首页 > 最新文献

Cell Reports Physical Science最新文献

英文 中文
Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells 利用大型扁管固体氧化物燃料电池从水藻中获取能量
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-31 DOI: 10.1016/j.xcrp.2024.102214
Junkang Sang, Yuqing Li, Jun Yang, Tao Wu, Luo Xiang, Yongming Zhao, Wanbing Guan, Jingxiang Xu, Maorong Chai, Subhash C. Singhal
No Abstract
无摘要
{"title":"Energy harvesting from algae using large-scale flat-tube solid oxide fuel cells","authors":"Junkang Sang, Yuqing Li, Jun Yang, Tao Wu, Luo Xiang, Yongming Zhao, Wanbing Guan, Jingxiang Xu, Maorong Chai, Subhash C. Singhal","doi":"10.1016/j.xcrp.2024.102214","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102214","url":null,"abstract":"No Abstract","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-efficient and cost-effective ammonia electrolysis for converting ammonia to green hydrogen 将氨转化为绿色氢气的高能效、低成本氨电解技术
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1016/j.xcrp.2024.102171
Kui Zhang, Yangkai Han, Yun Zhao, Tao Wei, Jinchen Fu, Zhiwei Ren, Xiaozhi Xu, Li Zhou, Zhigang Shao

Ammonia (NH3), touted as a promising hydrogen carrier, has received increasing attention. However, the technoeconomic prospects of comprehensive conversion of hydrogen to ammonia and ammonia to hydrogen (H2-NH3-H2) are unclear, and the approach to ammonia-to-hydrogen conversion has not yet reached the full commercialization stage. In this work, we perform a technoeconomic analysis of a H2-NH3-H2 conversion system, including synthesis, storage and transportation, and ammonia-to-hydrogen conversion, where we particularly compared thermal ammonia cracking with ammonia electrolysis. We find that ammonia electrolysis has a significant economic advantage thanks to its low energy consumption and capital cost. With this as motivation, we develop an energy-efficient and durable ammonia electrolyzer with an energy consumption of 0.84 kWh Nm−3 H2 and a continuous operation for 317 h at 100 mA cm−2. In addition, we also innovate a tandem cell to produce hydrogen without any electric power supply by coupling fuel-cell and electrolysis technologies.

氨(NH3)被誉为一种前景广阔的氢载体,受到越来越多的关注。然而,氢-氨和氨-氢(H2-NH3-H2)综合转换的技术经济前景尚不明确,氨-氢转换的方法尚未达到完全商业化阶段。在这项工作中,我们对 H2-NH3-H2 转换系统进行了技术经济分析,包括合成、储存和运输以及氨制氢转换,其中我们特别对热氨裂解和氨电解进行了比较。我们发现,由于氨电解能耗低、成本低,因此具有显著的经济优势。在此基础上,我们开发了一种节能耐用的氨电解槽,能耗为 0.84 kWh Nm-3 H2,在 100 mA cm-2 的条件下可连续运行 317 h。此外,我们还创新了一种串联电池,通过将燃料电池和电解技术相结合,在没有任何电力供应的情况下生产氢气。
{"title":"Energy-efficient and cost-effective ammonia electrolysis for converting ammonia to green hydrogen","authors":"Kui Zhang, Yangkai Han, Yun Zhao, Tao Wei, Jinchen Fu, Zhiwei Ren, Xiaozhi Xu, Li Zhou, Zhigang Shao","doi":"10.1016/j.xcrp.2024.102171","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102171","url":null,"abstract":"<p>Ammonia (NH<sub>3</sub>), touted as a promising hydrogen carrier, has received increasing attention. However, the technoeconomic prospects of comprehensive conversion of hydrogen to ammonia and ammonia to hydrogen (H<sub>2</sub>-NH<sub>3</sub>-H<sub>2</sub>) are unclear, and the approach to ammonia-to-hydrogen conversion has not yet reached the full commercialization stage. In this work, we perform a technoeconomic analysis of a H<sub>2</sub>-NH<sub>3</sub>-H<sub>2</sub> conversion system, including synthesis, storage and transportation, and ammonia-to-hydrogen conversion, where we particularly compared thermal ammonia cracking with ammonia electrolysis. We find that ammonia electrolysis has a significant economic advantage thanks to its low energy consumption and capital cost. With this as motivation, we develop an energy-efficient and durable ammonia electrolyzer with an energy consumption of 0.84 kWh Nm<sup>−3</sup> H<sub>2</sub> and a continuous operation for 317 h at 100 mA cm<sup>−2</sup>. In addition, we also innovate a tandem cell to produce hydrogen without any electric power supply by coupling fuel-cell and electrolysis technologies.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioluminescence and photoacoustic dual-modality imaging of apoptosis using a duramycin-immobilized gold nanorod probe 使用杜拉霉素固定金纳米棒探针对细胞凋亡进行生物发光和光声双模式成像
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1016/j.xcrp.2024.102177
Jingyu Zhang, Bin Guo, Yiyi Jiang, Xiaorui Shi, Chong Hu, Zihao Jiao, Fu Wang

Phosphatidylethanolamine (PE) translocation is considered a hallmark event of cellular apoptosis. The development of non-invasive multi-modality probes targeting PE for apoptosis detection holds great promise. Here, we develop a dual-modality imaging probe, duramycin-Fluc-AuNRs (DFA), for detecting apoptosis in tumor cells. DFA is created by linking duramycin peptide and firefly luciferase (Fluc) recombinant protein to gold nanorods (AuNRs). Duramycin exhibits high affinity for PE, while Fluc produces a robust bioluminescence signal, and AuNRs enhance imaging resolution through photoacoustic conversion. The DFA probe demonstrates low toxicity in both cells and mice, showcasing its potential for in vivo applications. In A549 and 4T1 cell lines, the bioluminescence signal of the DFA probe increases with the degree of doxorubicin (Dox)-induced apoptosis. At the mouse level, mice with Dox-triggered apoptosis exhibit higher bioluminescence and photoacoustic imaging signals. Thus, this dual-modality bioluminescence/photoacoustic imaging platform holds significant potential for detecting cellular apoptosis and providing high-performance imaging information.

磷脂酰乙醇胺(PE)转位被认为是细胞凋亡的标志性事件。开发以 PE 为靶点的非侵入性多模态探针用于细胞凋亡检测前景广阔。在此,我们开发了一种用于检测肿瘤细胞凋亡的双模态成像探针--杜拉霉素-Fluc-AuNRs(DFA)。DFA 是通过将杜拉霉素肽和萤火虫荧光素酶(Fluc)重组蛋白与金纳米棒(AuNRs)连接而制成的。杜拉霉素对 PE 具有高亲和力,而萤火虫荧光素酶能产生强大的生物发光信号,AuNRs 则通过光声转换提高成像分辨率。DFA 探针在细胞和小鼠体内均表现出低毒性,展示了其体内应用的潜力。在 A549 和 4T1 细胞系中,DFA 探针的生物发光信号随着多柔比星(Dox)诱导的细胞凋亡程度而增加。在小鼠水平上,Dox 诱导凋亡的小鼠表现出更高的生物发光和光声成像信号。因此,这种双模式生物发光/光声成像平台在检测细胞凋亡和提供高性能成像信息方面具有巨大潜力。
{"title":"Bioluminescence and photoacoustic dual-modality imaging of apoptosis using a duramycin-immobilized gold nanorod probe","authors":"Jingyu Zhang, Bin Guo, Yiyi Jiang, Xiaorui Shi, Chong Hu, Zihao Jiao, Fu Wang","doi":"10.1016/j.xcrp.2024.102177","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102177","url":null,"abstract":"<p>Phosphatidylethanolamine (PE) translocation is considered a hallmark event of cellular apoptosis. The development of non-invasive multi-modality probes targeting PE for apoptosis detection holds great promise. Here, we develop a dual-modality imaging probe, duramycin-Fluc-AuNRs (DFA), for detecting apoptosis in tumor cells. DFA is created by linking duramycin peptide and firefly luciferase (Fluc) recombinant protein to gold nanorods (AuNRs). Duramycin exhibits high affinity for PE, while Fluc produces a robust bioluminescence signal, and AuNRs enhance imaging resolution through photoacoustic conversion. The DFA probe demonstrates low toxicity in both cells and mice, showcasing its potential for <em>in vivo</em> applications. In A549 and 4T1 cell lines, the bioluminescence signal of the DFA probe increases with the degree of doxorubicin (Dox)-induced apoptosis. At the mouse level, mice with Dox-triggered apoptosis exhibit higher bioluminescence and photoacoustic imaging signals. Thus, this dual-modality bioluminescence/photoacoustic imaging platform holds significant potential for detecting cellular apoptosis and providing high-performance imaging information.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wettability gradient of photoresponsive electrospun yarns for harp-based fog water harvesting 用于竖琴式雾水收集的光致伸缩电纺纱的润湿梯度
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1016/j.xcrp.2024.102176
Gregory Parisi, Piotr K. Szewczyk, Shankar Narayan, Urszula Stachewicz

Fog water harvesting offers a solution to water scarcity. Here, we introduce a method to enhance fog water harvesting systems utilizing electrospun yarns featuring a wettability gradient. These yarns, made from polyvinylidene fluoride (PVDF) and titanium dioxide (TiO2), gain photoinduced hydrophilicity under UV light due to TiO2 photocatalytic properties, allowing dynamic shifts from hydrophobic to hydrophilic states. Experiments show that an alternating PVDF-TiO2 harp with a wettability gradient surpasses purely hydrophobic or hydrophilic versions in fog collection. The strategic mix of hydrophobic and hydrophilic sections enhances droplet movement and water capture, achieving a 16% increase in collection rate up to 400 mg cm−2 h−1. This approach introduces a novel method for creating wettability gradients in electrospun yarns via UV irradiation and represents a significant advancement in adaptable fog water harvesting systems.

雾水收集为水资源短缺提供了一种解决方案。在此,我们介绍一种利用具有润湿梯度的电纺纱来增强雾水收集系统的方法。这些纱线由聚偏二氟乙烯(PVDF)和二氧化钛(TiO2)制成,由于二氧化钛的光催化特性,这些纱线在紫外线照射下可获得光诱导亲水性,从而实现从疏水状态到亲水状态的动态转变。实验表明,具有润湿梯度的 PVDF-TiO2 交替竖琴在雾气收集方面优于纯疏水性或亲水性竖琴。疏水和亲水部分的策略性混合增强了水滴的移动和水捕获,使收集率提高了 16%,最高可达 400 毫克厘米-2 小时-1。这种方法介绍了一种通过紫外线照射在电纺纱中产生润湿性梯度的新方法,是适应性雾水收集系统的一大进步。
{"title":"Wettability gradient of photoresponsive electrospun yarns for harp-based fog water harvesting","authors":"Gregory Parisi, Piotr K. Szewczyk, Shankar Narayan, Urszula Stachewicz","doi":"10.1016/j.xcrp.2024.102176","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102176","url":null,"abstract":"<p>Fog water harvesting offers a solution to water scarcity. Here, we introduce a method to enhance fog water harvesting systems utilizing electrospun yarns featuring a wettability gradient. These yarns, made from polyvinylidene fluoride (PVDF) and titanium dioxide (TiO<sub>2</sub>), gain photoinduced hydrophilicity under UV light due to TiO<sub>2</sub> photocatalytic properties, allowing dynamic shifts from hydrophobic to hydrophilic states. Experiments show that an alternating PVDF-TiO<sub>2</sub> harp with a wettability gradient surpasses purely hydrophobic or hydrophilic versions in fog collection. The strategic mix of hydrophobic and hydrophilic sections enhances droplet movement and water capture, achieving a 16% increase in collection rate up to 400 mg cm<sup>−2</sup> h<sup>−1</sup>. This approach introduces a novel method for creating wettability gradients in electrospun yarns via UV irradiation and represents a significant advancement in adaptable fog water harvesting systems.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsically conductive polymer reinforced hydrogel with synergistic strength, toughness, and sensitivity for flexible motion-monitoring sensors 具有协同强度、韧性和灵敏度的本征导电聚合物增强水凝胶,可用于柔性运动监测传感器
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-29 DOI: 10.1016/j.xcrp.2024.102178
Mengke Zhao, Ting Wu, Xiaofa Wang, Long Liang, Hailong Lu, Zhanghong Xie, Tongqi Yuan, Guigan Fang

Conductive hydrogels with remarkable flexibility and sensitivity have attracted substantial attention as a potential material for the construction philosophy of wearable electronics. Nevertheless, the development of high-performance hydrogels continues to be a significant challenge due to the inherent trade-off between conductivity and deformation adaptability. Here, a novel strategy is demonstrated for the preparation of intrinsically conductive reticulated polymer-based hydrogels (allylated hydroxyethyl cellulose-PEDOT:PSS/PAM hydrogel [AHEC-PP/PAM]) with mechanical robustness and perceptual sensitivity. The conductive reticulated component, AHEC-PP, is obtained by an ingenious polymerization involving AHEC and EDOT and demonstrates favorable dispersion and stability, with the treatment of H2SO4 and the charge regulation of PSS. The AHEC-PP/PAM hydrogel has a tensile strength of 0.69 MPa, a fracture strain of 1,273%, a broad sensing range, and a high gauge factor of 7.86. The synergistic performance enables integration into smart wearable electronic devices for the detection of motion signals, electronic skin, and advanced human-machine interaction.

导电水凝胶具有出色的柔韧性和灵敏度,作为可穿戴电子设备构造理念的潜在材料,已经引起了广泛关注。然而,由于导电性和变形适应性之间的固有权衡,开发高性能水凝胶仍然是一项重大挑战。本文展示了一种新策略,用于制备具有机械坚固性和感知灵敏性的内在导电网状聚合物水凝胶(烯丙基羟乙基纤维素-PEDOT:PSS/PAM 水凝胶 [AHEC-PP/PAM])。导电网状成分 AHEC-PP 是通过 AHEC 和 EDOT 的巧妙聚合反应获得的,经 H2SO4 处理和 PSS 的电荷调节,具有良好的分散性和稳定性。AHEC-PP/PAM 水凝胶的拉伸强度为 0.69 兆帕,断裂应变为 1,273%,传感范围广,测量系数高达 7.86。这种协同性能可以集成到智能可穿戴电子设备中,用于检测运动信号、电子皮肤和高级人机交互。
{"title":"Intrinsically conductive polymer reinforced hydrogel with synergistic strength, toughness, and sensitivity for flexible motion-monitoring sensors","authors":"Mengke Zhao, Ting Wu, Xiaofa Wang, Long Liang, Hailong Lu, Zhanghong Xie, Tongqi Yuan, Guigan Fang","doi":"10.1016/j.xcrp.2024.102178","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102178","url":null,"abstract":"<p>Conductive hydrogels with remarkable flexibility and sensitivity have attracted substantial attention as a potential material for the construction philosophy of wearable electronics. Nevertheless, the development of high-performance hydrogels continues to be a significant challenge due to the inherent trade-off between conductivity and deformation adaptability. Here, a novel strategy is demonstrated for the preparation of intrinsically conductive reticulated polymer-based hydrogels (allylated hydroxyethyl cellulose-PEDOT:PSS/PAM hydrogel [AHEC-PP/PAM]) with mechanical robustness and perceptual sensitivity. The conductive reticulated component, AHEC-PP, is obtained by an ingenious polymerization involving AHEC and EDOT and demonstrates favorable dispersion and stability, with the treatment of H<sub>2</sub>SO<sub>4</sub> and the charge regulation of PSS. The AHEC-PP/PAM hydrogel has a tensile strength of 0.69 MPa, a fracture strain of 1,273%, a broad sensing range, and a high gauge factor of 7.86. The synergistic performance enables integration into smart wearable electronic devices for the detection of motion signals, electronic skin, and advanced human-machine interaction.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent thermal energy storage using solid-state phase transformation in caloric materials 利用热量材料中的固态相变储存潜热能
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-28 DOI: 10.1016/j.xcrp.2024.102175
Žiga Ahčin, Andrej Kitanovski, Jaka Tušek

Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.

固-固相变材料在热能储存系统中具有相当大的应用潜力。与固液相变材料相比,这些材料的潜热通常较低,但它们的热导率明显更高,因此能够实现快速热充放电。在这里,我们证明了这一特性使它们在需要高动态运行的热能储存应用中特别有前途。通过数值分析(使用经过实验验证的数值模型)发现,与相应的传统相变材料相比,某些具有固-固相变的材料在热能储存应用中具有出色的容量-功率权衡能力。虽然大多数传统相变材料因潜热较大而普遍具有较高的热容量,但一些具有固态转化的金属材料(如镍钛基合金、锰-铜-镓-硼合金)的热输出功率最高可提高 10 倍。这些结果凸显了热固态材料在某些应用中超越传统潜热存储系统的巨大潜力。
{"title":"Latent thermal energy storage using solid-state phase transformation in caloric materials","authors":"Žiga Ahčin, Andrej Kitanovski, Jaka Tušek","doi":"10.1016/j.xcrp.2024.102175","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102175","url":null,"abstract":"<p>Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the contribution of lanthanum single atoms in photocatalytic Fenton-like processes with a rigorous benchmarking protocol 用严格的基准协议量化镧单质原子在光催化 Fenton-like 过程中的贡献
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1016/j.xcrp.2024.102170
Xinyu Bai, Meiting Ju, Hengli Qian, Chao Xie, Ruite Lai, Tianliang Xia, Guanjie Yu, Yao Tang, Chengxu Wang, Fei Qu, Haijiao Xie, Qidong Hou

Single-atom catalysts (SACs) are increasingly of interest for Fenton-like processes for water treatment due to maximized metal utilization. However, their feasibility has not been conclusively demonstrated, partly due to inconsistent preparation and benchmarking. Here, we verify the catalytic activity of lanthanum single atoms for pollutant degradation by a rigorous benchmarking protocol that considers the contributions of adsorption, catalytic activity of supports, and leached ions. The reaction rate constant increases linearly with lanthanum loading up to 9 wt %, illustrating the viability of synchronously realizing high specific activity and maximized atom utilization. In addition, we show that the synergetic activation of peroxymonosulfate (PMS) and oxygen to produce multiple reactive oxygen species (ROS) is responsible for the catalytic performance, revealing the previously ignored contributions of air in catalytic systems. We anticipate that this protocol will aid in the development of SACs to realize their full prospects.

单原子催化剂(SAC)可最大限度地利用金属,因此在类似芬顿的水处理过程中越来越受到关注。然而,它们的可行性尚未得到确证,部分原因是制备和基准不一致。在此,我们采用严格的基准测试方法验证了单原子镧对污染物降解的催化活性,该方法考虑了吸附、支撑物的催化活性和浸出离子的贡献。反应速率常数随着镧负载量的增加而线性增加,最高可达 9 wt %,这说明了同步实现高比活度和原子利用率最大化的可行性。此外,我们还表明,过氧单硫酸盐(PMS)和氧气的协同活化产生多种活性氧(ROS)是催化性能的原因,揭示了空气在催化系统中以往被忽视的贡献。我们预计,该方案将有助于开发 SAC,以实现其全部前景。
{"title":"Quantifying the contribution of lanthanum single atoms in photocatalytic Fenton-like processes with a rigorous benchmarking protocol","authors":"Xinyu Bai, Meiting Ju, Hengli Qian, Chao Xie, Ruite Lai, Tianliang Xia, Guanjie Yu, Yao Tang, Chengxu Wang, Fei Qu, Haijiao Xie, Qidong Hou","doi":"10.1016/j.xcrp.2024.102170","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102170","url":null,"abstract":"<p>Single-atom catalysts (SACs) are increasingly of interest for Fenton-like processes for water treatment due to maximized metal utilization. However, their feasibility has not been conclusively demonstrated, partly due to inconsistent preparation and benchmarking. Here, we verify the catalytic activity of lanthanum single atoms for pollutant degradation by a rigorous benchmarking protocol that considers the contributions of adsorption, catalytic activity of supports, and leached ions. The reaction rate constant increases linearly with lanthanum loading up to 9 wt %, illustrating the viability of synchronously realizing high specific activity and maximized atom utilization. In addition, we show that the synergetic activation of peroxymonosulfate (PMS) and oxygen to produce multiple reactive oxygen species (ROS) is responsible for the catalytic performance, revealing the previously ignored contributions of air in catalytic systems. We anticipate that this protocol will aid in the development of SACs to realize their full prospects.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of bacterial communication in activated sludge at low temperatures 低温下活性污泥中细菌交流的作用
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1016/j.xcrp.2024.102169
Yong-Chao Wang, Ya-Hui Lv, Sen Wang, Jia-Yi Wang, Wen-Xuan Yang, Feng Ju, Can Wang

Quorum sensing is widespread in the microbial world; however, the role of this population behavior at low temperatures (<15°C) remains poorly understood. Here, the effects of quorum sensing in wastewater treatment processes at low temperatures are revealed using both microcosm experiments and global surveys. Quorum-sensing bacteria act as pioneers to facilitate microorganism migration from the species pool to the carrier surface during biofilm colonization at 15°C. A high biofilm formation rate is accompanied by significant enrichment of quorum-sensing bacteria and upregulation of gene expression. By analyzing the global activated sludge microbiome data, we find that quorum-sensing bacteria exhibit a typical temperature-dependent distribution pattern. The performance of the process is strongly linked to the content of quorum-sensing bacteria. Our findings elucidate a potential response mechanism of the microbial community to environmental stress and provide implications for the enhancement of the wastewater biotreatment process at low temperatures.

法定人数感应在微生物世界中非常普遍;然而,人们对这种群体行为在低温(15°C)下的作用仍然知之甚少。本文通过微观世界实验和全球调查揭示了法定人数感应在低温废水处理过程中的作用。在 15°C 的生物膜定殖过程中,法定人数感应细菌充当先锋,促进微生物从物种池迁移到载体表面。高生物膜形成率伴随着法定人数感应细菌的显著富集和基因表达的上调。通过分析全球活性污泥微生物组数据,我们发现法定量感应细菌呈现出典型的温度依赖性分布模式。该过程的性能与法定人数感应细菌的含量密切相关。我们的研究结果阐明了微生物群落对环境压力的潜在反应机制,并为在低温条件下加强废水生物处理过程提供了启示。
{"title":"The role of bacterial communication in activated sludge at low temperatures","authors":"Yong-Chao Wang, Ya-Hui Lv, Sen Wang, Jia-Yi Wang, Wen-Xuan Yang, Feng Ju, Can Wang","doi":"10.1016/j.xcrp.2024.102169","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102169","url":null,"abstract":"<p>Quorum sensing is widespread in the microbial world; however, the role of this population behavior at low temperatures (&lt;15°C) remains poorly understood. Here, the effects of quorum sensing in wastewater treatment processes at low temperatures are revealed using both microcosm experiments and global surveys. Quorum-sensing bacteria act as pioneers to facilitate microorganism migration from the species pool to the carrier surface during biofilm colonization at 15°C. A high biofilm formation rate is accompanied by significant enrichment of quorum-sensing bacteria and upregulation of gene expression. By analyzing the global activated sludge microbiome data, we find that quorum-sensing bacteria exhibit a typical temperature-dependent distribution pattern. The performance of the process is strongly linked to the content of quorum-sensing bacteria. Our findings elucidate a potential response mechanism of the microbial community to environmental stress and provide implications for the enhancement of the wastewater biotreatment process at low temperatures.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving net-zero power supply in China needs better cost uncertainty quantification 在中国实现零净电力供应需要更好的成本不确定性量化
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1016/j.xcrp.2024.102173
P.Y. Hu, M.S. Zhao, Y.T. Xu, L.T. Hu, J.W. Liang, J. Meng, C. Zhang

Achieving net-zero power supply in China will require massive investments over the coming decades. Precise cost uncertainty quantification is essential to align this transition with economic and policy realities. Here, we report an analysis addressing this need by introducing a cost uncertainty estimation framework, integrating meta-analysis, Monte Carlo simulation, and probabilistic cost forecasting. Our findings reveal significant cost uncertainties for China’s energy transition from 2020 to the end of the century, estimated to be between 15.1 and 62.7 trillion US dollars for the 1.5°C scenario and 12.9–50.8 trillion US dollars for the 2°C scenario. The lower end of these estimates suggests that China’s net-zero power supply transition could be more cost effective than previously anticipated. However, the feasibility of these transitions largely depends on the availability of low-cost capital, highlighting the urgent need to develop strategies that accelerate clean energy finance and reduce investment hesitation.

中国要实现零净电力供应,需要在未来几十年内进行大规模投资。精确的成本不确定性量化对于使这一过渡符合经济和政策现实至关重要。在此,我们通过引入成本不确定性估算框架,整合元分析、蒙特卡罗模拟和概率成本预测,报告了一项针对这一需求的分析。我们的研究结果表明,从 2020 年到本世纪末,中国能源转型的成本存在巨大的不确定性,估计 1.5°C 情景下的成本在 15.1 万亿美元到 62.7 万亿美元之间,2°C 情景下的成本在 12.9 万亿美元到 50.8 万亿美元之间。这些估计值的下限表明,中国的净零电力供应转型可能比之前预期的更具成本效益。然而,这些转型的可行性在很大程度上取决于低成本资本的可用性,这突出表明迫切需要制定战略,加快清洁能源融资,减少投资犹豫。
{"title":"Achieving net-zero power supply in China needs better cost uncertainty quantification","authors":"P.Y. Hu, M.S. Zhao, Y.T. Xu, L.T. Hu, J.W. Liang, J. Meng, C. Zhang","doi":"10.1016/j.xcrp.2024.102173","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102173","url":null,"abstract":"<p>Achieving net-zero power supply in China will require massive investments over the coming decades. Precise cost uncertainty quantification is essential to align this transition with economic and policy realities. Here, we report an analysis addressing this need by introducing a cost uncertainty estimation framework, integrating meta-analysis, Monte Carlo simulation, and probabilistic cost forecasting. Our findings reveal significant cost uncertainties for China’s energy transition from 2020 to the end of the century, estimated to be between 15.1 and 62.7 trillion US dollars for the 1.5°C scenario and 12.9–50.8 trillion US dollars for the 2°C scenario. The lower end of these estimates suggests that China’s net-zero power supply transition could be more cost effective than previously anticipated. However, the feasibility of these transitions largely depends on the availability of low-cost capital, highlighting the urgent need to develop strategies that accelerate clean energy finance and reduce investment hesitation.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed fused silica glass microlattice as mechanical metamaterial 作为机械超材料的三维打印熔融石英玻璃微晶格
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1016/j.xcrp.2024.102172
Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu

Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.

集光学透明性、化学稳定性和机械坚固性于一体的玻璃超材料对于满足电子屏幕或结构玻璃等不同领域的特殊要求至关重要。然而,在实践中,只有有限的材料能满足这些要求,而且该领域的研究仍处于起步阶段。在此,我们成功地将微晶格结构融入三维(3D)打印玻璃中,并开发出具有轻质高强度的透明玻璃机械超材料。一系列透明玻璃微晶格超材料具有不同的结构配置,包括可调相对密度、可控支杆体积和可调支杆数量。这一进展为系统地定制三维打印玻璃微晶格的机械性能奠定了基础,从而为高强度透明超材料铺平了道路,这种超材料的重量比固体材料轻得多,同时还为多功能应用提供了机会。
{"title":"3D-printed fused silica glass microlattice as mechanical metamaterial","authors":"Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu","doi":"10.1016/j.xcrp.2024.102172","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102172","url":null,"abstract":"<p>Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Physical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1