首页 > 最新文献

Cell Reports Physical Science最新文献

英文 中文
Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform 利用基于多肽核酸的可编程平台识别 RNA 二级结构
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-12 DOI: 10.1016/j.xcrp.2024.102150

RNA secondary structures comprise double-stranded (ds) and single-stranded (ss) regions. Antisense peptide nucleic acids (asPNAs) enable the targeting of ssRNAs and weakly formed dsRNAs. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) allow for dsRNA targeting. A programmable RNA-structure-specific targeting strategy is needed for the simultaneous recognition of dsRNAs and ssRNAs. Here, we report on combining dbPNAs and asPNAs (designated as daPNAs) for the targeting of dsRNA-ssRNA junctions. Our data suggest that combining traditional asPNA (with a 4-letter code: T, C, A, and G) and dbPNA (with a 4-letter code: T or s2U, L, Q, and E) scaffolds facilitates RNA-structure-specific tight binding (nM to μM). We further apply our daPNAs in substrate-specific inhibition of Dicer acting on precursor miRNA (pre-miR)-198 in a cell-free assay and regulating ribosomal frameshifting induced by model hairpins in both cell-free and cell culture assays. daPNAs would be a useful platform for developing chemical probes and therapeutic ligands targeting RNA.

RNA 二级结构包括双链 (ds) 和单链 (ss) 区域。反义肽核酸(asPNAs)可以靶向ssRNAs和形成较弱的dsRNAs。核碱基修饰的 dsRNA 结合 PNA(dsPNA)可用于 dsRNA 靶向。要同时识别dsRNA和ssRNA,需要一种可编程的RNA结构特异性靶向策略。在这里,我们报告了结合 dbPNAs 和 asPNAs(称为 daPNAs)来靶向 dsRNA-ssRNA 连接的情况。我们的数据表明,结合传统的 asPNA(四字母代码:T、C、A 和 G)和 dbPNA(四字母代码:T 或 s2U、L、Q 和 E)支架可促进 RNA 结构特异性的紧密结合(nM 到 μM)。我们进一步将我们的 daPNAs 应用于无细胞试验中抑制 Dicer 作用于前体 miRNA(pre-miR)-198 的底物特异性,以及无细胞和细胞培养试验中调节模型发夹诱导的核糖体框架转换。
{"title":"Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform","authors":"","doi":"10.1016/j.xcrp.2024.102150","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102150","url":null,"abstract":"<p>RNA secondary structures comprise double-stranded (ds) and single-stranded (ss) regions. Antisense peptide nucleic acids (asPNAs) enable the targeting of ssRNAs and weakly formed dsRNAs. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) allow for dsRNA targeting. A programmable RNA-structure-specific targeting strategy is needed for the simultaneous recognition of dsRNAs and ssRNAs. Here, we report on combining dbPNAs and asPNAs (designated as daPNAs) for the targeting of dsRNA-ssRNA junctions. Our data suggest that combining traditional asPNA (with a 4-letter code: T, C, A, and G) and dbPNA (with a 4-letter code: T or s<sup>2</sup>U, L, Q, and E) scaffolds facilitates RNA-structure-specific tight binding (nM to μM). We further apply our daPNAs in substrate-specific inhibition of Dicer acting on precursor miRNA (pre-miR)-198 in a cell-free assay and regulating ribosomal frameshifting induced by model hairpins in both cell-free and cell culture assays. daPNAs would be a useful platform for developing chemical probes and therapeutic ligands targeting RNA.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nature-based solution for regulating the inflammatory phase of diabetic wound healing using a cold atmospheric plasma 利用冷大气等离子体调节糖尿病伤口愈合炎症阶段的自然解决方案
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-09 DOI: 10.1016/j.xcrp.2024.102147

Diabetes is an inflammatory disease that usually causes chronic wounds for which no satisfactory therapies currently exist. Here we report a physical approach using a cold atmospheric plasma (CAP) to target diabetic wounds locally for regulating the inflammatory phase of the wounds. In this paper, a comprehensive analysis of inflammatory factors combined with physical investigations of the helium plasma jet characteristics is conducted. The physical and biological safety and clinical application prospects of the CAP jet for the human body are also analyzed. The results demonstrate for the first time that CAP therapy can stimulate the body’s own inflammatory regulation function to achieve a normal state, rather than excessively interfere in a single target. This involves the inhibition of pro-inflammatory factors in the onset subphase and the promotion of anti-inflammatory factors in the subsequent resolution subphase. This research contributes to the development of highly effective and safe topical therapies to promote chronic wound healing.

糖尿病是一种炎症性疾病,通常会导致慢性伤口,目前还没有令人满意的治疗方法。在此,我们报告了一种利用冷大气等离子体(CAP)针对糖尿病伤口局部调节伤口炎症阶段的物理方法。本文结合氦等离子体射流特性的物理研究,对炎症因素进行了全面分析。同时还分析了 CAP 射流对人体的物理和生物安全性以及临床应用前景。研究结果首次证明,CAP疗法可以激发人体自身的炎症调节功能,使其达到正常状态,而不是对单一目标进行过度干预。这包括在发病子阶段抑制促炎因子,在随后的消炎子阶段促进抗炎因子。这项研究有助于开发高效安全的局部疗法,促进慢性伤口愈合。
{"title":"A nature-based solution for regulating the inflammatory phase of diabetic wound healing using a cold atmospheric plasma","authors":"","doi":"10.1016/j.xcrp.2024.102147","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102147","url":null,"abstract":"<p>Diabetes is an inflammatory disease that usually causes chronic wounds for which no satisfactory therapies currently exist. Here we report a physical approach using a cold atmospheric plasma (CAP) to target diabetic wounds locally for regulating the inflammatory phase of the wounds. In this paper, a comprehensive analysis of inflammatory factors combined with physical investigations of the helium plasma jet characteristics is conducted. The physical and biological safety and clinical application prospects of the CAP jet for the human body are also analyzed. The results demonstrate for the first time that CAP therapy can stimulate the body’s own inflammatory regulation function to achieve a normal state, rather than excessively interfere in a single target. This involves the inhibition of pro-inflammatory factors in the onset subphase and the promotion of anti-inflammatory factors in the subsequent resolution subphase. This research contributes to the development of highly effective and safe topical therapies to promote chronic wound healing.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond slurry cast: Patterning of a monolithic active material sheet to form free-standing, solvent-free, and low-tortuosity battery electrodes 超越浆料浇铸:对整体活性材料薄片进行图案化,以形成独立、无溶剂和低涡流的电池电极
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1016/j.xcrp.2024.102143

Commercial lithium-ion battery electrodes today are manufactured by slurry casting active material powder onto a metal current collector foil. This manufacturing process has become embedded over recent decades but limits commercial cell performance. This paper presents patterning of a monolithic active material sheet as an alternative to slurry casting. The concept is proven experimentally by laser drilling a pyrolytic graphite sheet to increase the gravimetric active material capacity from 10 mA h g−1 to 450 mA h g−1, when used as a negative lithium-intercalation electrode. Cell-level calculations show that, without changing the chemistry, a pyrolytic graphite sheet electrode with a hexagonal array of 5 μm diameter, 20 μm pitch channels could increase the gravimetric energy density of a LGM50 cell by 22% to 322 W h kg−1. By moving beyond slurry casting, patterned monolithic electrodes could enable batteries with lower cost, reduced energy intensity, and enhanced performance.

目前,商用锂离子电池电极的制造方法是将活性材料粉末浆状浇铸到金属集流箔上。近几十年来,这种制造工艺已成为嵌入式工艺,但却限制了商用电池的性能。本文介绍了整体活性材料片的图案化,作为浆料浇铸的替代方法。通过激光钻孔热解石墨片,实验证明了这一概念,在用作锂闰负极时,可将活性材料的重力容量从 10 mA h g-1 提高到 450 mA h g-1。电池级计算显示,在不改变化学成分的情况下,具有直径 5 μm、间距 20 μm 的六边形沟道阵列的热解石墨片电极可将 LGM50 电池的重力能量密度提高 22%,达到 322 W h kg-1。通过超越浆料浇铸技术,图案化单片电极可使电池成本更低、能量密度更低、性能更强。
{"title":"Beyond slurry cast: Patterning of a monolithic active material sheet to form free-standing, solvent-free, and low-tortuosity battery electrodes","authors":"","doi":"10.1016/j.xcrp.2024.102143","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102143","url":null,"abstract":"<p>Commercial lithium-ion battery electrodes today are manufactured by slurry casting active material powder onto a metal current collector foil. This manufacturing process has become embedded over recent decades but limits commercial cell performance. This paper presents patterning of a monolithic active material sheet as an alternative to slurry casting. The concept is proven experimentally by laser drilling a pyrolytic graphite sheet to increase the gravimetric active material capacity from 10 mA h g<sup>−1</sup> to 450 mA h g<sup>−1</sup>, when used as a negative lithium-intercalation electrode. Cell-level calculations show that, without changing the chemistry, a pyrolytic graphite sheet electrode with a hexagonal array of 5 μm diameter, 20 μm pitch channels could increase the gravimetric energy density of a LGM50 cell by 22% to 322 W h kg<sup>−1</sup>. By moving beyond slurry casting, patterned monolithic electrodes could enable batteries with lower cost, reduced energy intensity, and enhanced performance.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design and fabrication of hierarchical ceramics using bioinspired microstructures for tailorable strength and toughness 利用生物启发微结构合理设计和制造分层陶瓷,实现可定制的强度和韧性
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1016/j.xcrp.2024.102140

Dense bioceramics feature hierarchical microstructures with weak interfaces that endow them with strength, toughness, and structural functionalities. Conversely, most technical ceramics possess limited structural complexity and strong grain boundaries that restrict their toughness and functions. Here, we report a rational design strategy to fabricate ceramics with various bioinspired microstructural motifs, leading to strength, toughness, and locally varying properties. We employ magnetically assisted slip casting (MASC) for local orientations of alumina microplatelets and ultrafast high-temperature sintering (UHS) as a densifying method. We sequentially vary the slurry composition and sintering processes to attain high texture, relative density, and weak grain interfaces. We realize dense ceramics with horizontal, periodic, and graded motifs that exhibit direction- and site-specific properties, with flexural strengths of ∼290, 155, and 215 MPa, and fracture toughness of ∼7, 5, and 10 MPa·m0.5, respectively. The strategy could be used to fabricate ceramic composites for tailorable local and bulk properties.

致密生物陶瓷具有分层微结构和弱界面,这赋予了它们强度、韧性和结构功能。相反,大多数技术陶瓷具有有限的结构复杂性和强晶界,这限制了它们的韧性和功能。在此,我们报告了一种合理的设计策略,以制造具有各种生物启发微结构图案的陶瓷,从而获得强度、韧性和局部不同的特性。我们采用磁助滑移铸造(MASC)来实现氧化铝微孔的局部取向,并采用超快高温烧结(UHS)作为致密化方法。我们依次改变浆料成分和烧结工艺,以获得高质地、相对密度和弱晶粒界面。我们实现了具有水平、周期和分级图案的致密陶瓷,这些图案表现出特定方向和部位的特性,抗弯强度分别为 ∼290、155 和 215 兆帕,断裂韧性分别为 ∼7、5 和 10 兆帕-m0.5。该策略可用于制造陶瓷复合材料,以获得可定制的局部和整体性能。
{"title":"Rational design and fabrication of hierarchical ceramics using bioinspired microstructures for tailorable strength and toughness","authors":"","doi":"10.1016/j.xcrp.2024.102140","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102140","url":null,"abstract":"<p>Dense bioceramics feature hierarchical microstructures with weak interfaces that endow them with strength, toughness, and structural functionalities. Conversely, most technical ceramics possess limited structural complexity and strong grain boundaries that restrict their toughness and functions. Here, we report a rational design strategy to fabricate ceramics with various bioinspired microstructural motifs, leading to strength, toughness, and locally varying properties. We employ magnetically assisted slip casting (MASC) for local orientations of alumina microplatelets and ultrafast high-temperature sintering (UHS) as a densifying method. We sequentially vary the slurry composition and sintering processes to attain high texture, relative density, and weak grain interfaces. We realize dense ceramics with horizontal, periodic, and graded motifs that exhibit direction- and site-specific properties, with flexural strengths of ∼290, 155, and 215 MPa, and fracture toughness of ∼7, 5, and 10 MPa·m<sup>0.5</sup>, respectively. The strategy could be used to fabricate ceramic composites for tailorable local and bulk properties.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical recycling of post-consumer polyester wastes using a tertiary amine organocatalyst 使用叔胺有机催化剂对消费后聚酯废料进行化学回收利用
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1016/j.xcrp.2024.102145

Recycling diverse waste plastics poses challenges due to complex sorting and processing, resulting in high costs and inefficiency. To tackle this, we present a metal-free catalytic sorting method for targeted deconstruction of polyester from post-consumer plastic waste, encompassing textiles, plastic mixtures, and multilayer packaging materials. This method employs N-methylpiperidine, a tertiary amine catalyst in methanol, to depolymerize polyethylene terephthalate (PET). Operating under these conditions (160°C, 1 h), we achieve 100% yields of dimethyl terephthalate and ethylene glycol. This technique also effectively breaks down other polyesters, including polylactic acid, polycarbonate, and polybutylene terephthalate, yielding high-yield monomers at relatively low temperatures. Through comprehensive nuclear magnetic resonance (NMR) analysis, we propose that N-methylpiperidine’s role is in enhancing methanol nucleophilicity and activating PET’s ester bond. Our insights advance the chemical recycling of post-consumer plastic waste, offering a potentially simple and efficient path to closing the polyester production loop.

由于分拣和处理过程复杂,各种废塑料的回收利用面临挑战,导致成本高、效率低。为解决这一问题,我们提出了一种无金属催化分拣方法,用于从消费后塑料垃圾(包括纺织品、塑料混合物和多层包装材料)中有针对性地解构聚酯。该方法采用甲醇中的叔胺催化剂 N-甲基哌啶来解聚聚对苯二甲酸乙二酯(PET)。在这种条件下(160°C,1 小时),我们可以获得 100% 产率的对苯二甲酸二甲酯和乙二醇。这种技术还能有效分解其他聚酯,包括聚乳酸、聚碳酸酯和聚对苯二甲酸丁二醇酯,在相对较低的温度下产生高产单体。通过全面的核磁共振 (NMR) 分析,我们提出 N-甲基哌啶的作用是增强甲醇的亲核性并激活 PET 的酯键。我们的见解推动了消费后塑料废弃物的化学回收,为聚酯生产的闭环提供了一条简单而高效的潜在途径。
{"title":"Chemical recycling of post-consumer polyester wastes using a tertiary amine organocatalyst","authors":"","doi":"10.1016/j.xcrp.2024.102145","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102145","url":null,"abstract":"<p>Recycling diverse waste plastics poses challenges due to complex sorting and processing, resulting in high costs and inefficiency. To tackle this, we present a metal-free catalytic sorting method for targeted deconstruction of polyester from post-consumer plastic waste, encompassing textiles, plastic mixtures, and multilayer packaging materials. This method employs N-methylpiperidine, a tertiary amine catalyst in methanol, to depolymerize polyethylene terephthalate (PET). Operating under these conditions (160°C, 1 h), we achieve 100% yields of dimethyl terephthalate and ethylene glycol. This technique also effectively breaks down other polyesters, including polylactic acid, polycarbonate, and polybutylene terephthalate, yielding high-yield monomers at relatively low temperatures. Through comprehensive nuclear magnetic resonance (NMR) analysis, we propose that N-methylpiperidine’s role is in enhancing methanol nucleophilicity and activating PET’s ester bond. Our insights advance the chemical recycling of post-consumer plastic waste, offering a potentially simple and efficient path to closing the polyester production loop.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent total syntheses of fusicoccanes 最近的 "fusicoccanes "总合成
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1016/j.xcrp.2024.102141

Fusicoccane diterpenoids, originating from fungi, plants, and bacteria, constitute a diverse natural product family featuring a 5-8-5 tricyclic framework. They were restricted to plant physiology in the past. However, fusicoccanes are presently at the forefront of biomedicine and are indispensable for probing 14-3-3 protein-protein interactions (PPIs). The need for material supply and scaffold diversification encouraged their study by the synthetic community. This review highlights the total synthetic works on fusicoccane diterpenoids published in the last 5 years. Key transformations including ring-closing metathesis, metal-catalyzed cross-coupling, and carbocyclization markedly enhanced synthetic efficiency and versatility. Recently identified biosynthetic transformations inspired innovative chemoenzymatic strategies. Investigation into the functional aspects of fusicoccanes should be the future direction to realize their therapeutic potential as general 14-3-3 PPI modulators.

来源于真菌、植物和细菌的木犀草烷二萜是一个多样化的天然产品家族,具有 5-8-5 三环框架。过去,它们仅限于植物生理学领域。然而,鱼腥烷类化合物目前正处于生物医学的前沿,是探究 14-3-3 蛋白质-蛋白质相互作用(PPIs)不可或缺的物质。材料供应和支架多样化的需求促进了合成界对它们的研究。这篇综述重点介绍了过去 5 年中发表的有关番荔枝烷二萜的全部合成工作。包括闭环偏合成、金属催化交叉偶联和碳环化在内的关键转化过程显著提高了合成效率和多样性。最近发现的生物合成转化激发了创新的化学酶战略。未来的研究方向应该是研究fusicoccanes的功能方面,以实现其作为通用14-3-3 PPI调节剂的治疗潜力。
{"title":"Recent total syntheses of fusicoccanes","authors":"","doi":"10.1016/j.xcrp.2024.102141","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102141","url":null,"abstract":"<p>Fusicoccane diterpenoids, originating from fungi, plants, and bacteria, constitute a diverse natural product family featuring a 5-8-5 tricyclic framework. They were restricted to plant physiology in the past. However, fusicoccanes are presently at the forefront of biomedicine and are indispensable for probing 14-3-3 protein-protein interactions (PPIs). The need for material supply and scaffold diversification encouraged their study by the synthetic community. This review highlights the total synthetic works on fusicoccane diterpenoids published in the last 5 years. Key transformations including ring-closing metathesis, metal-catalyzed cross-coupling, and carbocyclization markedly enhanced synthetic efficiency and versatility. Recently identified biosynthetic transformations inspired innovative chemoenzymatic strategies. Investigation into the functional aspects of fusicoccanes should be the future direction to realize their therapeutic potential as general 14-3-3 PPI modulators.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emissions of volatile organic compounds from reed diffusers in indoor environments 室内环境中芦苇扩散器排放的挥发性有机化合物
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1016/j.xcrp.2024.102142

Reed diffusers are widely used as an indoor scenting source, in which aromatic components are thought to have sleep-improving and anxiety-relieving effects. Nevertheless, it is crucial to consider the potential health impacts associated with certain components in aromatherapy. This study aims to comprehensively explore the impact of reed diffusers on indoor air quality. We analyze the composition of gas-phase volatile organic compounds (VOCs) based on emission tests of a typical reed diffuser in a full-scale chamber. The observed top three VOCs are linalool acetate, linalool, and α-pinene, with linalool acetate accounting for 31.4%–43.6% of the total at 25°C. A physics-based model is then developed to characterize VOC emissions from a reed diffuser, and the key transport parameters are determined. Independent experiments validate the reliability of model parameters. Computational fluid dynamics simulations further demonstrate that reed diffuser position significantly impacts VOC distribution, which is essential for sophisticated exposure assessment.

芦苇扩香器被广泛用作室内芳香源,其中的芳香成分被认为具有改善睡眠和缓解焦虑的作用。然而,考虑与芳香疗法中某些成分相关的潜在健康影响至关重要。本研究旨在全面探讨芦苇扩香器对室内空气质量的影响。我们根据全尺寸室内典型芦苇扩香器的排放测试,分析了气相挥发性有机化合物(VOC)的成分。观察到的前三种挥发性有机化合物是乙酸芳樟醇、芳樟醇和 α-蒎烯,其中乙酸芳樟醇在 25°C 时占总量的 31.4%-43.6%。然后开发了一个基于物理学的模型,用于描述芦苇扩散器的挥发性有机化合物排放特征,并确定了关键的迁移参数。独立实验验证了模型参数的可靠性。计算流体动力学模拟进一步证明,芦苇扩散器的位置对挥发性有机化合物的分布有显著影响,这对复杂的暴露评估至关重要。
{"title":"Emissions of volatile organic compounds from reed diffusers in indoor environments","authors":"","doi":"10.1016/j.xcrp.2024.102142","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102142","url":null,"abstract":"<p>Reed diffusers are widely used as an indoor scenting source, in which aromatic components are thought to have sleep-improving and anxiety-relieving effects. Nevertheless, it is crucial to consider the potential health impacts associated with certain components in aromatherapy. This study aims to comprehensively explore the impact of reed diffusers on indoor air quality. We analyze the composition of gas-phase volatile organic compounds (VOCs) based on emission tests of a typical reed diffuser in a full-scale chamber. The observed top three VOCs are linalool acetate, linalool, and <em>α</em>-pinene, with linalool acetate accounting for 31.4%–43.6% of the total at 25°C. A physics-based model is then developed to characterize VOC emissions from a reed diffuser, and the key transport parameters are determined. Independent experiments validate the reliability of model parameters. Computational fluid dynamics simulations further demonstrate that reed diffuser position significantly impacts VOC distribution, which is essential for sophisticated exposure assessment.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic photoactivation of a triarylamine electron donor-acceptor complex for difunctionalization of alkenes 催化光活化三芳基胺电子供体-受体复合物实现烯烃的双官能化
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.xcrp.2024.102135

The photoactivation of electron donor-acceptor complexes is a useful tool for the generation of radical species in synthetic chemistry. However, alkene difunctionalization via catalytic donor-acceptor complexes remains less developed. Herein, we report a versatile catalytic photoactivation of an electron donor-acceptor complex platform for the difunctionalization of alkenes without a need for precious transition metal catalysts or synthetically elaborate organic dyes. By taking advantage of the visible light potential of aggregates between triarylamines and S-fluoromethyldiaryl sulfonium salts, photoinduced single-electron transfer is initiated to generate a stable radical cation, which acts as an endogenous oxidant to convert the radical addition intermediate into a cationic species. Subsequent N-nucleophilic addition enables the difunctionalization of styrenes. This general photocatalyst-free protocol is applied to fluoroalkylative sulfonamidation, amidation, hydrazidation, azidation, and anilination reactions under mild conditions.

电子供体-受体复合物的光活化是合成化学中生成自由基物种的有用工具。然而,通过催化供体-受体复合物进行烯烃双官能化的研究仍然较少。在此,我们报告了一种电子供体-受体复合物平台的多功能催化光活化技术,该技术可用于烯烃的双官能化,而无需贵重的过渡金属催化剂或合成精细的有机染料。利用三芳基胺和 S-氟甲基二芳基锍盐之间的聚合体的可见光电位,光诱导单电子转移开始生成稳定的自由基阳离子,该阳离子作为内源氧化剂将自由基加成中间体转化为阳离子物种。随后的 N-亲核加成可实现苯乙烯的反官能化。在温和的条件下,这种通用的无光催化剂方案可用于氟烷基磺酰胺化、酰胺化、肼化、叠氮化和苯胺化反应。
{"title":"Catalytic photoactivation of a triarylamine electron donor-acceptor complex for difunctionalization of alkenes","authors":"","doi":"10.1016/j.xcrp.2024.102135","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102135","url":null,"abstract":"<p>The photoactivation of electron donor-acceptor complexes is a useful tool for the generation of radical species in synthetic chemistry. However, alkene difunctionalization via catalytic donor-acceptor complexes remains less developed. Herein, we report a versatile catalytic photoactivation of an electron donor-acceptor complex platform for the difunctionalization of alkenes without a need for precious transition metal catalysts or synthetically elaborate organic dyes. By taking advantage of the visible light potential of aggregates between triarylamines and <em>S</em>-fluoromethyldiaryl sulfonium salts, photoinduced single-electron transfer is initiated to generate a stable radical cation, which acts as an endogenous oxidant to convert the radical addition intermediate into a cationic species. Subsequent N-nucleophilic addition enables the difunctionalization of styrenes. This general photocatalyst-free protocol is applied to fluoroalkylative sulfonamidation, amidation, hydrazidation, azidation, and anilination reactions under mild conditions.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchically porous films for ultrahigh-throughput characterization of chemical exposome in biological fluids 用于超高通量表征生物液体中化学暴露体的分层多孔薄膜
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.xcrp.2024.102136

Exposome science captures the totality of environmental drivers of human health. However, the comprehensive determination of numerous exogenous and endogenous compounds remains extremely challenging, restricting the purpose of exposome science to characterize both external and internal exposure. Herein, we develop hierarchically porous polymers of intrinsic microporosity (HPPIM) films to achieve ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. The film’s porous properties, including three-stage micro-submicro-nanometer architectures, large specific surface area, and appropriate pore geometry and organophilicity enable fast molecular transport and high trapping capability, therefore achieving ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. Further application in a small-scale cancer study demonstrates the unique advantages of HPPIM films over existing techniques, including broad coverage of analytes, satisfactory trapping efficiency, low-volume demand on specimens, high simplicity and reusability, and drastically reduced financial cost. Our work demonstrates the great potential of HPPIM for advancing exposome science from concept to utility.

暴露组科学捕捉到了影响人类健康的全部环境因素。然而,全面测定众多外源性和内源性化合物仍然极具挑战性,这限制了暴露组科学用于表征外部和内部暴露的目的。在此,我们开发了具有内在微孔的分层多孔聚合物(HPPIM)薄膜,以实现超高通量测定生物液体中的外源性/内源性分子。该薄膜的多孔特性,包括三级微亚微纳结构、大比表面积、适当的孔几何形状和亲有机性,可实现快速分子传输和高捕获能力,从而实现生物液体中外源性/内源性分子的超高通量测定。在一项小规模癌症研究中的进一步应用证明了 HPPIM 薄膜相对于现有技术的独特优势,包括对分析物的广泛覆盖、令人满意的捕获效率、对标本的低容量需求、高度简便性和可重复使用性以及大幅降低的经济成本。我们的工作证明了 HPPIM 在推动暴露组科学从概念走向实用方面的巨大潜力。
{"title":"Hierarchically porous films for ultrahigh-throughput characterization of chemical exposome in biological fluids","authors":"","doi":"10.1016/j.xcrp.2024.102136","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102136","url":null,"abstract":"<p>Exposome science captures the totality of environmental drivers of human health. However, the comprehensive determination of numerous exogenous and endogenous compounds remains extremely challenging, restricting the purpose of exposome science to characterize both external and internal exposure. Herein, we develop hierarchically porous polymers of intrinsic microporosity (HPPIM) films to achieve ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. The film’s porous properties, including three-stage micro-submicro-nanometer architectures, large specific surface area, and appropriate pore geometry and organophilicity enable fast molecular transport and high trapping capability, therefore achieving ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. Further application in a small-scale cancer study demonstrates the unique advantages of HPPIM films over existing techniques, including broad coverage of analytes, satisfactory trapping efficiency, low-volume demand on specimens, high simplicity and reusability, and drastically reduced financial cost. Our work demonstrates the great potential of HPPIM for advancing exposome science from concept to utility.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A one-pot photocatalytic triazole-based linkerology for PROTACs 用于 PROTAC 的基于三唑的单锅光催化连接技术
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1016/j.xcrp.2024.102139

Proteolysis-targeting chimeras (PROTACs) are a powerful approach for targeted protein degradation. One of the current bottlenecks for developing PROTACs is the lack of an operationally simple linkerology to rapidly construct PROTACs with various linkers. The classic convergent synthesis strategy by coupling pre-assembled linkers with two ligands stepwise commonly needs at least four steps to give the final target PROTACs, which results in low total yields with long reaction times (several days) and tedious operations. Here, we develop an efficient photocatalytic one-pot linkerology for the rapid coupling of analogs of PROTACs containing triazole-based linkers without any linker-pre-assembled procedure. The reaction was completed within 4 h with up to 95% yields at room temperature. Easily accessible cyclic ethers are directly used as linker precursors to furnish the one-pot fashion, including alkenyl, polyethylene glycol (PEG), ketone, and cyclohexane chains. The study provides a highly efficient, step-economic, operationally simple, and environmentally friendly one-pot linkerology for PROTAC drug discovery.

蛋白质分解靶向嵌合体(PROTACs)是靶向降解蛋白质的一种强有力的方法。目前,开发 PROTAC 的瓶颈之一是缺乏操作简单的连接体学,无法用各种连接体快速构建 PROTAC。传统的聚合合成策略是将预先组装好的连接体与两种配体逐步耦合,通常需要至少四个步骤才能得到最终的目标 PROTACs,因此总产率低,反应时间长(数天),操作繁琐。在此,我们开发了一种高效的光催化一锅连接技术,无需任何连接体预组装步骤,即可快速偶联含有三唑类连接体的 PROTAC 类似物。反应在 4 小时内完成,室温下产率高达 95%。容易获得的环醚可直接用作连接体前体,以实现一锅式反应,包括烯基、聚乙二醇(PEG)、酮和环己烷链。该研究为 PROTAC 药物发现提供了一种高效、步骤经济、操作简单且环保的单点链接技术。
{"title":"A one-pot photocatalytic triazole-based linkerology for PROTACs","authors":"","doi":"10.1016/j.xcrp.2024.102139","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102139","url":null,"abstract":"<p>Proteolysis-targeting chimeras (PROTACs) are a powerful approach for targeted protein degradation. One of the current bottlenecks for developing PROTACs is the lack of an operationally simple linkerology to rapidly construct PROTACs with various linkers. The classic convergent synthesis strategy by coupling pre-assembled linkers with two ligands stepwise commonly needs at least four steps to give the final target PROTACs, which results in low total yields with long reaction times (several days) and tedious operations. Here, we develop an efficient photocatalytic one-pot linkerology for the rapid coupling of analogs of PROTACs containing triazole-based linkers without any linker-pre-assembled procedure. The reaction was completed within 4 h with up to 95% yields at room temperature. Easily accessible cyclic ethers are directly used as linker precursors to furnish the one-pot fashion, including alkenyl, polyethylene glycol (PEG), ketone, and cyclohexane chains. The study provides a highly efficient, step-economic, operationally simple, and environmentally friendly one-pot linkerology for PROTAC drug discovery.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Physical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1