistance and worse overall survival in many cancer types. Mucinous colorectal cancer (mCRC) is uniquely enriched for enteroendocrine cells (EEC), the neuroendocrine cells of the normal colon epithelium, as compared with non-mCRC. Therefore, targeting EEC differentiation may have clinical value in mCRC. In this study, single-cell multiomics uncovered epigenetic alterations that accompany EEC differentiation, identified STAT3 as a regulator of EEC specification, and discovered a rare cancer-specific cell type with enteric neuron-like characteristics. Furthermore, lysine-specific demethylase 1 (LSD1) and CoREST2 mediated STAT3 demethylation and enhanced STAT3 chromatin binding. Knockdown of CoREST2 in an orthotopic xenograft mouse model resulted in decreased primary tumor growth and lung metastases. Collectively, these results provide a rationale for developing LSD1 inhibitors that target the interaction between LSD1 and STAT3 or CoREST2, which may improve clinical outcomes for patients with mCRC. Significance: STAT3 activity mediated by LSD1 and CoREST2 induces enteroendocrine cell specification in mucinous colorectal cancer, suggesting disrupting interaction among LSD1, CoREST2, and STAT3 as a therapeutic strategy to target neuroendocrine differentiation.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"52-68"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stimulating Soluble Guanylyl Cyclase with the Clinical Agonist Riociguat Restrains the Development and Progression of Castration-Resistant Prostate Cancer. 用临床激动剂Riociguat刺激可溶性鸟苷酸环化酶可抑制阉割耐药前列腺癌的发展和恶化
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-0133
Ling Zhang, Clara I Troccoli, Beatriz Mateo-Victoriano, Laura Misiara Lincheta, Erin Jackson, Ping Shu, Trisha Plastini, Wensi Tao, Deukwoo Kwon, Xi Steven Chen, Janaki Sharma, Merce Jorda, Surinder Kumar, David B Lombard, James L Gulley, Marijo Bilusic, Albert C Lockhart, Annie Beuve, Priyamvada Rai

Castration-resistant prostate cancer (CRPC) is incurable and fatal, making prostate cancer the second leading cancer-related cause of death for American men. CRPC results from therapeutic resistance to standard-of-care androgen deprivation (AD) treatments, through incompletely understood molecular mechanisms, and lacks durable therapeutic options. In this study, we identified enhanced soluble guanylyl cyclase (sGC) signaling as a mechanism that restrains CRPC initiation and growth. Patients with aggressive, fatal CRPC exhibited significantly lower serum levels of the sGC catalytic product cyclic GMP (cGMP) compared with the castration-sensitive stage. In emergent castration-resistant cells isolated from castration-sensitive prostate cancer populations, the obligate sGC heterodimer was repressed via methylation of its β subunit. Genetically abrogating sGC complex formation in castration-sensitive prostate cancer cells promoted evasion of AD-induced senescence and concomitant castration-resistant tumor growth. In established castration-resistant cells, the sGC complex was present but in a reversibly oxidized and inactive state. Subjecting CRPC cells to AD regenerated the functional complex, and cotreatment with riociguat, an FDA-approved sGC agonist, evoked redox stress-induced apoptosis. Riociguat decreased castration-resistant tumor growth and increased apoptotic markers, with elevated cGMP levels correlating significantly with lower tumor burden. Riociguat treatment reorganized the tumor vasculature and eliminated hypoxic tumor niches, decreasing CD44+ tumor progenitor cells and increasing the radiosensitivity of castration-resistant tumors. Thus, this study showed that enhancing sGC activity can inhibit CRPC emergence and progression through tumor cell-intrinsic and extrinsic effects. Riociguat can be repurposed to overcome CRPC, with noninvasive monitoring of cGMP levels as a marker for on-target efficacy. Significance: Soluble guanylyl cyclase signaling inhibits castration-resistant prostate cancer emergence and can be stimulated with FDA-approved riociguat to resensitize resistant tumors to androgen deprivation, providing a strategy to prevent and treat castration resistance.

阉割抵抗性前列腺癌(CRPC)是一种无法治愈的致命疾病,使前列腺癌成为美国男性第二大癌症死因。CRPC是对常规雄激素剥夺(AD)治疗产生耐药性的结果,其分子机制尚不完全清楚,缺乏持久的治疗方案。在这里,我们发现可溶性鸟苷酸环化酶(sGC)信号的增强是抑制CRPC启动和生长的一种机制。侵袭性、致命性CRPC患者血清中sGC催化产物环GMP(cGMP)的水平明显低于对阉割敏感的患者。在从对绝经敏感的前列腺癌(CSPC)群体中分离出的新出现的绝经抗性细胞中,必须的sGC异二聚体通过其β亚基的甲基化而受到抑制。在 CSPC 细胞中从基因上废除 sGC 复合物的形成,可促进逃避 AD 诱导的衰老,同时促进耐阉割肿瘤的生长。在已建立的抗阉割细胞中,sGC复合物虽然存在,但处于可逆氧化和非活性状态。将 CRPC 细胞置于 AD 中可再生出功能性复合物,与 FDA 批准的 sGC 激动剂 Riociguat 联合处理可诱发氧化还原压力诱导的细胞凋亡。Riociguat 降低了耐阉割肿瘤的生长,增加了凋亡标志物,cGMP 水平的升高与肿瘤负荷的降低有显著相关性。Riociguat 治疗重组了肿瘤血管,消除了缺氧肿瘤龛,减少了 CD44+ 肿瘤祖细胞,提高了阉割耐药肿瘤的放射敏感性。因此,本研究表明,增强sGC活性可通过肿瘤细胞内在和外在效应抑制CRPC的出现和进展。可将 Riociguat 重新用于治疗 CRPC,并将 cGMP 水平的无创监测作为靶向疗效的标志物。
{"title":"Stimulating Soluble Guanylyl Cyclase with the Clinical Agonist Riociguat Restrains the Development and Progression of Castration-Resistant Prostate Cancer.","authors":"Ling Zhang, Clara I Troccoli, Beatriz Mateo-Victoriano, Laura Misiara Lincheta, Erin Jackson, Ping Shu, Trisha Plastini, Wensi Tao, Deukwoo Kwon, Xi Steven Chen, Janaki Sharma, Merce Jorda, Surinder Kumar, David B Lombard, James L Gulley, Marijo Bilusic, Albert C Lockhart, Annie Beuve, Priyamvada Rai","doi":"10.1158/0008-5472.CAN-24-0133","DOIUrl":"10.1158/0008-5472.CAN-24-0133","url":null,"abstract":"<p><p>Castration-resistant prostate cancer (CRPC) is incurable and fatal, making prostate cancer the second leading cancer-related cause of death for American men. CRPC results from therapeutic resistance to standard-of-care androgen deprivation (AD) treatments, through incompletely understood molecular mechanisms, and lacks durable therapeutic options. In this study, we identified enhanced soluble guanylyl cyclase (sGC) signaling as a mechanism that restrains CRPC initiation and growth. Patients with aggressive, fatal CRPC exhibited significantly lower serum levels of the sGC catalytic product cyclic GMP (cGMP) compared with the castration-sensitive stage. In emergent castration-resistant cells isolated from castration-sensitive prostate cancer populations, the obligate sGC heterodimer was repressed via methylation of its β subunit. Genetically abrogating sGC complex formation in castration-sensitive prostate cancer cells promoted evasion of AD-induced senescence and concomitant castration-resistant tumor growth. In established castration-resistant cells, the sGC complex was present but in a reversibly oxidized and inactive state. Subjecting CRPC cells to AD regenerated the functional complex, and cotreatment with riociguat, an FDA-approved sGC agonist, evoked redox stress-induced apoptosis. Riociguat decreased castration-resistant tumor growth and increased apoptotic markers, with elevated cGMP levels correlating significantly with lower tumor burden. Riociguat treatment reorganized the tumor vasculature and eliminated hypoxic tumor niches, decreasing CD44+ tumor progenitor cells and increasing the radiosensitivity of castration-resistant tumors. Thus, this study showed that enhancing sGC activity can inhibit CRPC emergence and progression through tumor cell-intrinsic and extrinsic effects. Riociguat can be repurposed to overcome CRPC, with noninvasive monitoring of cGMP levels as a marker for on-target efficacy. Significance: Soluble guanylyl cyclase signaling inhibits castration-resistant prostate cancer emergence and can be stimulated with FDA-approved riociguat to resensitize resistant tumors to androgen deprivation, providing a strategy to prevent and treat castration resistance.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"134-153"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIF1α Counteracts TGFβ1-Driven TSP1 Expression in Endothelial Cells to Stimulate Angiogenesis in the Hypoxic Tumor Microenvironment. HIF1α 可抵消 TGFβ1 驱动的 TSP1 在内皮细胞中的表达,从而刺激缺氧肿瘤微环境中的血管生成。
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-2324
Yu-Wei Luo, Yang Fang, Hui-Xian Zeng, Yu-Chen Ji, Meng-Zhi Wu, Hui Li, Jie-Ying Chen, Li-Min Zheng, Jian-Hong Fang, Shi-Mei Zhuang

Emerging evidence suggests that TGFβ1 can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the antiangiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiologic angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the antiangiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating antiangiogenic factor thrombospondin 1 (TSP1) in endothelial cells (EC) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced miR145 expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma displayed increased miR145 and decreased SMAD3 and TSP1 compared with ECs from adjacent nontumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in hepatocellular carcinoma tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis. Significance: Suppression of angiogenesis by TGFβ1 is mediated by TSP1 upregulation in endothelial cells and abrogated by HIF1α-miR145 activity in the hypoxic tumor microenvironment, providing potential targets to remodel the tumor vasculature.

新的证据表明,转化生长因子β1(TGFβ1)可抑制血管生成,这与肿瘤微环境中血管生成活跃和TGFβ1大量存在的现象相矛盾。在此,我们研究了肿瘤如何克服TGFβ1的抗血管生成作用。TGFβ1治疗抑制了小鸡绒毛膜和斑马鱼模型的生理性血管生成,但不影响小鼠肝癌异种移植的血管生成。低氧诱导因子 1α(HIF1α)抑制剂可恢复 TGFβ1 对小鼠异种移植血管生成的抑制作用。与此相反,HIF1α稳定剂可抑制斑马鱼的血管生成,这表明缺氧可能会削弱 TGFβ1 的抗血管生成作用。在正常缺氧条件下,TGFβ1通过TGFβ I型受体(TGFβR1)-SMAD2/3信号传导上调内皮细胞(ECs)中的抗血管生成因子thrombospondin 1(TSP1),从而抑制血管生成。在缺氧微环境中,HIF1α会诱导microRNA-145(miR145)的表达;miR145通过结合和抑制SMAD2/3的表达,进而降低EC中TSP1的水平,从而消除TGFβ1对血管生成的抑制作用。与邻近非肿瘤肝脏的心血管细胞相比,从人类肝细胞癌(HCC)中分离出的原发性心血管细胞显示出 miR145 增加、SMAD3 和 TSP1 减少。ECs中SMAD3或TSP1的减少与HCC组织中血管生成的增加有关。总之,本研究发现,ECs中的TGFβ1-TGFβR1-SMAD2/3-TSP1信号传导抑制了血管生成。缺氧-HIF1α-miR145轴可以规避这种抑制作用,从而阐明了缺氧促进血管生成的机制。
{"title":"HIF1α Counteracts TGFβ1-Driven TSP1 Expression in Endothelial Cells to Stimulate Angiogenesis in the Hypoxic Tumor Microenvironment.","authors":"Yu-Wei Luo, Yang Fang, Hui-Xian Zeng, Yu-Chen Ji, Meng-Zhi Wu, Hui Li, Jie-Ying Chen, Li-Min Zheng, Jian-Hong Fang, Shi-Mei Zhuang","doi":"10.1158/0008-5472.CAN-24-2324","DOIUrl":"10.1158/0008-5472.CAN-24-2324","url":null,"abstract":"<p><p>Emerging evidence suggests that TGFβ1 can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the antiangiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiologic angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the antiangiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating antiangiogenic factor thrombospondin 1 (TSP1) in endothelial cells (EC) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced miR145 expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma displayed increased miR145 and decreased SMAD3 and TSP1 compared with ECs from adjacent nontumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in hepatocellular carcinoma tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis. Significance: Suppression of angiogenesis by TGFβ1 is mediated by TSP1 upregulation in endothelial cells and abrogated by HIF1α-miR145 activity in the hypoxic tumor microenvironment, providing potential targets to remodel the tumor vasculature.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"69-83"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence and/or Senescence: Not So Lasting at Last? 持久和/或衰老:最后不是那么持久?
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-3744
Clemens A Schmitt

Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.

暴露于治疗的存活癌细胞可能经历了深刻的表观遗传重塑,这使得这些耐药的持续存在者成为特别侵袭性复发的候选驱动因素。通常表现为缓慢到不生长的细胞,持久细胞是衰老或衰老样细胞。在这一期的《癌症研究》中,Ramponi及其同事研究了mTOR/PI3K抑制剂诱导的胚胎滞育样骤停(DLA)作为肺癌和黑色素瘤细胞持续存在的模型,并将这种持续状态与相同细胞中治疗诱导的衰老进行了比较。DLA表型概括了衰老细胞的一些特征,但不是所有特征,例如,缺乏炎症分泌组,否则称为衰老相关分泌表型。CRISPR辍学筛选指出,甲基提供一碳代谢,进一步指出h4k20me3介导的衰老相关分泌表型相关的IFN反应基因在dla样持久性细胞中选择性抑制。相反,抑制h4k20活性KMT5B/C甲基转移酶可抑制炎症程序,并对DLA细胞具有毒性。这些发现不仅表明了dla样持久性细胞的可利用漏洞,而且揭示了培养多传代细胞系持久性研究的一般技术和概念挑战。总的来说,所选择的方法和获得的见解将激发一场关于衰老样特征及其在耐药持久性细胞中的可逆性的富有成效的科学辩论。参见Ramponi等人的相关文章,第32页。
{"title":"Persistence and/or Senescence: Not So Lasting at Last?","authors":"Clemens A Schmitt","doi":"10.1158/0008-5472.CAN-24-3744","DOIUrl":"https://doi.org/10.1158/0008-5472.CAN-24-3744","url":null,"abstract":"<p><p>Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"85 1","pages":"7-9"},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MICAL2 Promotes Pancreatic Cancer Growth and Metastasis. MICAL2促进胰腺癌生长和转移
IF 12.5 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1158/0008-5472.CAN-24-0744
Bharti Garg, Sohini Khan, Asimina S Courelli, Ponmathi Panneerpandian, Deepa Sheik Pran Babu, Evangeline S Mose, Kevin Christian Montecillo Gulay, Shweta Sharma, Divya Sood, Alexander T Wenzel, Alexei Martsinkovskiy, Nirakar Rajbhandari, Jay Patel, Dawn Jaquish, Edgar Esparza, Katelin Jaque, Neetu Aggarwal, Guillem Lambies, Anthony D'Ippolito, Kathryn Austgen, Brian Johnston, David A Orlando, Gun Ho Jang, Steven Gallinger, Elliot Goodfellow, Pnina Brodt, Cosimo Commisso, Pablo Tamayo, Jill P Mesirov, Hervé Tiriac, Andrew M Lowy

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention.

胰腺导管腺癌(PDAC)仍然是最致命的实体癌症之一;因此,确定更有效的治疗方法是一个主要的未满足的需求。在这项研究中,我们表征了人类PDAC的超级增强子(SE)景观,以确定可能靶向的疾病驱动因素。该分析显示MICAL2是人类PDAC的超级增强子相关基因,其编码黄素单加氧酶MICAL2,诱导肌动蛋白解聚,并通过调节血清反应因子共激活因子心肌素相关转录因子(MRTF-A和MRTF-B)的可用性间接促进SRF转录。MICAL2在PDAC中过表达,MICAL2高表达与患者预后差相关。转录分析显示MICAL2上调KRAS和EMT信号通路,参与肿瘤生长和转移。在人类和小鼠PDAC细胞的功能丧失和获得实验中,MICAL2促进了ERK1/2和AKT的激活。与其在肌动蛋白解聚和KRAS信号传导中的作用一致,MICAL2的缺失也抑制了巨量红细胞增多症。MICAL2、MRTF-A和MRTF-B在体外影响PDAC细胞的增殖和迁移,促进细胞周期的进展。重要的是,MICAL2支持体内肿瘤的生长和转移。有趣的是,MRTF-B,而不是MRTF-A,在体内复制mical2驱动的表型。本研究强调了MICAL2影响PDAC生物学的多种途径,并为未来研究MICAL2靶向治疗干预的潜力提供了基础。
{"title":"MICAL2 Promotes Pancreatic Cancer Growth and Metastasis.","authors":"Bharti Garg, Sohini Khan, Asimina S Courelli, Ponmathi Panneerpandian, Deepa Sheik Pran Babu, Evangeline S Mose, Kevin Christian Montecillo Gulay, Shweta Sharma, Divya Sood, Alexander T Wenzel, Alexei Martsinkovskiy, Nirakar Rajbhandari, Jay Patel, Dawn Jaquish, Edgar Esparza, Katelin Jaque, Neetu Aggarwal, Guillem Lambies, Anthony D'Ippolito, Kathryn Austgen, Brian Johnston, David A Orlando, Gun Ho Jang, Steven Gallinger, Elliot Goodfellow, Pnina Brodt, Cosimo Commisso, Pablo Tamayo, Jill P Mesirov, Hervé Tiriac, Andrew M Lowy","doi":"10.1158/0008-5472.CAN-24-0744","DOIUrl":"10.1158/0008-5472.CAN-24-0744","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune Checkpoint Blockade Delays Cancer Development and Extends Survival in DNA Polymerase Mutator Syndromes 免疫检查点阻断延迟癌症发展并延长DNA聚合酶突变综合征的生存期
IF 11.2 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-30 DOI: 10.1158/0008-5472.can-24-2589
Akshada Sawant, Fuqian Shi, Eduardo Cararo Lopes, Zhixian Hu, Somer Abdelfattah, Jennele Baul, Jesse R. Powers, Christian S. Hinrichs, Joshua D. Rabinowitz, Chang S. Chan, Edmund C. Lattime, Shridar Ganesan, Eileen P. White
Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole. Engineered mice with Pold1 and Pole mutator alleles presented with spontaneous cancers, primarily lymphomas, lung cancer, and intestinal tumors, while Pold1 mutant mice also developed tail skin carcinomas. These cancers had highly variable tissue-type dependent increased TMB with mutational signatures associated with POLD1 and POLE mutations found in human cancers. The Pold1 mutant tail tumors displayed increased TMB, however, only a subset of established tumors responded to ICB. Similarly, introducing the mutator alleles into mice with lung cancer driven by mutant Kras and Trp53 deletion did not improve survival, whereas passaging these tumor cells in vitro without immune editing and subsequently implanting them into immune-competent mice caused tumor rejection in vivo. These results demonstrated the efficiency by which cells with antigenic mutations are eliminated in vivo. Finally, ICB treatment of mutator mice earlier, before observable tumors had developed delayed cancer onset, improved survival, and selected for tumors without aneuploidy, suggesting the potential of ICB in high-risk individuals for cancer prevention.
复制性核DNA聚合酶POLD1和POLE外切酶结构域的突变与癌症发病率增加、肿瘤突变负担(TMB)升高和对免疫检查点阻断(ICB)的反应增强有关。尽管ICB已被批准用于治疗几种癌症,但并非所有TMB升高的肿瘤都有反应,这突出表明需要更好地了解TMB如何影响肿瘤生物学和随后的免疫治疗反应。为了解决这个问题,我们产生了在Pold1和Pole的外切酶结构域具有种系和条件突变的小鼠。带有Pold1和Pole突变等位基因的工程小鼠出现自发性癌症,主要是淋巴瘤、肺癌和肠道肿瘤,而Pold1突变小鼠也发生尾部皮肤癌。这些癌症具有高度可变的组织类型依赖性增加的TMB,具有与人类癌症中发现的POLD1和POLE突变相关的突变特征。Pold1突变的尾部肿瘤显示TMB增加,然而,只有一部分已建立的肿瘤对ICB有反应。同样,将突变等位基因引入由突变Kras和Trp53缺失驱动的肺癌小鼠中并不能提高生存率,而将这些肿瘤细胞在体外传代而不进行免疫编辑并随后将其植入免疫能力强的小鼠体内会引起肿瘤排斥反应。这些结果证明了在体内消除具有抗原突变的细胞的效率。最后,在可观察到的肿瘤发生延迟癌症发作、提高生存率和选择非整倍体肿瘤之前,更早地对突变小鼠进行ICB治疗,这表明ICB在高危人群中具有预防癌症的潜力。
{"title":"Immune Checkpoint Blockade Delays Cancer Development and Extends Survival in DNA Polymerase Mutator Syndromes","authors":"Akshada Sawant, Fuqian Shi, Eduardo Cararo Lopes, Zhixian Hu, Somer Abdelfattah, Jennele Baul, Jesse R. Powers, Christian S. Hinrichs, Joshua D. Rabinowitz, Chang S. Chan, Edmund C. Lattime, Shridar Ganesan, Eileen P. White","doi":"10.1158/0008-5472.can-24-2589","DOIUrl":"https://doi.org/10.1158/0008-5472.can-24-2589","url":null,"abstract":"Mutations in the exonuclease domains of the replicative nuclear DNA polymerases POLD1 and POLE are associated with increased cancer incidence, elevated tumor mutation burden (TMB), and enhanced response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond, highlighting the need for a better understanding of how TMB affects tumor biology and subsequently immunotherapy response. To address this, we generated mice with germline and conditional mutations in the exonuclease domains of Pold1 and Pole. Engineered mice with Pold1 and Pole mutator alleles presented with spontaneous cancers, primarily lymphomas, lung cancer, and intestinal tumors, while Pold1 mutant mice also developed tail skin carcinomas. These cancers had highly variable tissue-type dependent increased TMB with mutational signatures associated with POLD1 and POLE mutations found in human cancers. The Pold1 mutant tail tumors displayed increased TMB, however, only a subset of established tumors responded to ICB. Similarly, introducing the mutator alleles into mice with lung cancer driven by mutant Kras and Trp53 deletion did not improve survival, whereas passaging these tumor cells in vitro without immune editing and subsequently implanting them into immune-competent mice caused tumor rejection in vivo. These results demonstrated the efficiency by which cells with antigenic mutations are eliminated in vivo. Finally, ICB treatment of mutator mice earlier, before observable tumors had developed delayed cancer onset, improved survival, and selected for tumors without aneuploidy, suggesting the potential of ICB in high-risk individuals for cancer prevention.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"12 1","pages":""},"PeriodicalIF":11.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cancer research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1