首页 > 最新文献

Cell Reports Physical Science最新文献

英文 中文
4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface 界面稳定的 4.8 V 全固态石榴石型锂金属电池
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1016/j.xcrp.2024.102213
Garnet-type solid electrolytes with high chemical and electrochemical stabilities are uniquely suitable for high-voltage operation but suffer from poo…
石榴石型固体电解质具有很高的化学和电化学稳定性,非常适合高压操作,但也存在一些问题。
{"title":"4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface","authors":"","doi":"10.1016/j.xcrp.2024.102213","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102213","url":null,"abstract":"Garnet-type solid electrolytes with high chemical and electrochemical stabilities are uniquely suitable for high-voltage operation but suffer from poo…","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"20 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs 操纵色氨酸代谢物和类似物转录生物传感器的分子特异性
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1016/j.xcrp.2024.102211
Chenggang Xi, Yuefeng Ma, Matthew B. Amrofell, Tae Seok Moon

Tryptophan and its metabolites, produced by the gut microbiota, are pivotal for human physiological and mental health. Yet, quantifying these structurally similar compounds with high specificity remains a challenge, hindering point-of-care diagnostics and targeted therapeutic interventions. Leveraging the innate specificity and adaptability of biological systems, we present a biosensing approach capable of identifying specific metabolites in complex contexts with minimal cross-activity. This study introduces a generalizable strategy that combines evolutionary analysis, key ligand-binding residue identification, and mutagenesis scanning to pinpoint ligand-specific transcription factor variants. Furthermore, we uncover regulatory mechanisms within uncharacterized ligand-binding domains, whether in homodimer interfaces or monomers, through structural prediction and ligand docking. Notably, our “plug-and-play” strategy broadens the detection spectrum, enabling the exclusive biosensing of indole-3-acetic acid (an auxin), tryptamine, indole-3-pyruvic acid, and other tryptophan derivatives in engineered probiotics. This groundwork paves the way to create highly specific transcriptional biosensors for potential clinical, agricultural, and industrial use.

由肠道微生物群产生的色氨酸及其代谢物对人类的生理和心理健康至关重要。然而,对这些结构相似的化合物进行高特异性量化仍然是一项挑战,阻碍了护理点诊断和靶向治疗干预。利用生物系统与生俱来的特异性和适应性,我们提出了一种生物传感方法,该方法能够在复杂环境中识别特异性代谢物,且交叉反应最小。这项研究介绍了一种可推广的策略,它结合了进化分析、关键配体结合残基识别和诱变扫描,以确定配体特异性转录因子变体。此外,我们还通过结构预测和配体对接,发现了同源二聚体界面或单体中未表征配体结合域的调控机制。值得注意的是,我们的 "即插即用 "策略拓宽了检测范围,实现了对工程益生菌中的吲哚-3-乙酸(一种辅酶)、色胺、吲哚-3-丙酮酸和其他色氨酸衍生物的专属生物传感。这项基础工作为创建具有高度特异性的转录生物传感器铺平了道路,使其具有潜在的临床、农业和工业用途。
{"title":"Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs","authors":"Chenggang Xi, Yuefeng Ma, Matthew B. Amrofell, Tae Seok Moon","doi":"10.1016/j.xcrp.2024.102211","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102211","url":null,"abstract":"<p>Tryptophan and its metabolites, produced by the gut microbiota, are pivotal for human physiological and mental health. Yet, quantifying these structurally similar compounds with high specificity remains a challenge, hindering point-of-care diagnostics and targeted therapeutic interventions. Leveraging the innate specificity and adaptability of biological systems, we present a biosensing approach capable of identifying specific metabolites in complex contexts with minimal cross-activity. This study introduces a generalizable strategy that combines evolutionary analysis, key ligand-binding residue identification, and mutagenesis scanning to pinpoint ligand-specific transcription factor variants. Furthermore, we uncover regulatory mechanisms within uncharacterized ligand-binding domains, whether in homodimer interfaces or monomers, through structural prediction and ligand docking. Notably, our “plug-and-play” strategy broadens the detection spectrum, enabling the exclusive biosensing of indole-3-acetic acid (an auxin), tryptamine, indole-3-pyruvic acid, and other tryptophan derivatives in engineered probiotics. This groundwork paves the way to create highly specific transcriptional biosensors for potential clinical, agricultural, and industrial use.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"8 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic tapered soft manipulator with precision and load-bearing capacity 具有精度和承重能力的仿生锥形软机械手
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-13 DOI: 10.1016/j.xcrp.2024.102210
Xianglong Li, Shouyi Zhang, Quan Xiong, Dongbao Sui, Qinghua Zhang, Ziqi Wang, Lingkai Luan, Tianjiao Zheng, Jizhuang Fan, Jie Zhao, Yanhe Zhu

Designing a soft manipulator that effectively serves human applications presents significant challenges, especially in motion robustness and accuracy. The elephant trunk, with its flexibility, strong load-bearing capacity, and dexterous yet soft tip, provides an inspiring model. Inspired by the elephant trunk’s thrust-deformation mechanism under multi-muscle action, we present the design principles of a composite tendon and pneumatic hybrid-driven tapered soft manipulator (TSM). Simulation and testing show that the TSM achieves a repeatability accuracy of 0.69 ± 0.43 mm and single-axis errors below 2 mm. With a 2-kg load, it maintains less than 37 mm of deformation in all poses. Additionally, the TSM reduces contact pressure by 35.7% through active softening. These results highlight the manipulator’s strengths in motion stability, load-bearing capacity, and safety during human contact, showcasing its potential as a flexible limb for mobile or humanoid robots.

设计一个能有效服务于人类应用的软机械手面临着巨大的挑战,尤其是在运动的鲁棒性和精确性方面。大象躯干具有柔韧性、强大的承载能力以及灵巧而柔软的尖端,为我们提供了一个启发灵感的模型。受大象躯干在多肌肉作用下的推力变形机制的启发,我们提出了复合肌腱和气动混合驱动锥形软机械手(TSM)的设计原理。仿真和测试表明,TSM 的重复精度为 0.69 ±± 0.43 毫米,单轴误差低于 2 毫米。在负载为 2 千克的情况下,它在所有姿势下的变形量都小于 37 毫米。此外,TSM 还通过主动软化将接触压力降低了 35.7%。这些结果凸显了该机械手在运动稳定性、承重能力和人体接触安全性方面的优势,展示了其作为移动机器人或仿人机器人灵活肢体的潜力。
{"title":"Biomimetic tapered soft manipulator with precision and load-bearing capacity","authors":"Xianglong Li, Shouyi Zhang, Quan Xiong, Dongbao Sui, Qinghua Zhang, Ziqi Wang, Lingkai Luan, Tianjiao Zheng, Jizhuang Fan, Jie Zhao, Yanhe Zhu","doi":"10.1016/j.xcrp.2024.102210","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102210","url":null,"abstract":"<p>Designing a soft manipulator that effectively serves human applications presents significant challenges, especially in motion robustness and accuracy. The elephant trunk, with its flexibility, strong load-bearing capacity, and dexterous yet soft tip, provides an inspiring model. Inspired by the elephant trunk’s thrust-deformation mechanism under multi-muscle action, we present the design principles of a composite tendon and pneumatic hybrid-driven tapered soft manipulator (TSM). Simulation and testing show that the TSM achieves a repeatability accuracy of 0.69 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&amp;#xB1;&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 778.5 848.5\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-B1\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">±</mo></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">±</mo></mrow></math></script></span> 0.43 mm and single-axis errors below 2 mm. With a 2-kg load, it maintains less than 37 mm of deformation in all poses. Additionally, the TSM reduces contact pressure by 35.7% through active softening. These results highlight the manipulator’s strengths in motion stability, load-bearing capacity, and safety during human contact, showcasing its potential as a flexible limb for mobile or humanoid robots.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"43 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A promising platform of nanovesicles as a synergistic strategy for antibacterial and immunomodulation in treating periodontitis 纳米微粒作为治疗牙周炎的抗菌和免疫调节协同策略平台前景广阔
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-12 DOI: 10.1016/j.xcrp.2024.102205
Weichang Li, Yijiao Li, Niu Xiao, Manqing Liu, Deqian Tang, Songyue Ou, Li Gao, Changhao Li, Xiting Li, Yan Wang, Bo Yang

Current antibacterial and cytokine therapies for periodontitis have demonstrated suboptimal outcomes, and it remains challenging to achieve the two effects simultaneously in a straightforward approach to drug treatment. Here, we present a bifunctional nanoplatform based on polymer vesicles (PVs) that exhibits simultaneous broad-spectrum antibacterial and excellent immunomodulatory properties. The nanoplatform consists of PVs self-assembled from an amphiphilic block copolymer polystyrene-block-polyacrylic acid (PS-b-PAA), silver nanoparticles, and interleukin-4 (IL-4), resulting in the formation of PV/Ag@IL-4. We demonstrate the favorable biocompatibility of PV/Ag@IL-4, as well as its synergistic antibacterial and osteoimmunomodulatory properties, while emphasizing the role of PV/Ag@IL-4 in rescuing the imbalance of periodontal bone homeostasis. This bifunctional nanoplatform exhibits great potential as a candidate for synergistic antibacterial-immunomodulatory therapeutics in the treatment of periodontitis. Additionally, its versatility and simplicity make it a promising platform for developing multifunctional treatments targeting various diseases.

目前治疗牙周炎的抗菌疗法和细胞因子疗法的疗效都不理想,要想通过直接的药物治疗方法同时达到这两种效果仍具有挑战性。在这里,我们提出了一种基于聚合物囊泡 (PV) 的双功能纳米平台,它同时具有广谱抗菌和出色的免疫调节特性。该纳米平台由两亲嵌段共聚物聚苯乙烯-嵌段-聚丙烯酸(PS-b-PAA)、银纳米颗粒和白细胞介素-4(IL-4)自组装而成,形成 PV/Ag@IL-4。我们证明了 PV/Ag@IL-4 良好的生物相容性及其协同抗菌和骨免疫调节特性,同时强调了 PV/Ag@IL-4 在挽救牙周骨平衡失调方面的作用。作为治疗牙周炎的协同抗菌免疫调节疗法的候选药物,这种双功能纳米平台显示出巨大的潜力。此外,它的多功能性和简易性使其成为开发针对各种疾病的多功能疗法的理想平台。
{"title":"A promising platform of nanovesicles as a synergistic strategy for antibacterial and immunomodulation in treating periodontitis","authors":"Weichang Li, Yijiao Li, Niu Xiao, Manqing Liu, Deqian Tang, Songyue Ou, Li Gao, Changhao Li, Xiting Li, Yan Wang, Bo Yang","doi":"10.1016/j.xcrp.2024.102205","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102205","url":null,"abstract":"<p>Current antibacterial and cytokine therapies for periodontitis have demonstrated suboptimal outcomes, and it remains challenging to achieve the two effects simultaneously in a straightforward approach to drug treatment. Here, we present a bifunctional nanoplatform based on polymer vesicles (PVs) that exhibits simultaneous broad-spectrum antibacterial and excellent immunomodulatory properties. The nanoplatform consists of PVs self-assembled from an amphiphilic block copolymer polystyrene-block-polyacrylic acid (PS-<em>b</em>-PAA), silver nanoparticles, and interleukin-4 (IL-4), resulting in the formation of PV/Ag@IL-4. We demonstrate the favorable biocompatibility of PV/Ag@IL-4, as well as its synergistic antibacterial and osteoimmunomodulatory properties, while emphasizing the role of PV/Ag@IL-4 in rescuing the imbalance of periodontal bone homeostasis. This bifunctional nanoplatform exhibits great potential as a candidate for synergistic antibacterial-immunomodulatory therapeutics in the treatment of periodontitis. Additionally, its versatility and simplicity make it a promising platform for developing multifunctional treatments targeting various diseases.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"11 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water content estimation in polymer electrolyte fuel cells using synchronous electrochemical impedance spectroscopy and neutron imaging 利用同步电化学阻抗谱和中子成像估算聚合物电解质燃料电池中的含水量
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1016/j.xcrp.2024.102208
Shangwei Zhou, Yunsong Wu, Linlin Xu, Winfried Kockelmann, Lara Rasha, Wenjia Du, Rhodri Owen, Jiadi Yang, Bochen Li, Paul R. Shearing, Marc-Olivier Coppens, Dan J.L. Brett, Rhodri Jervis

Polymer electrolyte fuel cells are a crucial piece of approaching net zero due to their high power density, rapid refueling, and eco-friendly operation. However, stable performance and durability rely on subtle water balance. Existing water management strategies, including humidification, drainage, and cold starts, primarily depend on indirect feedback or calibration through the output voltage. The direct, real-time measurement of the overall water content inside a fuel cell remains challenging, hindering the implementation of efficient feedback water control. To address this issue, synchronous measurement of neutron imaging and electrochemical impedance spectroscopy are carried out at various water contents. Machine learning is used to establish a non-linear correlation between the two characterizations. This enables the development of a more cost-effective and attainable real-time water-content estimation technique—inferred from a universal electrochemical impedance spectroscopy tool rather than relying solely on the limited availability of neutron imaging, which will facilitate the optimization and advancement of polymer electrolyte fuel cells.

聚合物电解质燃料电池具有高功率密度、快速加注和环保运行等优点,是实现零排放的关键因素。然而,稳定的性能和耐用性取决于微妙的水分平衡。现有的水管理策略,包括加湿、排水和冷启动,主要依赖于输出电压的间接反馈或校准。直接、实时测量燃料电池内部的整体含水量仍然具有挑战性,阻碍了高效反馈水控制的实施。为了解决这个问题,我们在不同的含水量下进行了中子成像和电化学阻抗光谱的同步测量。机器学习用于建立这两种表征之间的非线性相关性。这使得从通用电化学阻抗谱工具中推导出的更具成本效益和可实现性的实时水含量估算技术得以开发,而不是仅仅依赖于有限的中子成像,这将促进聚合物电解质燃料电池的优化和进步。
{"title":"Water content estimation in polymer electrolyte fuel cells using synchronous electrochemical impedance spectroscopy and neutron imaging","authors":"Shangwei Zhou, Yunsong Wu, Linlin Xu, Winfried Kockelmann, Lara Rasha, Wenjia Du, Rhodri Owen, Jiadi Yang, Bochen Li, Paul R. Shearing, Marc-Olivier Coppens, Dan J.L. Brett, Rhodri Jervis","doi":"10.1016/j.xcrp.2024.102208","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102208","url":null,"abstract":"<p>Polymer electrolyte fuel cells are a crucial piece of approaching net zero due to their high power density, rapid refueling, and eco-friendly operation. However, stable performance and durability rely on subtle water balance. Existing water management strategies, including humidification, drainage, and cold starts, primarily depend on indirect feedback or calibration through the output voltage. The direct, real-time measurement of the overall water content inside a fuel cell remains challenging, hindering the implementation of efficient feedback water control. To address this issue, synchronous measurement of neutron imaging and electrochemical impedance spectroscopy are carried out at various water contents. Machine learning is used to establish a non-linear correlation between the two characterizations. This enables the development of a more cost-effective and attainable real-time water-content estimation technique—inferred from a universal electrochemical impedance spectroscopy tool rather than relying solely on the limited availability of neutron imaging, which will facilitate the optimization and advancement of polymer electrolyte fuel cells.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"49 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration 多尺度水凝胶调节间充质干细胞命运,促进骨再生
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1016/j.xcrp.2024.102181
Ze Li, Jiayang Li, Guiwen Qu, Kang Chen, Ye Liu, Sicheng Li, Canwen Chen, Yun Zhao, Jinjian Huang, Peige Wang, Xiuwen Wu, Jianan Ren

Hydrogels are commonly utilized as a three-dimensional cell culture platform. High-stiffness hydrogels promote directional cell differentiation, but they may also restrict cellular activity. Here, we report a process utilizing sacrificial templates and nanoparticles for the preparation of multiscale hydrogels with macroporous and locally enhanced stiffness properties. The macroporous hydrogels provide ample space for cells, which facilitates cell activity and proliferation. Chemical doping of the nanoparticles creates a locally stiffness-enhanced region without affecting its macroscopic mechanical properties. This regional stiffness promotes osteogenic differentiation of encapsulated adipose-derived mesenchymal stem cells (ADSCs). Importantly, the functional activity of the ADSCs increases significantly after osteogenic differentiation in hydrogels. Notably, the hydrogels efficiently activate mechanotransduction signals in the ADSCs and influence their fate. In addition, ADSC-loaded multiscale hydrogels promote bone regeneration of rat cranial defects in animal experiments. Collectively, our findings demonstrate that this technique has promising applications in the biomedical field.

水凝胶通常被用作三维细胞培养平台。高硬度水凝胶可促进细胞定向分化,但也可能限制细胞活性。在此,我们报告了一种利用牺牲模板和纳米粒子制备多尺度水凝胶的方法,这种水凝胶具有大孔和局部增强的硬度特性。大孔水凝胶为细胞提供了充足的空间,有利于细胞的活动和增殖。纳米粒子的化学掺杂可在不影响其宏观机械性能的情况下产生局部刚度增强区域。这种区域硬度可促进包裹的脂肪间充质干细胞(ADSCs)的成骨分化。重要的是,在水凝胶中进行成骨分化后,ADSCs 的功能活性显著增强。值得注意的是,水凝胶能有效激活 ADSCs 的机械传导信号并影响其命运。此外,在动物实验中,ADSC负载的多尺度水凝胶促进了大鼠颅骨缺损的骨再生。总之,我们的研究结果表明,这项技术在生物医学领域有着广阔的应用前景。
{"title":"Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration","authors":"Ze Li, Jiayang Li, Guiwen Qu, Kang Chen, Ye Liu, Sicheng Li, Canwen Chen, Yun Zhao, Jinjian Huang, Peige Wang, Xiuwen Wu, Jianan Ren","doi":"10.1016/j.xcrp.2024.102181","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102181","url":null,"abstract":"<p>Hydrogels are commonly utilized as a three-dimensional cell culture platform. High-stiffness hydrogels promote directional cell differentiation, but they may also restrict cellular activity. Here, we report a process utilizing sacrificial templates and nanoparticles for the preparation of multiscale hydrogels with macroporous and locally enhanced stiffness properties. The macroporous hydrogels provide ample space for cells, which facilitates cell activity and proliferation. Chemical doping of the nanoparticles creates a locally stiffness-enhanced region without affecting its macroscopic mechanical properties. This regional stiffness promotes osteogenic differentiation of encapsulated adipose-derived mesenchymal stem cells (ADSCs). Importantly, the functional activity of the ADSCs increases significantly after osteogenic differentiation in hydrogels. Notably, the hydrogels efficiently activate mechanotransduction signals in the ADSCs and influence their fate. In addition, ADSC-loaded multiscale hydrogels promote bone regeneration of rat cranial defects in animal experiments. Collectively, our findings demonstrate that this technique has promising applications in the biomedical field.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"13 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defensins identified through molecular de-extinction 通过分子去灭绝鉴定防御素
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-11 DOI: 10.1016/j.xcrp.2024.102193
Adryan F.L. Ferreira, Karen O. Osiro, Kamila B.S. de Oliveira, Marlon H. Cardoso, Lucas R. de Lima, Harry M. Duque, Maria L.R. Macedo, Céline Landon, Cesar de la Fuente-Nunez, Octavio L. Franco

Molecular de-extinction is an emerging field that identifies potentially useful molecules throughout evolution. Here, we computationally mine genomes, searching for molecules called defensins, which play a role in host immunity. Our approach leads to the discovery of six undescribed β-defensins, five of which are derived from two different extinct bird species and one from a mammalian species. These organisms included an extinct moa species (Anomalopteryx didiformis) that inhabited New Zealand and the extinct Spix’s macaw (Cyanopsitta spixii), which was endemic to Brazil, as well as the black rhino (Diceros bicornis minor). Evolutionary and structural analyses of the β-defensins are performed to further characterize these molecules. This study identifies molecules from extinct organisms, revealing defensins and opening new avenues for antibiotic discovery.

分子消亡是一个新兴领域,它在整个进化过程中识别潜在的有用分子。在这里,我们通过计算挖掘基因组,寻找在宿主免疫中发挥作用的防御素分子。我们的方法发现了六种未被描述的β防御素,其中五种来自两种不同的已灭绝鸟类物种,一种来自哺乳动物物种。这些生物包括栖息在新西兰的一种已灭绝的驼鸟(Anomalopteryx didiformis)、巴西特有的已灭绝的斯皮克斯金刚鹦鹉(Cyanopsitta spixii)以及黑犀牛(Diceros bicornis minor)。对β-防御素进行了进化和结构分析,以进一步确定这些分子的特征。这项研究确定了已灭绝生物的分子,揭示了防御素,为发现抗生素开辟了新途径。
{"title":"Defensins identified through molecular de-extinction","authors":"Adryan F.L. Ferreira, Karen O. Osiro, Kamila B.S. de Oliveira, Marlon H. Cardoso, Lucas R. de Lima, Harry M. Duque, Maria L.R. Macedo, Céline Landon, Cesar de la Fuente-Nunez, Octavio L. Franco","doi":"10.1016/j.xcrp.2024.102193","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102193","url":null,"abstract":"<p>Molecular de-extinction is an emerging field that identifies potentially useful molecules throughout evolution. Here, we computationally mine genomes, searching for molecules called defensins, which play a role in host immunity. Our approach leads to the discovery of six undescribed β-defensins, five of which are derived from two different extinct bird species and one from a mammalian species. These organisms included an extinct moa species (<em>Anomalopteryx didiformis</em>) that inhabited New Zealand and the extinct Spix’s macaw (<em>Cyanopsitta spixii</em>), which was endemic to Brazil, as well as the black rhino (<em>Diceros bicornis minor</em>). Evolutionary and structural analyses of the β-defensins are performed to further characterize these molecules. This study identifies molecules from extinct organisms, revealing defensins and opening new avenues for antibiotic discovery.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"2 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are all microbes electroactive? 所有微生物都具有电活性吗?
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102200
Leonid Digel, Robin Bonné, Kartik Aiyer

Microbial electroactivity enables microorganisms to exchange electrons with extracellular electron donors and acceptors. Initially identified in Geobacter and Shewanella, it has now become evident that microbial electroactivity is prevalent in a variety of environments, facilitating access to distant and scarce electron donors and acceptors. This phenomenon is not confined to a few select microbes but spans across the three domains of life, viz. archaea, bacteria, and eukaryotes. In this perspective, we discuss electroactivity as a unifying metabolic trait across diverse microbial taxa, including phototrophs, sulfur-oxidizing bacteria, iron-oxidizing bacteria, nitrogen fixers, and even obligate aerobes. We highlight recent findings regarding possible mechanisms for the spread of electroactivity via horizontal gene transfer. Importantly, structurally conserved mechanisms of extracellular electron transfer (EET) across different microbial groups underscore its evolutionary significance. Considering the dominance of anaerobic metabolisms on early Earth, we propose that electroactivity is an ancestral adaptation available to all extant microorganisms.

微生物电活性使微生物能够与细胞外电子供体和受体交换电子。微生物电活性最初是在革兰氏菌(Geobacter)和雪旺菌(Shewanella)中发现的,现在已经证明,微生物电活性在各种环境中都很普遍,它有助于获得遥远而稀缺的电子供体和受体。这种现象并不局限于少数几种微生物,而是横跨三个生命领域,即古生菌、细菌和真核生物。在这一视角中,我们讨论了电活性这一统一的代谢特征,它横跨不同的微生物类群,包括光养菌、硫氧化细菌、铁氧化细菌、固氮菌,甚至是强制性需氧菌。我们重点介绍了有关通过水平基因转移传播电活性的可能机制的最新发现。重要的是,不同微生物群之间细胞外电子传递(EET)结构上的一致机制强调了其进化意义。考虑到厌氧代谢在早期地球上占主导地位,我们认为电活性是所有现存微生物都能利用的一种祖先适应性。
{"title":"Are all microbes electroactive?","authors":"Leonid Digel, Robin Bonné, Kartik Aiyer","doi":"10.1016/j.xcrp.2024.102200","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102200","url":null,"abstract":"<p>Microbial electroactivity enables microorganisms to exchange electrons with extracellular electron donors and acceptors. Initially identified in <em>Geobacter</em> and <em>Shewanella</em>, it has now become evident that microbial electroactivity is prevalent in a variety of environments, facilitating access to distant and scarce electron donors and acceptors. This phenomenon is not confined to a few select microbes but spans across the three domains of life, viz. archaea, bacteria, and eukaryotes. In this perspective, we discuss electroactivity as a unifying metabolic trait across diverse microbial taxa, including phototrophs, sulfur-oxidizing bacteria, iron-oxidizing bacteria, nitrogen fixers, and even obligate aerobes. We highlight recent findings regarding possible mechanisms for the spread of electroactivity via horizontal gene transfer. Importantly, structurally conserved mechanisms of extracellular electron transfer (EET) across different microbial groups underscore its evolutionary significance. Considering the dominance of anaerobic metabolisms on early Earth, we propose that electroactivity is an ancestral adaptation available to all extant microorganisms.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"61 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hollow microcavity enzymatic fuel cell for in vivo energy harvesting 用于体内能量采集的空心微腔酶燃料电池
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102203
Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier

Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful in vivo implantation of a glucose/O2 EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term in vitro bioelectrocatalytic storage stability of >25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm−2, respectively, and high storage stability of ∼80% after 19 days. The maximum in vivo performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.

近年来,酶燃料电池(EFCs)已成为可穿戴和植入式电子设备的一种前景广阔的动力源。本文报道了一种葡萄糖/O2 EFC,利用创新的 "空腔电极 "概念,成功地在体内植入超过 70 天,以解决生物催化剂的寿命和生物相容性问题。这种空心生物阳极在体外生物电催化存储方面的长期稳定性为 25 天。基于降压纸的中空 EFC 显示出极具吸引力的最大电压和功率输出(分别为 0.62 V 和 0.79 mW cm-2),以及 19 天后高达 80% 的存储稳定性。体内的最大性能输出为 0.34 ± 0.05 V 和 38.7 ± 4.7 μW。在 Sprague-Dawley 大鼠体内使用 74 天后,空心 EFC 继续保持稳定的 0.59 V 电压。尸检结果显示没有排斥迹象,证明了其有效的生物相容性。
{"title":"A hollow microcavity enzymatic fuel cell for in vivo energy harvesting","authors":"Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier","doi":"10.1016/j.xcrp.2024.102203","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102203","url":null,"abstract":"<p>Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful <em>in vivo</em> implantation of a glucose/O<sub>2</sub> EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term <em>in vitro</em> bioelectrocatalytic storage stability of &gt;25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm<sup>−2</sup>, respectively, and high storage stability of ∼80% after 19 days. The maximum <em>in vivo</em> performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"20 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and computational modeling of adsorbent polymers that effectively immobilize SARS-CoV-2, with potential practical applications 发现可有效固定 SARS-CoV-2 的吸附聚合物并建立计算模型,具有潜在的实际应用价值
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102204
Xuan Xue, Joshua D. Duncan, Christopher M. Coleman, Leonardo Contreas, Chester Blackburn, Maria Vivero-Lopez, Philip M. Williams, Jonathan K. Ball, Cameron Alexander, Morgan R. Alexander

Viral translocation is considered a common way for respiratory viruses to spread and contaminate the surrounding environment. Thus, the discovery of non-eluting polymers that immobilize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon contact provides an opportunity to develop new coating materials for better infection control. Here, virion-binding polymers are discovered from an existing monomer library via experimental high-throughput screening. Among them, poly([2-diethylamino] ethyl acrylate) (pDEAEA) demonstrates dual functions: binding virions strongly and its speed to inactivate adsorbed SARS-CoV-2. Computational models are built based on the experimental screening data. Polymers that are predicted to be pro-adsorption by the virtual screening are poly(1-{4-[5-(4-methoxyphenyl)-1H-pyrazol-3-yl]piperidin-1-yl}prop-2-en-1-one) (pMPPPP), poly(1-(6-isobutyloctahydropyrrolo[3,4-d]azepin-2[1H]-yl)-2-methylprop-2-en-1-one) (piBOHPAMP), and poly(N-(3-((1-benzylpiperidin-4-yl)oxy)propyl)acrylamide) (pBPOPAm), and these are found to adsorb virions. However, due to limitations in the diversity of structures in the training set, the computational models are unable to predict the adsorption of virions for all polymer structures. Summarily, these findings indicate the utility of the methodology to identify coating polymers that effectively immobilize SARS-CoV-2, with potential practical applications (e.g., water and air filtration).

病毒转运被认为是呼吸道病毒传播和污染周围环境的一种常见方式。因此,能在接触时固定严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的非凝胶聚合物的发现为开发新的涂层材料以更好地控制感染提供了机会。本文通过实验性高通量筛选,从现有单体库中发现了病毒结合聚合物。其中,聚([2-二乙基氨基]乙基丙烯酸酯)(pDEAEA)具有双重功能:强力结合病毒,并能快速灭活吸附的 SARS-CoV-2。根据实验筛选数据建立了计算模型。通过虚拟筛选预测具有吸附性的聚合物有聚(1-{4-[5-(4-甲氧基苯基)-1H-吡唑-3-基]哌啶-1-基}丙-2-烯-1-酮)(pMPPPP)、聚(1-(6-异丁酰八氢吡咯并[3、4-d]氮杂卓-2[1H]-基)-2-甲基丙-2-烯-1-酮 (piBOHPAMP) 和聚 N-(3-((1-苄基哌啶-4-基)氧基)丙基)丙烯酰胺 (pBPOPAm),这些物质都能吸附病毒。然而,由于训练集中结构多样性的限制,计算模型无法预测所有聚合物结构的病毒吸附情况。总之,这些研究结果表明,该方法可用于确定能有效固定 SARS-CoV-2 的涂层聚合物,并具有潜在的实际应用价值(如水和空气过滤)。
{"title":"Discovery and computational modeling of adsorbent polymers that effectively immobilize SARS-CoV-2, with potential practical applications","authors":"Xuan Xue, Joshua D. Duncan, Christopher M. Coleman, Leonardo Contreas, Chester Blackburn, Maria Vivero-Lopez, Philip M. Williams, Jonathan K. Ball, Cameron Alexander, Morgan R. Alexander","doi":"10.1016/j.xcrp.2024.102204","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102204","url":null,"abstract":"<p>Viral translocation is considered a common way for respiratory viruses to spread and contaminate the surrounding environment. Thus, the discovery of non-eluting polymers that immobilize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon contact provides an opportunity to develop new coating materials for better infection control. Here, virion-binding polymers are discovered from an existing monomer library via experimental high-throughput screening. Among them, poly([2-diethylamino] ethyl acrylate) (pDEAEA) demonstrates dual functions: binding virions strongly and its speed to inactivate adsorbed SARS-CoV-2. Computational models are built based on the experimental screening data. Polymers that are predicted to be pro-adsorption by the virtual screening are poly(1-{4-[5-(4-methoxyphenyl)-1H-pyrazol-3-yl]piperidin-1-yl}prop-2-en-1-one) (pMPPPP), poly(1-(6-isobutyloctahydropyrrolo[3,4-<em>d</em>]azepin-2[1<em>H</em>]-yl)-2-methylprop-2-en-1-one) (piBOHPAMP), and poly(<em>N</em>-(3-((1-benzylpiperidin-4-yl)oxy)propyl)acrylamide) (pBPOPAm), and these are found to adsorb virions. However, due to limitations in the diversity of structures in the training set, the computational models are unable to predict the adsorption of virions for all polymer structures. Summarily, these findings indicate the utility of the methodology to identify coating polymers that effectively immobilize SARS-CoV-2, with potential practical applications (e.g., water and air filtration).</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"53 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Physical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1