Pub Date : 2024-08-28DOI: 10.1016/j.xcrp.2024.102175
Žiga Ahčin, Andrej Kitanovski, Jaka Tušek
Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.
{"title":"Latent thermal energy storage using solid-state phase transformation in caloric materials","authors":"Žiga Ahčin, Andrej Kitanovski, Jaka Tušek","doi":"10.1016/j.xcrp.2024.102175","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102175","url":null,"abstract":"<p>Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"451 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-atom catalysts (SACs) are increasingly of interest for Fenton-like processes for water treatment due to maximized metal utilization. However, their feasibility has not been conclusively demonstrated, partly due to inconsistent preparation and benchmarking. Here, we verify the catalytic activity of lanthanum single atoms for pollutant degradation by a rigorous benchmarking protocol that considers the contributions of adsorption, catalytic activity of supports, and leached ions. The reaction rate constant increases linearly with lanthanum loading up to 9 wt %, illustrating the viability of synchronously realizing high specific activity and maximized atom utilization. In addition, we show that the synergetic activation of peroxymonosulfate (PMS) and oxygen to produce multiple reactive oxygen species (ROS) is responsible for the catalytic performance, revealing the previously ignored contributions of air in catalytic systems. We anticipate that this protocol will aid in the development of SACs to realize their full prospects.
{"title":"Quantifying the contribution of lanthanum single atoms in photocatalytic Fenton-like processes with a rigorous benchmarking protocol","authors":"Xinyu Bai, Meiting Ju, Hengli Qian, Chao Xie, Ruite Lai, Tianliang Xia, Guanjie Yu, Yao Tang, Chengxu Wang, Fei Qu, Haijiao Xie, Qidong Hou","doi":"10.1016/j.xcrp.2024.102170","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102170","url":null,"abstract":"<p>Single-atom catalysts (SACs) are increasingly of interest for Fenton-like processes for water treatment due to maximized metal utilization. However, their feasibility has not been conclusively demonstrated, partly due to inconsistent preparation and benchmarking. Here, we verify the catalytic activity of lanthanum single atoms for pollutant degradation by a rigorous benchmarking protocol that considers the contributions of adsorption, catalytic activity of supports, and leached ions. The reaction rate constant increases linearly with lanthanum loading up to 9 wt %, illustrating the viability of synchronously realizing high specific activity and maximized atom utilization. In addition, we show that the synergetic activation of peroxymonosulfate (PMS) and oxygen to produce multiple reactive oxygen species (ROS) is responsible for the catalytic performance, revealing the previously ignored contributions of air in catalytic systems. We anticipate that this protocol will aid in the development of SACs to realize their full prospects.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"28 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.xcrp.2024.102169
Yong-Chao Wang, Ya-Hui Lv, Sen Wang, Jia-Yi Wang, Wen-Xuan Yang, Feng Ju, Can Wang
Quorum sensing is widespread in the microbial world; however, the role of this population behavior at low temperatures (<15°C) remains poorly understood. Here, the effects of quorum sensing in wastewater treatment processes at low temperatures are revealed using both microcosm experiments and global surveys. Quorum-sensing bacteria act as pioneers to facilitate microorganism migration from the species pool to the carrier surface during biofilm colonization at 15°C. A high biofilm formation rate is accompanied by significant enrichment of quorum-sensing bacteria and upregulation of gene expression. By analyzing the global activated sludge microbiome data, we find that quorum-sensing bacteria exhibit a typical temperature-dependent distribution pattern. The performance of the process is strongly linked to the content of quorum-sensing bacteria. Our findings elucidate a potential response mechanism of the microbial community to environmental stress and provide implications for the enhancement of the wastewater biotreatment process at low temperatures.
{"title":"The role of bacterial communication in activated sludge at low temperatures","authors":"Yong-Chao Wang, Ya-Hui Lv, Sen Wang, Jia-Yi Wang, Wen-Xuan Yang, Feng Ju, Can Wang","doi":"10.1016/j.xcrp.2024.102169","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102169","url":null,"abstract":"<p>Quorum sensing is widespread in the microbial world; however, the role of this population behavior at low temperatures (<15°C) remains poorly understood. Here, the effects of quorum sensing in wastewater treatment processes at low temperatures are revealed using both microcosm experiments and global surveys. Quorum-sensing bacteria act as pioneers to facilitate microorganism migration from the species pool to the carrier surface during biofilm colonization at 15°C. A high biofilm formation rate is accompanied by significant enrichment of quorum-sensing bacteria and upregulation of gene expression. By analyzing the global activated sludge microbiome data, we find that quorum-sensing bacteria exhibit a typical temperature-dependent distribution pattern. The performance of the process is strongly linked to the content of quorum-sensing bacteria. Our findings elucidate a potential response mechanism of the microbial community to environmental stress and provide implications for the enhancement of the wastewater biotreatment process at low temperatures.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"44 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.xcrp.2024.102173
P.Y. Hu, M.S. Zhao, Y.T. Xu, L.T. Hu, J.W. Liang, J. Meng, C. Zhang
Achieving net-zero power supply in China will require massive investments over the coming decades. Precise cost uncertainty quantification is essential to align this transition with economic and policy realities. Here, we report an analysis addressing this need by introducing a cost uncertainty estimation framework, integrating meta-analysis, Monte Carlo simulation, and probabilistic cost forecasting. Our findings reveal significant cost uncertainties for China’s energy transition from 2020 to the end of the century, estimated to be between 15.1 and 62.7 trillion US dollars for the 1.5°C scenario and 12.9–50.8 trillion US dollars for the 2°C scenario. The lower end of these estimates suggests that China’s net-zero power supply transition could be more cost effective than previously anticipated. However, the feasibility of these transitions largely depends on the availability of low-cost capital, highlighting the urgent need to develop strategies that accelerate clean energy finance and reduce investment hesitation.
{"title":"Achieving net-zero power supply in China needs better cost uncertainty quantification","authors":"P.Y. Hu, M.S. Zhao, Y.T. Xu, L.T. Hu, J.W. Liang, J. Meng, C. Zhang","doi":"10.1016/j.xcrp.2024.102173","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102173","url":null,"abstract":"<p>Achieving net-zero power supply in China will require massive investments over the coming decades. Precise cost uncertainty quantification is essential to align this transition with economic and policy realities. Here, we report an analysis addressing this need by introducing a cost uncertainty estimation framework, integrating meta-analysis, Monte Carlo simulation, and probabilistic cost forecasting. Our findings reveal significant cost uncertainties for China’s energy transition from 2020 to the end of the century, estimated to be between 15.1 and 62.7 trillion US dollars for the 1.5°C scenario and 12.9–50.8 trillion US dollars for the 2°C scenario. The lower end of these estimates suggests that China’s net-zero power supply transition could be more cost effective than previously anticipated. However, the feasibility of these transitions largely depends on the availability of low-cost capital, highlighting the urgent need to develop strategies that accelerate clean energy finance and reduce investment hesitation.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"63 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.xcrp.2024.102172
Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu
Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.
{"title":"3D-printed fused silica glass microlattice as mechanical metamaterial","authors":"Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu","doi":"10.1016/j.xcrp.2024.102172","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102172","url":null,"abstract":"<p>Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"30 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.xcrp.2024.102174
Bi-Ying Liu, Yongchao Qian, Min Zhou, Xiao-Yan Jin, Mei-Juan Jia, Di Quan, Xiang-Yu Kong, Liping Wen, Lei Jiang
Photo-responsive hydrogel systems have attracted significant attention for their controllability, intelligent responsiveness, and reversibility. This study delves into the effect of tunable space-confined networks on anion transport in photo-responsive hydrogels. Employing azobenzene (Azo) and β-cyclodextrin (β-CD), the hydrogel was loaded into anodic aluminum oxide (AAO) to form the AAO-hydrogel membrane. Sodium dodecyl sulfonate (SDS) is chosen to investigate mass transmembrane transport. In low-degree space-confined aluminum oxide-hydrogel membrane (LSAHM), a looser structure was formed due to the breakup of the connection between Azo and β-CD with ultraviolet (UV)-light irradiation. With visible-light (vis-light) irradiation, the SDS is replaced with trans-Azo due to the more stable trans-Azo@β-CD complex, resulting in narrow channels. For high-degree space-confined AHM (HSAHM), the interaction between SDS and β-CD could be omitted due to space confinement. Also, controllable SDS-assisted cationic peptide transport is achieved with HSAHM. This work provides a comprehensive analysis of hydrogel structure variations, offering nuanced approaches to hydrogel design.
{"title":"Competing host-guest interactions to explore the alkyl anion transport in photo-responsive, space-confined hydrogels","authors":"Bi-Ying Liu, Yongchao Qian, Min Zhou, Xiao-Yan Jin, Mei-Juan Jia, Di Quan, Xiang-Yu Kong, Liping Wen, Lei Jiang","doi":"10.1016/j.xcrp.2024.102174","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102174","url":null,"abstract":"<p>Photo-responsive hydrogel systems have attracted significant attention for their controllability, intelligent responsiveness, and reversibility. This study delves into the effect of tunable space-confined networks on anion transport in photo-responsive hydrogels. Employing azobenzene (Azo) and <em>β</em>-cyclodextrin (<em>β</em>-CD), the hydrogel was loaded into anodic aluminum oxide (AAO) to form the AAO-hydrogel membrane. Sodium dodecyl sulfonate (SDS) is chosen to investigate mass transmembrane transport. In low-degree space-confined aluminum oxide-hydrogel membrane (LSAHM), a looser structure was formed due to the breakup of the connection between Azo and <em>β</em>-CD with ultraviolet (UV)-light irradiation. With visible-light (vis-light) irradiation, the SDS is replaced with <em>trans</em>-Azo due to the more stable <em>trans</em>-Azo@<em>β</em>-CD complex, resulting in narrow channels. For high-degree space-confined AHM (HSAHM), the interaction between SDS and <em>β</em>-CD could be omitted due to space confinement. Also, controllable SDS-assisted cationic peptide transport is achieved with HSAHM. This work provides a comprehensive analysis of hydrogel structure variations, offering nuanced approaches to hydrogel design.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"11 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dye-sensitized solar cells (DSSCs) have garnered significant research attention for their cost-effectiveness, transparency, flexibility, etc. In this work, a copper complex of a bipyridine-modified mediator, [Cu(dmodmbp)2]+/2+, is developed to minimize the loss in fill factor (FF). A DA2 dye, inspired by the structures of previously reported LC4 and LC5 dyes, incorporates cascade acceptors to enhance light absorption and increase the short-circuit current (JSC). These innovations lead to highly efficient DSSCs with an impressive power conversion efficiency (PCE) of 10.2% (JSC = 12.10 mA cm−2, open-circuit voltage [VOC] = 1.11 V, FF = 0.764) as well as a remarkable photostability. A test over 95 days shows that 88% of the initial PCE can be maintained, with VOC, JSC, and FF retaining 98%, 97%, and 93% of their initial values, respectively.
{"title":"A stable copper-modified bipyridine mediator for highly efficient dye-sensitized solar cells","authors":"Yu-Hsuan Chen, Ching-Chin Chen, Vinh Son Nguyen, Xiao-Tong Jiang, Yan-Da Chen, Ming-You Li, Sheng-Yang Chen, Tzu-Chien Wei, Chen-Yu Yeh","doi":"10.1016/j.xcrp.2024.102159","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102159","url":null,"abstract":"<p>Dye-sensitized solar cells (DSSCs) have garnered significant research attention for their cost-effectiveness, transparency, flexibility, etc. In this work, a copper complex of a bipyridine-modified mediator, [Cu(dmodmbp)<sub>2</sub>]<sup>+/2+</sup>, is developed to minimize the loss in fill factor (<em>FF</em>). A <strong>DA2</strong> dye, inspired by the structures of previously reported <strong>LC4</strong> and <strong>LC5</strong> dyes, incorporates cascade acceptors to enhance light absorption and increase the short-circuit current (<em>J</em><sub><em>SC</em></sub>). These innovations lead to highly efficient DSSCs with an impressive power conversion efficiency (PCE) of 10.2% (<em>J</em><sub><em>SC</em></sub> = 12.10 mA cm<sup>−2</sup>, open-circuit voltage [<em>V</em><sub><em>OC</em></sub>] = 1.11 V, <em>FF</em> = 0.764) as well as a remarkable photostability. A test over 95 days shows that 88% of the initial PCE can be maintained, with <em>V</em><sub><em>OC</em></sub>, <em>J</em><sub><em>SC</em></sub>, and <em>FF</em> retaining 98%, 97%, and 93% of their initial values, respectively.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"308 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.xcrp.2024.102151
Vincent Strong, William Holderbaum, Yoshikatsu Hayashi
The goal of artificial neural networks is to utilize the functions of biological brains to develop computational algorithms. However, these purely artificial implementations cannot achieve the adaptive behavior found in biological neural networks (BNNs) via their inherent memory. Alternative computing mediums that integrate biological neurons with computer hardware have shown similar emergent behavior via memory, as found in BNNs. By applying current theories in BNNs, can emergent memory functions be achieved with alternative mediums? Electro-active polymer (EAP) hydrogels were embedded in the simulated game-world of Pong via custom multi-electrode arrays and feedback between motor commands and stimulation. Through performance analysis within the game environment, emergent memory acquisition was demonstrated, driven by ion migration through the hydrogels.
{"title":"Electro-active polymer hydrogels exhibit emergent memory when embodied in a simulated game environment","authors":"Vincent Strong, William Holderbaum, Yoshikatsu Hayashi","doi":"10.1016/j.xcrp.2024.102151","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102151","url":null,"abstract":"<p>The goal of artificial neural networks is to utilize the functions of biological brains to develop computational algorithms. However, these purely artificial implementations cannot achieve the adaptive behavior found in biological neural networks (BNNs) via their inherent memory. Alternative computing mediums that integrate biological neurons with computer hardware have shown similar emergent behavior via memory, as found in BNNs. By applying current theories in BNNs, can emergent memory functions be achieved with alternative mediums? Electro-active polymer (EAP) hydrogels were embedded in the simulated game-world of Pong via custom multi-electrode arrays and feedback between motor commands and stimulation. Through performance analysis within the game environment, emergent memory acquisition was demonstrated, driven by ion migration through the hydrogels.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"11 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.xcrp.2024.102168
Venkatesh Kabra, Conner Fear, Paul W.C. Northrop, J. Vernon Cole, Partha P. Mukherjee
With the growing need for lithium-ion batteries in high-power applications, an accurate estimation of battery state of health is critical for long cyclability. In this work, an analytics approach based on pulse voltammetry is presented for lithium-ion batteries. A physics-based modeling framework is developed to predict pulse voltammogram signatures for generic voltage pulses. In combination with a parameter estimation technique, this model presents an in situ diagnostic tool that captures key electrode-specific parameters with rapid accuracy. Using this approach, we quantify degradation descriptors such as the growth of the resistive layer, interfacial area evolution, and lithium-intercalation state. Pulse voltammetry signatures, obtained periodically during fast-charge cycling experiments, show distinct trends at low temperature and room temperature. Active particle cracking plays a major role in the low-temperature capacity fade of lithium-ion cells, while a combination of cracking and impedance rise is the major cause of degradation at room temperature.
{"title":"Differential pulse voltammetry analytics for lithium-ion battery degradation","authors":"Venkatesh Kabra, Conner Fear, Paul W.C. Northrop, J. Vernon Cole, Partha P. Mukherjee","doi":"10.1016/j.xcrp.2024.102168","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102168","url":null,"abstract":"<p>With the growing need for lithium-ion batteries in high-power applications, an accurate estimation of battery state of health is critical for long cyclability. In this work, an analytics approach based on pulse voltammetry is presented for lithium-ion batteries. A physics-based modeling framework is developed to predict pulse voltammogram signatures for generic voltage pulses. In combination with a parameter estimation technique, this model presents an <em>in situ</em> diagnostic tool that captures key electrode-specific parameters with rapid accuracy. Using this approach, we quantify degradation descriptors such as the growth of the resistive layer, interfacial area evolution, and lithium-intercalation state. Pulse voltammetry signatures, obtained periodically during fast-charge cycling experiments, show distinct trends at low temperature and room temperature. Active particle cracking plays a major role in the low-temperature capacity fade of lithium-ion cells, while a combination of cracking and impedance rise is the major cause of degradation at room temperature.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"25 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.xcrp.2024.102165
Bat-Or Shalom, Miguel A. Andrés, Ashley R. Head, Boruch Z. Epstein, Olga Brontvein, Virginia Pérez-Dieste, Ignacio J. Villar-Garcia, Alex S. Walton, Kacper Polus, Robert S. Weatherup, Baran Eren
The chemical state of nickel anodes during the oxygen evolution reaction can impact their electrocatalytic performance. Here, X-ray photoelectron and absorption spectroscopies reveal the chemical state of nickel nanoparticles under oxygen evolution reaction conditions in a mildly alkaline carbonate-bicarbonate buffer solution. Ni2+ and Ni3+ species are observed at the reaction onset potential with a 7:4 ratio, with no remaining metallic nickel. These species include NiO, which increasingly converts to other Ni2+ and Ni3+ species once the potential is increased above the onset potential. Conversely, when a 20-nm-thick nickel film is used instead of nickel nanoparticles, a significant amount of metallic nickel remains in the inner layers. Nickel nanoparticles also undergo significant morphological and structural changes during the reaction, as evidenced by ex situ transmission electron microscopy. Amorphization of the nanoparticles is attributed to significant H2O incorporation, with the oxygen intensity increasing both in operando and ex situ measurements.
{"title":"Chemical state of nickel nanoparticles during the oxygen evolution reaction in a carbonate-bicarbonate buffer solution","authors":"Bat-Or Shalom, Miguel A. Andrés, Ashley R. Head, Boruch Z. Epstein, Olga Brontvein, Virginia Pérez-Dieste, Ignacio J. Villar-Garcia, Alex S. Walton, Kacper Polus, Robert S. Weatherup, Baran Eren","doi":"10.1016/j.xcrp.2024.102165","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102165","url":null,"abstract":"<p>The chemical state of nickel anodes during the oxygen evolution reaction can impact their electrocatalytic performance. Here, X-ray photoelectron and absorption spectroscopies reveal the chemical state of nickel nanoparticles under oxygen evolution reaction conditions in a mildly alkaline carbonate-bicarbonate buffer solution. Ni<sup>2+</sup> and Ni<sup>3+</sup> species are observed at the reaction onset potential with a 7:4 ratio, with no remaining metallic nickel. These species include NiO, which increasingly converts to other Ni<sup>2+</sup> and Ni<sup>3+</sup> species once the potential is increased above the onset potential. Conversely, when a 20-nm-thick nickel film is used instead of nickel nanoparticles, a significant amount of metallic nickel remains in the inner layers. Nickel nanoparticles also undergo significant morphological and structural changes during the reaction, as evidenced by <em>ex situ</em> transmission electron microscopy. Amorphization of the nanoparticles is attributed to significant H<sub>2</sub>O incorporation, with the oxygen intensity increasing both in <em>operando</em> and <em>ex situ</em> measurements.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"30 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}