Zeting Jiao, Lichuan Kuang, Jiajun Gong, Aren Shibata, Koji Sato, Shiori Aoki, Yue Wang and Yasushi Hasebe
Cationic acridine dyes acted as a stabilizer for glucose oxidase adsorbed on a pencil graphite electrode and enhanced mediated bioelectrocatalysis for glucose oxidation. The order of the magnitude of the bioelectrocatalytic current was consistent with the binding constants estimated by fluorescence quenching and the binding energies estimated by docking simulation.
{"title":"Binding interaction of cationic acridine dyes with glucose oxidase to enhance mediated bioelectrocatalysis†","authors":"Zeting Jiao, Lichuan Kuang, Jiajun Gong, Aren Shibata, Koji Sato, Shiori Aoki, Yue Wang and Yasushi Hasebe","doi":"10.1039/D4NJ03781B","DOIUrl":"https://doi.org/10.1039/D4NJ03781B","url":null,"abstract":"<p >Cationic acridine dyes acted as a stabilizer for glucose oxidase adsorbed on a pencil graphite electrode and enhanced mediated bioelectrocatalysis for glucose oxidation. The order of the magnitude of the bioelectrocatalytic current was consistent with the binding constants estimated by fluorescence quenching and the binding energies estimated by docking simulation.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18646-18650"},"PeriodicalIF":2.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daming Yong, Tingting Zuo, Rongrong Qian, Zijie Wei, Jie Tian and Xu Zhang
Selenization of ZrO2 can be easily performed by stirring commercially available ZrO2 in an in situ prepared NaHSe solution. The produced material Se@/ZrO2 could catalyse oxidative alkene degradation reactions, which are key transformations in the industry. Control experiments confirmed that selenium loaded onto ZrO2 endowed it with good catalytic activity for oxidation reactions. In comparison with the density of other selenized catalytic materials such as Se/C, selenized silica and selenized polylactic acid, the density of Se@ZrO2 is higher. This feature makes it easy to precipitate from the reaction solution, facilitating its convenient recovery and reutilization.
{"title":"A facile selenization of ZrO2 endowing it with catalytic activity for oxidative alkene degradation†","authors":"Daming Yong, Tingting Zuo, Rongrong Qian, Zijie Wei, Jie Tian and Xu Zhang","doi":"10.1039/D4NJ03725A","DOIUrl":"https://doi.org/10.1039/D4NJ03725A","url":null,"abstract":"<p >Selenization of ZrO<small><sub>2</sub></small> can be easily performed by stirring commercially available ZrO<small><sub>2</sub></small> in an <em>in situ</em> prepared NaHSe solution. The produced material Se@/ZrO<small><sub>2</sub></small> could catalyse oxidative alkene degradation reactions, which are key transformations in the industry. Control experiments confirmed that selenium loaded onto ZrO<small><sub>2</sub></small> endowed it with good catalytic activity for oxidation reactions. In comparison with the density of other selenized catalytic materials such as Se/C, selenized silica and selenized polylactic acid, the density of Se@ZrO<small><sub>2</sub></small> is higher. This feature makes it easy to precipitate from the reaction solution, facilitating its convenient recovery and reutilization.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19530-19535"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perovskite oxides are promising candidates for diverse applications due to their versatile physical and chemical properties. However, their structural and compositional flexibility significantly delay the traditional methods of screening formable and thermodynamically stable perovskite oxides. Single-label machine learning methods have been extensively used to solve this challenge, but these often result in the misselection of unstable perovskite oxides by formability prediction models and non-formable perovskite oxides by stability prediction models. Here, multi-label classification (MLC) methods are employed to simultaneously screen for both formable and stable perovskite oxides. We investigate the label dependency of formability and stability labels, finding significant unconditional dependency but little conditional dependency. Using a recursive feature addition method, 10 features are selected from an initial set of 159. SHapley Additive exPlanations (SHAP) analysis reveals that the atomic weight of B-site elements and the ionic radii ratio of the A-site to the B-site cations are the most important features. Among the eight MLC methods evaluated, the classifier chains (CC) model outperforms its counterparts. An optimized CC model achieves outstanding performance with a subset accuracy of 0.932 and a Hamming loss of 0.0342. This model is further generalized on 2226 virtual perovskite combinations, identifying 42 formable and stable perovskite oxides for future investigation. This work presents an effective approach for screening potential perovskite oxides, which can be further extended to other fields that involve predicting multiple properties concurrently.
透镜氧化物具有多种物理和化学性质,因此在多种应用领域大有可为。然而,它们在结构和组成上的灵活性大大延缓了筛选可成形且热力学稳定的包晶氧化物的传统方法。单标签机器学习方法已被广泛用于解决这一难题,但这些方法往往会导致可成形性预测模型误选不稳定的包晶氧化物,而稳定性预测模型误选不可成形的包晶氧化物。在此,我们采用多标签分类(MLC)方法同时筛选可成形和稳定的包晶氧化物。我们研究了可成形性和稳定性标签的标签依赖性,发现无条件依赖性很大,但条件依赖性很小。使用递归特征添加法,从初始的 159 个特征集中选出了 10 个特征。SHapley Additive exPlanations(SHAP)分析表明,B 位元素的原子量和 A 位阳离子与 B 位阳离子的离子半径比是最重要的特征。在评估的八种 MLC 方法中,分类器链(CC)模型的表现优于同类方法。优化后的 CC 模型性能卓越,子集准确率为 0.932,汉明损失为 0.0342。该模型在 2226 种虚拟包晶组合上得到进一步推广,确定了 42 种可形成的稳定包晶氧化物,供未来研究使用。这项工作为筛选潜在的包晶氧化物提供了一种有效的方法,该方法可进一步扩展到同时预测多种性质的其他领域。
{"title":"Prediction of the formability and stability of perovskite oxides via multi-label classification†","authors":"Xiaoyan Wang and Jie Zhao","doi":"10.1039/D4NJ03783A","DOIUrl":"https://doi.org/10.1039/D4NJ03783A","url":null,"abstract":"<p >Perovskite oxides are promising candidates for diverse applications due to their versatile physical and chemical properties. However, their structural and compositional flexibility significantly delay the traditional methods of screening formable and thermodynamically stable perovskite oxides. Single-label machine learning methods have been extensively used to solve this challenge, but these often result in the misselection of unstable perovskite oxides by formability prediction models and non-formable perovskite oxides by stability prediction models. Here, multi-label classification (MLC) methods are employed to simultaneously screen for both formable and stable perovskite oxides. We investigate the label dependency of formability and stability labels, finding significant unconditional dependency but little conditional dependency. Using a recursive feature addition method, 10 features are selected from an initial set of 159. SHapley Additive exPlanations (SHAP) analysis reveals that the atomic weight of B-site elements and the ionic radii ratio of the A-site to the B-site cations are the most important features. Among the eight MLC methods evaluated, the classifier chains (CC) model outperforms its counterparts. An optimized CC model achieves outstanding performance with a subset accuracy of 0.932 and a Hamming loss of 0.0342. This model is further generalized on 2226 virtual perovskite combinations, identifying 42 formable and stable perovskite oxides for future investigation. This work presents an effective approach for screening potential perovskite oxides, which can be further extended to other fields that involve predicting multiple properties concurrently.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18917-18924"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A CuI@UiO-67-bpy (MOF II) catalyst was successfully synthesized by immobilizing a small amount of CuI onto the zirconium-based MOF (UiO-67-bpy, MOF I). Copper-doped CuI@UiO-67-bpy has an isostructural nature with the parent UiO-67 framework and a large surface area of approximately 1285 m2 g−1. Moreover, the material was thoroughly characterized using SEM, PXRD, TGA, FTIR, and XPS methods. The as-synthesized CuI@UiO-67-bpy catalyst can be an efficient heterogeneous catalyst for promoting C–H arylation of 1,3,4-oxadiazoles with aryl iodides and benzoxazoles or benzothiazoles with diaryliodonium salts. Furthermore, the catalyst was recoverable and reusable, maintaining a high catalytic activity even after three cycles. The combination of the advantages of both homogeneous molecular CuI catalysts and solid MOF structures in this system may bring new opportunities for the development of highly active heterogeneous copper catalysts for a variety of Cu-catalyzed transformations.
{"title":"A highly efficient and recyclable CuI@UiO-67-bpy catalyst for direct sp2 C–H arylation of azoles†","authors":"Tingting Li, Nan Li and Dabin Shi","doi":"10.1039/D4NJ03726J","DOIUrl":"https://doi.org/10.1039/D4NJ03726J","url":null,"abstract":"<p >A CuI@UiO-67-bpy (MOF <strong>II</strong>) catalyst was successfully synthesized by immobilizing a small amount of CuI onto the zirconium-based MOF (UiO-67-bpy, MOF <strong>I</strong>). Copper-doped CuI@UiO-67-bpy has an isostructural nature with the parent UiO-67 framework and a large surface area of approximately 1285 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>. Moreover, the material was thoroughly characterized using SEM, PXRD, TGA, FTIR, and XPS methods. The as-synthesized CuI@UiO-67-bpy catalyst can be an efficient heterogeneous catalyst for promoting C–H arylation of 1,3,4-oxadiazoles with aryl iodides and benzoxazoles or benzothiazoles with diaryliodonium salts. Furthermore, the catalyst was recoverable and reusable, maintaining a high catalytic activity even after three cycles. The combination of the advantages of both homogeneous molecular CuI catalysts and solid MOF structures in this system may bring new opportunities for the development of highly active heterogeneous copper catalysts for a variety of Cu-catalyzed transformations.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19418-19426"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia Shi, Zhuorong Fan, Rongrong Zhang, Ziyu Feng, Xiaojuan Gong, Shengmei Song and Wenjuan Dong
The excellent anti-interference ability of near-infrared (NIR) fluorescent materials derived from long-wavelength emission has made them one of the most fascinating fluorescence probes. In this work, gold nanoclusters stabilized with glutathione (GSH-AuNCs) were prepared and exhibited excellent NIR fluorescence at 806 nm, indicating their potential as excellent fluorescence probes. It is gratifying that S2− could be sensitively and rapidly recognized through the “turn-off” strategy of NIR fluorescence of AuNCs. It is speculated that the quenching was due to the aggregation-caused quenching (ACQ) phenomenon. The combination of a longer wavelength emission of 806 nm and the strong binding ability of Au and S endowed the constructed sensing system with outstanding sensitivity and selectivity. A good linear relationship for the detection of S2− was obtained in the range of 0–23.75 μM, with a limit of detection (LOD) of 14.67 nM (S/N = 3). This NIR fluorescence probe was successfully used for the detection of S2− in real samples with satisfactory results.
{"title":"Near-infrared fluorescence probes for the selective and sensitive detection of sulfur ions based on glutathione capped gold nanoclusters†","authors":"Jia Shi, Zhuorong Fan, Rongrong Zhang, Ziyu Feng, Xiaojuan Gong, Shengmei Song and Wenjuan Dong","doi":"10.1039/D4NJ04452E","DOIUrl":"https://doi.org/10.1039/D4NJ04452E","url":null,"abstract":"<p >The excellent anti-interference ability of near-infrared (NIR) fluorescent materials derived from long-wavelength emission has made them one of the most fascinating fluorescence probes. In this work, gold nanoclusters stabilized with glutathione (GSH-AuNCs) were prepared and exhibited excellent NIR fluorescence at 806 nm, indicating their potential as excellent fluorescence probes. It is gratifying that S<small><sup>2−</sup></small> could be sensitively and rapidly recognized through the “turn-off” strategy of NIR fluorescence of AuNCs. It is speculated that the quenching was due to the aggregation-caused quenching (ACQ) phenomenon. The combination of a longer wavelength emission of 806 nm and the strong binding ability of Au and S endowed the constructed sensing system with outstanding sensitivity and selectivity. A good linear relationship for the detection of S<small><sup>2−</sup></small> was obtained in the range of 0–23.75 μM, with a limit of detection (LOD) of 14.67 nM (S/N = 3). This NIR fluorescence probe was successfully used for the detection of S<small><sup>2−</sup></small> in real samples with satisfactory results.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 45","pages":" 19308-19314"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinxin Li, Tao Jing, Haiyan Qi, Yunpeng Zhao, Yao Wang and Linfeng Fan
Alpha-fetoprotein (AFP) is a characteristic marker of liver cancer, and its accurate detection is of great significance for the early detection of liver cancer. This study utilizes visible light as the excitation light source, employs electrochemical measurement, and incorporates the AFP aptamer as the biorecognition element to construct a photoelectrochemical (PEC) biosensor for the highly sensitive detection of AFP. A Z-scheme heterostructure is constructed via a two-step hydrothermal method, and CdS nanoparticles are anchored on TiO2NRA and BiOI nanosheets with high specific surface areas. The photocurrent response of the BiOI/CdS/TiO2NRA composite material is 4.5 times that of TiO2NRA. By analyzing the energy band positions, the electron transfer mechanisms of Z-scheme heterojunctions in CdS/TiO2NRA and BiOI/CdS photoactive materials were elucidated. Subsequently, the AFP aptamer was immobilized on the base electrode surface via the CN structure to fabricate a self-supporting sensing platform. The PEC biosensor demonstrates excellent detection performance within the linear range of 1 nM ∼ 250 nM, exhibiting high selectivity and the detection limit is 0.59 nM (S/N = 3). It has been effectively utilized for the detection of AFP in blood, providing a practical method for early detection and prevention of liver cancer, and also offering new insights for the design of other similar characteristic marker biosensors.
{"title":"A novel photoelectrochemical aptasensor for alpha-fetoprotein assay based on a 3D self-supporting TiO2/CdS/BiOI Z-scheme heterojunction","authors":"Jinxin Li, Tao Jing, Haiyan Qi, Yunpeng Zhao, Yao Wang and Linfeng Fan","doi":"10.1039/D4NJ03779K","DOIUrl":"https://doi.org/10.1039/D4NJ03779K","url":null,"abstract":"<p >Alpha-fetoprotein (AFP) is a characteristic marker of liver cancer, and its accurate detection is of great significance for the early detection of liver cancer. This study utilizes visible light as the excitation light source, employs electrochemical measurement, and incorporates the AFP aptamer as the biorecognition element to construct a photoelectrochemical (PEC) biosensor for the highly sensitive detection of AFP. A Z-scheme heterostructure is constructed <em>via</em> a two-step hydrothermal method, and CdS nanoparticles are anchored on TiO<small><sub>2</sub></small>NRA and BiOI nanosheets with high specific surface areas. The photocurrent response of the BiOI/CdS/TiO<small><sub>2</sub></small>NRA composite material is 4.5 times that of TiO<small><sub>2</sub></small>NRA. By analyzing the energy band positions, the electron transfer mechanisms of Z-scheme heterojunctions in CdS/TiO<small><sub>2</sub></small>NRA and BiOI/CdS photoactive materials were elucidated. Subsequently, the AFP aptamer was immobilized on the base electrode surface <em>via</em> the C<img>N structure to fabricate a self-supporting sensing platform. The PEC biosensor demonstrates excellent detection performance within the linear range of 1 nM ∼ 250 nM, exhibiting high selectivity and the detection limit is 0.59 nM (S/N = 3). It has been effectively utilized for the detection of AFP in blood, providing a practical method for early detection and prevention of liver cancer, and also offering new insights for the design of other similar characteristic marker biosensors.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18873-18882"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Scientists have focused more on the role of metal-based nanoparticles (MNPs) in sustainable agriculture. MNPs such as silver (Ag), zinc (Zn), cupper (Cu), iron (Fe), and titanium (Ti) nanoparticles and their oxides like FeO2, CuO, TiO2, and Al2O3 have been frequently utilised in agricultural fields. Green synthesis methods use nano-biotechnological advancements to minimize metal salts and stabilize MNPs. Conventional agriculture uses lots of fertilizers and chemicals that harm the environment. Sustainable agriculture protects many species and the ecosystem by using few agrochemicals. Sustainable agriculture includes low-input methods with lower production costs and higher net returns. Nanotechnology can improve agricultural inputs’ performance by using nanoparticles, protecting agro-ecosystems’ long-term growth. Nano-agrochemicals include nano-carrier systems coated with agrochemicals, nanopesticides, nanofertilizers, nanoherbicides, and other products. These products can improve crop productivity, prevent plant diseases, and eliminate weeds and insects to save money and energy and reduce waste. This review article covers the latest advances in MNPs for ecologically friendly agricultural nanotechnology and their potential for sustainable crop production, protection, and management.
{"title":"Modern agricultural breakthroughs made using metal-based nanoparticles: an environmentally friendly strategy","authors":"Milan K. Barman","doi":"10.1039/D4NJ04053H","DOIUrl":"https://doi.org/10.1039/D4NJ04053H","url":null,"abstract":"<p >Scientists have focused more on the role of metal-based nanoparticles (MNPs) in sustainable agriculture. MNPs such as silver (Ag), zinc (Zn), cupper (Cu), iron (Fe), and titanium (Ti) nanoparticles and their oxides like FeO<small><sub>2</sub></small>, CuO, TiO<small><sub>2</sub></small>, and Al<small><sub>2</sub></small>O<small><sub>3</sub></small> have been frequently utilised in agricultural fields. Green synthesis methods use nano-biotechnological advancements to minimize metal salts and stabilize MNPs. Conventional agriculture uses lots of fertilizers and chemicals that harm the environment. Sustainable agriculture protects many species and the ecosystem by using few agrochemicals. Sustainable agriculture includes low-input methods with lower production costs and higher net returns. Nanotechnology can improve agricultural inputs’ performance by using nanoparticles, protecting agro-ecosystems’ long-term growth. Nano-agrochemicals include nano-carrier systems coated with agrochemicals, nanopesticides, nanofertilizers, nanoherbicides, and other products. These products can improve crop productivity, prevent plant diseases, and eliminate weeds and insects to save money and energy and reduce waste. This review article covers the latest advances in MNPs for ecologically friendly agricultural nanotechnology and their potential for sustainable crop production, protection, and management.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 45","pages":" 19337-19354"},"PeriodicalIF":2.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawei Yang, Junfei Wu, Lina Gao, Long-Hui Duan and Jing Wang
The pollution of antibiotics in water resources was addressed by constructing an SBA-15@NU-1000 composite via a one-pot hydrothermal method, and the specimen was characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, small-angle X-ray diffraction, thermogravimetric analysis, N2 sorption isotherms as well as Fourier transform infrared and X-ray photoelectron spectroscopy. The amino functional group of SBA-15 contributed to its successful combination with NU-1000, and the doping ratio of SBA-15 affected the adsorption capacity of tetracycline. The SBA-15@NU-1000 composite not only exhibited a faster adsorption rate but also higher adsorption capacity than pure NU-1000. In particular, the equilibrium adsorption time for tetracycline decreased from 40 to 10 min, and the adsorption capacity for tetracycline increased from 356 to 424 mg g−1. The superior adsorption performance of SBA-15@NU-1000 compared with that of NU-1000 was attributed to the amino functional SBA-15 directing the growth of NU-1000 on its outer surface, which minimized the particle size of NU-1000 and increased the production of adsorption sites. This study demonstrated the effectiveness of successfully combining a metal–organic framework (MOF) with a mesoporous silica support, either grown in the interior channel or on the exterior surface, to promote the adsorption performance of MOFs.
{"title":"Amino functional SBA-15 assisted NU-1000 for the rapid and efficient adsorption of tetracycline antibiotics†","authors":"Jiawei Yang, Junfei Wu, Lina Gao, Long-Hui Duan and Jing Wang","doi":"10.1039/D4NJ03736G","DOIUrl":"https://doi.org/10.1039/D4NJ03736G","url":null,"abstract":"<p >The pollution of antibiotics in water resources was addressed by constructing an SBA-15@NU-1000 composite <em>via</em> a one-pot hydrothermal method, and the specimen was characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, small-angle X-ray diffraction, thermogravimetric analysis, N<small><sub>2</sub></small> sorption isotherms as well as Fourier transform infrared and X-ray photoelectron spectroscopy. The amino functional group of SBA-15 contributed to its successful combination with NU-1000, and the doping ratio of SBA-15 affected the adsorption capacity of tetracycline. The SBA-15@NU-1000 composite not only exhibited a faster adsorption rate but also higher adsorption capacity than pure NU-1000. In particular, the equilibrium adsorption time for tetracycline decreased from 40 to 10 min, and the adsorption capacity for tetracycline increased from 356 to 424 mg g<small><sup>−1</sup></small>. The superior adsorption performance of SBA-15@NU-1000 compared with that of NU-1000 was attributed to the amino functional SBA-15 directing the growth of NU-1000 on its outer surface, which minimized the particle size of NU-1000 and increased the production of adsorption sites. This study demonstrated the effectiveness of successfully combining a metal–organic framework (MOF) with a mesoporous silica support, either grown in the interior channel or on the exterior surface, to promote the adsorption performance of MOFs.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 45","pages":" 19101-19112"},"PeriodicalIF":2.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydroxylamine hydrochloride-catalyzed transamidation of primary thioamides with primary and secondary amines via C(S)–N bond cleavage and formation has been reported. Readily available primary thioamides are employed as substrates to convert desired secondary and tertiary thioamides using green and benign hydroxylamine hydrochloride as a catalyst. The utility of this approach has been demonstrated via excellent functional group tolerance and broad substrate scope, which is expected to be widely used in fields such as synthetic chemistry, pharmaceutical chemistry, etc.
{"title":"Transamidation of primary thioamides with primary and secondary amines via C(S)–N bond cleavage and formation by hydroxylamine hydrochloride catalysis†","authors":"Yu Gao, Fang Chai and Chengwei Liu","doi":"10.1039/D4NJ03032J","DOIUrl":"https://doi.org/10.1039/D4NJ03032J","url":null,"abstract":"<p >Hydroxylamine hydrochloride-catalyzed transamidation of primary thioamides with primary and secondary amines <em>via</em> C(S)–N bond cleavage and formation has been reported. Readily available primary thioamides are employed as substrates to convert desired secondary and tertiary thioamides using green and benign hydroxylamine hydrochloride as a catalyst. The utility of this approach has been demonstrated <em>via</em> excellent functional group tolerance and broad substrate scope, which is expected to be widely used in fields such as synthetic chemistry, pharmaceutical chemistry, <em>etc.</em></p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19496-19500"},"PeriodicalIF":2.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey Joseph John Jeya Kamaraj, Lawrence Daniel Stephen Tamil, Senthil Pandian Muthu and Ramasamy Perumalsamy
The increasing global energy demands, rapid consumption of fossil fuels, and rising environmental crisis are all crucial challenges requiring immediate attention. Maximizing supercapacitor performance necessitates superior electrochemical performance and outstanding stability in the electrode materials. Altering the structural and electrochemical characteristics of transition metal selenides by substituting cations and subsequently hybridizing them with MXenes is a potential strategy for designing efficient supercapacitors. Herein, facile solvothermal technique was employed to synthesize cation-substituted CoMoSe2 nanoparticles, which were subsequently hybridized with Ti3C2 before being employed as a supercapacitor electrode. This novel attempt to substitute molybdenum (Mo) in the CoSe2 lattice and the subsequent hybridization resulted in a supercapacitor electrode that exhibited enhanced electrochemical properties owing to its improved charge transfer kinetics, multivalences, and enhanced active sites. The outstanding faradaic redox characteristics of the fabricated electrodes show remarkable pseudocapacitive behaviour within a potential range between −0.2 and 0.45 V. The developed electrodes in a standard three-electrode setup show a specific capacitance of 520 F g−1 at a current density of 1 A g−1, which is greater than that of pure CoMoSe2 and mono-metal selenide CoSe2. Over 5000 cycles at 5 A g−1, the optimal CoMoSe2@Ti3C2 electrode maintains 97.43% of its initial specific capacitance. Furthermore, the designed asymmetric supercapacitor device (ASC) exhibited exceptional performance and stability with an energy density of 73.7 W h kg−1 at 740 W kg−1 power density and 93.3% retention after 15 000 cycles. This work thus demonstrates that metal selenides are a suitable material for supercapacitors. Furthermore, the cation substitution and MXene hybridization could potentially be employed as performance-enhancing strategies.
全球日益增长的能源需求、化石燃料的快速消耗以及不断加剧的环境危机都是亟待解决的重大挑战。要最大限度地提高超级电容器的性能,电极材料必须具有卓越的电化学性能和出色的稳定性。通过取代阳离子改变过渡金属硒化物的结构和电化学特性,然后将其与二氧化二烯杂化,是设计高效超级电容器的一种潜在策略。本文采用简便的溶热技术合成了阳离子取代的 CoMoSe2 纳米粒子,并在将其用作超级电容器电极之前与 Ti3C2 进行了杂化。这种在 CoSe2 晶格中替代钼(Mo)的新尝试以及随后的杂化,使得超级电容器电极的电化学性质得到了增强,这得益于其电荷转移动力学的改善、多价性和活性位点的增强。在标准三电极设置中,所开发的电极在电流密度为 1 A g-1 时的比电容为 520 F g-1,高于纯 CoMoSe2 和单金属硒 CoSe2。在 5 A g-1 条件下循环 5000 次后,最佳 CoMoSe2@Ti3C2 电极的比电容仍能保持 97.43% 的初始比电容。此外,所设计的非对称超级电容器装置(ASC)表现出卓越的性能和稳定性,在功率密度为 740 W kg-1 时,能量密度为 73.7 W h kg-1,在 15000 次循环后,能量密度保持率为 93.3%。因此,这项工作证明金属硒化物是超级电容器的合适材料。此外,阳离子置换和 MXene 杂化有可能被用作提高性能的策略。
{"title":"Cation-boosted CoMoSe2@Ti3C2 hybrid electrode framework for high-performance asymmetric supercapacitors†","authors":"Jeffrey Joseph John Jeya Kamaraj, Lawrence Daniel Stephen Tamil, Senthil Pandian Muthu and Ramasamy Perumalsamy","doi":"10.1039/D4NJ04065A","DOIUrl":"https://doi.org/10.1039/D4NJ04065A","url":null,"abstract":"<p >The increasing global energy demands, rapid consumption of fossil fuels, and rising environmental crisis are all crucial challenges requiring immediate attention. Maximizing supercapacitor performance necessitates superior electrochemical performance and outstanding stability in the electrode materials. Altering the structural and electrochemical characteristics of transition metal selenides by substituting cations and subsequently hybridizing them with MXenes is a potential strategy for designing efficient supercapacitors. Herein, facile solvothermal technique was employed to synthesize cation-substituted CoMoSe<small><sub>2</sub></small> nanoparticles, which were subsequently hybridized with Ti<small><sub>3</sub></small>C<small><sub>2</sub></small> before being employed as a supercapacitor electrode. This novel attempt to substitute molybdenum (Mo) in the CoSe<small><sub>2</sub></small> lattice and the subsequent hybridization resulted in a supercapacitor electrode that exhibited enhanced electrochemical properties owing to its improved charge transfer kinetics, multivalences, and enhanced active sites. The outstanding faradaic redox characteristics of the fabricated electrodes show remarkable pseudocapacitive behaviour within a potential range between −0.2 and 0.45 V. The developed electrodes in a standard three-electrode setup show a specific capacitance of 520 F g<small><sup>−1</sup></small> at a current density of 1 A g<small><sup>−1</sup></small>, which is greater than that of pure CoMoSe<small><sub>2</sub></small> and mono-metal selenide CoSe<small><sub>2</sub></small>. Over 5000 cycles at 5 A g<small><sup>−1</sup></small>, the optimal CoMoSe<small><sub>2</sub></small>@Ti<small><sub>3</sub></small>C<small><sub>2</sub></small> electrode maintains 97.43% of its initial specific capacitance. Furthermore, the designed asymmetric supercapacitor device (ASC) exhibited exceptional performance and stability with an energy density of 73.7 W h kg<small><sup>−1</sup></small> at 740 W kg<small><sup>−1</sup></small> power density and 93.3% retention after 15 000 cycles. This work thus demonstrates that metal selenides are a suitable material for supercapacitors. Furthermore, the cation substitution and MXene hybridization could potentially be employed as performance-enhancing strategies.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18683-18694"},"PeriodicalIF":2.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}