首页 > 最新文献

Cell Reports Physical Science最新文献

英文 中文
A hollow microcavity enzymatic fuel cell for in vivo energy harvesting 用于体内能量采集的空心微腔酶燃料电池
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102203
Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier

Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful in vivo implantation of a glucose/O2 EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term in vitro bioelectrocatalytic storage stability of >25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm−2, respectively, and high storage stability of ∼80% after 19 days. The maximum in vivo performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.

近年来,酶燃料电池(EFCs)已成为可穿戴和植入式电子设备的一种前景广阔的动力源。本文报道了一种葡萄糖/O2 EFC,利用创新的 "空腔电极 "概念,成功地在体内植入超过 70 天,以解决生物催化剂的寿命和生物相容性问题。这种空心生物阳极在体外生物电催化存储方面的长期稳定性为 25 天。基于降压纸的中空 EFC 显示出极具吸引力的最大电压和功率输出(分别为 0.62 V 和 0.79 mW cm-2),以及 19 天后高达 80% 的存储稳定性。体内的最大性能输出为 0.34 ± 0.05 V 和 38.7 ± 4.7 μW。在 Sprague-Dawley 大鼠体内使用 74 天后,空心 EFC 继续保持稳定的 0.59 V 电压。尸检结果显示没有排斥迹象,证明了其有效的生物相容性。
{"title":"A hollow microcavity enzymatic fuel cell for in vivo energy harvesting","authors":"Anastasiia Berezovska, Paulo Henrique M. Buzzetti, Yannig Nedellec, Chantal Gondran, Fabien Giroud, Andrew J. Gross, Stephane Marinesco, Serge Cosnier","doi":"10.1016/j.xcrp.2024.102203","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102203","url":null,"abstract":"<p>Enzymatic fuel cells (EFCs) have emerged in recent years as a promising power source for wearable and implantable electronic devices. Here, successful <em>in vivo</em> implantation of a glucose/O<sub>2</sub> EFC beyond 70 days is reported that exploits an innovative “cavity electrode” concept for biocatalyst entrapment to address lifetime and biocompatibility issues. The hollow bioanode shows long-term <em>in vitro</em> bioelectrocatalytic storage stability of &gt;25 days. The hollow buckypaper-based EFC exhibits attractive maximum voltage and power outputs of 0.62 V and 0.79 mW cm<sup>−2</sup>, respectively, and high storage stability of ∼80% after 19 days. The maximum <em>in vivo</em> performance outputs are 0.34 ± 0.05 V and 38.7 ± 4.7 μW. After 74 days in Sprague-Dawley rats, the hollow EFC continues to present a stable 0.59 V. Postmortem analysis confirms high-level robustness and operational performance. Autopsy findings reveal no signs of rejection and demonstrate effective biocompatibility.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"20 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and computational modeling of adsorbent polymers that effectively immobilize SARS-CoV-2, with potential practical applications 发现可有效固定 SARS-CoV-2 的吸附聚合物并建立计算模型,具有潜在的实际应用价值
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102204
Xuan Xue, Joshua D. Duncan, Christopher M. Coleman, Leonardo Contreas, Chester Blackburn, Maria Vivero-Lopez, Philip M. Williams, Jonathan K. Ball, Cameron Alexander, Morgan R. Alexander

Viral translocation is considered a common way for respiratory viruses to spread and contaminate the surrounding environment. Thus, the discovery of non-eluting polymers that immobilize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon contact provides an opportunity to develop new coating materials for better infection control. Here, virion-binding polymers are discovered from an existing monomer library via experimental high-throughput screening. Among them, poly([2-diethylamino] ethyl acrylate) (pDEAEA) demonstrates dual functions: binding virions strongly and its speed to inactivate adsorbed SARS-CoV-2. Computational models are built based on the experimental screening data. Polymers that are predicted to be pro-adsorption by the virtual screening are poly(1-{4-[5-(4-methoxyphenyl)-1H-pyrazol-3-yl]piperidin-1-yl}prop-2-en-1-one) (pMPPPP), poly(1-(6-isobutyloctahydropyrrolo[3,4-d]azepin-2[1H]-yl)-2-methylprop-2-en-1-one) (piBOHPAMP), and poly(N-(3-((1-benzylpiperidin-4-yl)oxy)propyl)acrylamide) (pBPOPAm), and these are found to adsorb virions. However, due to limitations in the diversity of structures in the training set, the computational models are unable to predict the adsorption of virions for all polymer structures. Summarily, these findings indicate the utility of the methodology to identify coating polymers that effectively immobilize SARS-CoV-2, with potential practical applications (e.g., water and air filtration).

病毒转运被认为是呼吸道病毒传播和污染周围环境的一种常见方式。因此,能在接触时固定严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的非凝胶聚合物的发现为开发新的涂层材料以更好地控制感染提供了机会。本文通过实验性高通量筛选,从现有单体库中发现了病毒结合聚合物。其中,聚([2-二乙基氨基]乙基丙烯酸酯)(pDEAEA)具有双重功能:强力结合病毒,并能快速灭活吸附的 SARS-CoV-2。根据实验筛选数据建立了计算模型。通过虚拟筛选预测具有吸附性的聚合物有聚(1-{4-[5-(4-甲氧基苯基)-1H-吡唑-3-基]哌啶-1-基}丙-2-烯-1-酮)(pMPPPP)、聚(1-(6-异丁酰八氢吡咯并[3、4-d]氮杂卓-2[1H]-基)-2-甲基丙-2-烯-1-酮 (piBOHPAMP) 和聚 N-(3-((1-苄基哌啶-4-基)氧基)丙基)丙烯酰胺 (pBPOPAm),这些物质都能吸附病毒。然而,由于训练集中结构多样性的限制,计算模型无法预测所有聚合物结构的病毒吸附情况。总之,这些研究结果表明,该方法可用于确定能有效固定 SARS-CoV-2 的涂层聚合物,并具有潜在的实际应用价值(如水和空气过滤)。
{"title":"Discovery and computational modeling of adsorbent polymers that effectively immobilize SARS-CoV-2, with potential practical applications","authors":"Xuan Xue, Joshua D. Duncan, Christopher M. Coleman, Leonardo Contreas, Chester Blackburn, Maria Vivero-Lopez, Philip M. Williams, Jonathan K. Ball, Cameron Alexander, Morgan R. Alexander","doi":"10.1016/j.xcrp.2024.102204","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102204","url":null,"abstract":"<p>Viral translocation is considered a common way for respiratory viruses to spread and contaminate the surrounding environment. Thus, the discovery of non-eluting polymers that immobilize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon contact provides an opportunity to develop new coating materials for better infection control. Here, virion-binding polymers are discovered from an existing monomer library via experimental high-throughput screening. Among them, poly([2-diethylamino] ethyl acrylate) (pDEAEA) demonstrates dual functions: binding virions strongly and its speed to inactivate adsorbed SARS-CoV-2. Computational models are built based on the experimental screening data. Polymers that are predicted to be pro-adsorption by the virtual screening are poly(1-{4-[5-(4-methoxyphenyl)-1H-pyrazol-3-yl]piperidin-1-yl}prop-2-en-1-one) (pMPPPP), poly(1-(6-isobutyloctahydropyrrolo[3,4-<em>d</em>]azepin-2[1<em>H</em>]-yl)-2-methylprop-2-en-1-one) (piBOHPAMP), and poly(<em>N</em>-(3-((1-benzylpiperidin-4-yl)oxy)propyl)acrylamide) (pBPOPAm), and these are found to adsorb virions. However, due to limitations in the diversity of structures in the training set, the computational models are unable to predict the adsorption of virions for all polymer structures. Summarily, these findings indicate the utility of the methodology to identify coating polymers that effectively immobilize SARS-CoV-2, with potential practical applications (e.g., water and air filtration).</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"53 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur-enhanced surface passivation for hole-selective contacts in crystalline silicon solar cells 用于晶体硅太阳能电池空穴选择性触点的硫增强表面钝化技术
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1016/j.xcrp.2024.102199
Yanhao Wang, Yirong Geng, Hongwei Hao, Wei Ren, Hai Zhang, Jingjie Li, Yongzhe Zhang, Jilei Wang, Shaojuan Bao, Hui Wang, Shan-Ting Zhang, Dongdong Li

Effective surface passivation is pivotal for achieving high performance in crystalline silicon (c-Si) solar cells. However, many passivation techniques in solar cells involve high temperatures and cost. Here, we report a low-cost and easy-to-implement sulfurization treatment as a surface passivation strategy. By treating p-type c-Si (p-Si) wafers with (NH4)2S solution, sulfur can be introduced onto the surface and passivate the dangling bonds by forming an Si–S bond. Sulfurization also contributes to a higher negative fixed charge at the p-Si/Al2O3 interface and, thus, better field-effect passivation. Due to the improved passivation, sulfurization effectively enhances hole selectivity, evidenced by the substantially improved open-circuit voltage and efficiency of solar cells. Eventually, by employing sulfurization in hole-selective contacts, remarkable efficiencies of 19.85% and 22.01% are attained for NiOx- and MoOx-based passivating contact c-Si solar cells, respectively. Our work highlights a promising sulfurization strategy to enhance surface passivation and hole selectivity for dopant-free c-Si solar cells.

有效的表面钝化是晶体硅太阳能电池实现高性能的关键。然而,太阳能电池中的许多钝化技术都需要较高的温度和成本。在此,我们报告了一种低成本、易实施的硫化处理表面钝化策略。通过用 (NH4)2S 溶液处理 p 型晶体硅(p-Si)晶片,可将硫引入表面,并通过形成 Si-S 键来钝化悬空键。硫化还有助于提高 p-Si/Al2O3 界面的固定负电荷,从而提高场效应钝化效果。由于钝化得到改善,硫化可有效提高空穴选择性,太阳能电池开路电压和效率的大幅提高就是证明。最终,通过在空穴选择性接触中采用硫化技术,基于氧化镍和氧化钼的钝化接触晶体硅太阳能电池的效率分别达到了 19.85% 和 22.01%。我们的工作突出了一种很有前景的硫化策略,可提高无掺杂晶体硅太阳能电池的表面钝化和空穴选择性。
{"title":"Sulfur-enhanced surface passivation for hole-selective contacts in crystalline silicon solar cells","authors":"Yanhao Wang, Yirong Geng, Hongwei Hao, Wei Ren, Hai Zhang, Jingjie Li, Yongzhe Zhang, Jilei Wang, Shaojuan Bao, Hui Wang, Shan-Ting Zhang, Dongdong Li","doi":"10.1016/j.xcrp.2024.102199","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102199","url":null,"abstract":"<p>Effective surface passivation is pivotal for achieving high performance in crystalline silicon (<em>c</em>-Si) solar cells. However, many passivation techniques in solar cells involve high temperatures and cost. Here, we report a low-cost and easy-to-implement sulfurization treatment as a surface passivation strategy. By treating <em>p</em>-type <em>c</em>-Si (<em>p</em>-Si) wafers with (NH<sub>4</sub>)<sub>2</sub>S solution, sulfur can be introduced onto the surface and passivate the dangling bonds by forming an Si–S bond. Sulfurization also contributes to a higher negative fixed charge at the <em>p</em>-Si/Al<sub>2</sub>O<sub>3</sub> interface and, thus, better field-effect passivation. Due to the improved passivation, sulfurization effectively enhances hole selectivity, evidenced by the substantially improved open-circuit voltage and efficiency of solar cells. Eventually, by employing sulfurization in hole-selective contacts, remarkable efficiencies of 19.85% and 22.01% are attained for NiO<sub>x</sub>- and MoO<sub>x</sub>-based passivating contact <em>c</em>-Si solar cells, respectively. Our work highlights a promising sulfurization strategy to enhance surface passivation and hole selectivity for dopant-free <em>c</em>-Si solar cells.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"7 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A snail-inspired traveling-wave-driven miniature piezoelectric robot 受蜗牛启发的行波驱动微型压电机器人
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1016/j.xcrp.2024.102201
Weiyi Wang, Jing Li, Shijing Zhang, Jie Deng, Weishan Chen, Yingxiang Liu

The phenomenon of using traveling waves is widely observed in organisms like centipedes, stingrays, and snails. Energy is uniformly distributed through wave propagation, reducing energy loss and enhancing motion efficiency. This offers valuable guidance for designing robots. Here, we report a miniature robot emulating the traveling-wave behavior of snails. A single-frame robot is designed with a rigid square-frame structure and four piezoelectric ceramics to generate traveling waves. The robot achieves a linear speed of 12 body lengths per second (BL/s), with a volume of 27.5 × 26 × 4 mm3 and a weight of 7.9 g. Two-dimensional planar motion is realized by connecting two single-frame robots to form a double-frame robot, achieving a linear speed of 12 BL/s, a rotational speed of 690°/s, and a load capacity of 200 g. An integrated robot, combining a customized power supply and an image acquisition system, achieves untethered motion and image perception. This work provides a valuable design reference for miniature robots.

利用行波的现象在蜈蚣、黄貂鱼和蜗牛等生物身上被广泛观察到。能量通过波的传播均匀分布,减少了能量损失,提高了运动效率。这为设计机器人提供了宝贵的指导。在此,我们报告了一种模仿蜗牛行波行为的微型机器人。我们设计了一个单框架机器人,采用刚性方形框架结构和四个压电陶瓷来产生行波。该机器人的线速度为每秒 12 个体长(BL/s),体积为 27.5 × 26 × 4 mm3,重量为 7.9 g。通过将两个单框架机器人连接成双框架机器人,实现了二维平面运动,线速度为 12 BL/s,旋转速度为 690°/s,负载能力为 200 g。这项工作为微型机器人提供了宝贵的设计参考。
{"title":"A snail-inspired traveling-wave-driven miniature piezoelectric robot","authors":"Weiyi Wang, Jing Li, Shijing Zhang, Jie Deng, Weishan Chen, Yingxiang Liu","doi":"10.1016/j.xcrp.2024.102201","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102201","url":null,"abstract":"<p>The phenomenon of using traveling waves is widely observed in organisms like centipedes, stingrays, and snails. Energy is uniformly distributed through wave propagation, reducing energy loss and enhancing motion efficiency. This offers valuable guidance for designing robots. Here, we report a miniature robot emulating the traveling-wave behavior of snails. A single-frame robot is designed with a rigid square-frame structure and four piezoelectric ceramics to generate traveling waves. The robot achieves a linear speed of 12 body lengths per second (BL/s), with a volume of 27.5 × 26 × 4 mm<sup>3</sup> and a weight of 7.9 g. Two-dimensional planar motion is realized by connecting two single-frame robots to form a double-frame robot, achieving a linear speed of 12 BL/s, a rotational speed of 690°/s, and a load capacity of 200 g. An integrated robot, combining a customized power supply and an image acquisition system, achieves untethered motion and image perception. This work provides a valuable design reference for miniature robots.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"32 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconfigurable neuromorphic computing by a microdroplet 通过微滴实现可重构神经形态计算
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1016/j.xcrp.2024.102202
Yu Ma, Yueke Niu, Ruochen Pei, Wei Wang, Bingyan Wei, Yanbo Xie

The emerging fluidic memristor, capable of emulating ion transport and signaling in brains, has shown promising features in neuromorphic computing but is still in its nascent stage of development. We introduce a droplet memristor in which applied voltage drives a non-conductive liquid crystal droplet to penetrate into a microwell, blocking the ionic conduction path and increasing the resistance. Our system exhibits switchable excitatory and inhibitory features, modulated by altering the polarity of the ionic surfactants at the liquid-liquid interface. We find that memory effects are proportional to the voltage amplitude and inversely proportional to the scanning frequency, consistent with predictions by Newton’s dynamic theory. We emulate adaptive learning akin to biological synapses and demonstrate that low-temperature-induced phase changes in droplets reduce the handwriting recognition accuracy in droplet artificial neuron networks, promising in-sensing computing capabilities. The droplet memristor can benefit from the diverse liquid properties to extend the functionalities and applications in future neuromorphic computing.

新兴的流体忆阻器能够模拟大脑中的离子传输和信号传导,在神经形态计算中表现出良好的特性,但目前仍处于发展的初级阶段。我们介绍了一种液滴忆阻器,在这种忆阻器中,外加电压驱动非导电液晶液滴渗入微孔,阻断离子传导路径并增加电阻。我们的系统具有可切换的兴奋和抑制特性,可通过改变液-液界面上离子表面活性剂的极性来调节。我们发现,记忆效应与电压幅度成正比,与扫描频率成反比,这与牛顿动态理论的预测一致。我们模拟了类似于生物突触的自适应学习,并证明了液滴中由低温引起的相变会降低液滴人工神经元网络的手写识别准确率,从而有望实现感应计算功能。液滴忆阻器可以从多样化的液体特性中获益,从而扩展未来神经形态计算的功能和应用。
{"title":"Reconfigurable neuromorphic computing by a microdroplet","authors":"Yu Ma, Yueke Niu, Ruochen Pei, Wei Wang, Bingyan Wei, Yanbo Xie","doi":"10.1016/j.xcrp.2024.102202","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102202","url":null,"abstract":"<p>The emerging fluidic memristor, capable of emulating ion transport and signaling in brains, has shown promising features in neuromorphic computing but is still in its nascent stage of development. We introduce a droplet memristor in which applied voltage drives a non-conductive liquid crystal droplet to penetrate into a microwell, blocking the ionic conduction path and increasing the resistance. Our system exhibits switchable excitatory and inhibitory features, modulated by altering the polarity of the ionic surfactants at the liquid-liquid interface. We find that memory effects are proportional to the voltage amplitude and inversely proportional to the scanning frequency, consistent with predictions by Newton’s dynamic theory. We emulate adaptive learning akin to biological synapses and demonstrate that low-temperature-induced phase changes in droplets reduce the handwriting recognition accuracy in droplet artificial neuron networks, promising in-sensing computing capabilities. The droplet memristor can benefit from the diverse liquid properties to extend the functionalities and applications in future neuromorphic computing.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"3 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter-protein energy transfer dynamics in the PSII antenna PSII 天线中的蛋白质间能量传递动力学
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-07 DOI: 10.1016/j.xcrp.2024.102198
Eduard Elias, Chen Hu, Roberta Croce

Efficient long-distance energy transport is a cornerstone of photosynthetic light harvesting, enabling excitation energy to traverse multiple antenna proteins to reach the reaction center (RC), where it drives photochemistry. While extensive studies on energy transfer dynamics within individual light-harvesting complexes (LHCs) have been conducted, the inter-protein transfers crucial for understanding the overall efficiency of these systems have remained experimentally elusive. This arises mainly because the spectral signatures of the subunits are often remarkably similar, complicating the identification of energy transfer pathways among them. This study bridges this gap by utilizing ultrafast transient absorption spectroscopy, under conditions with and without singlet-singlet annihilation, on the photosystem II (PSII) LHCII-CP24-CP29 subcomplex and on its constituents. Our findings reveal rapid equilibration within monomeric complexes, contrasted by six-times slower equilibration in the LHCII trimer and eight-times slower equilibration in the LHCII-CP24-CP29 subcomplex, highlighting the inter-complex energy transfer as the rate-limiting step in excitation delivery to the RC.

高效的长距离能量传输是光合作用光收集的基石,它能使激发能量穿过多个天线蛋白到达反应中心(RC),并在那里驱动光化学反应。虽然已经对单个光收集复合物(LHC)内部的能量传递动力学进行了广泛研究,但对了解这些系统整体效率至关重要的蛋白质间能量传递在实验中仍然难以捉摸。这主要是因为亚基的光谱特征往往非常相似,从而使识别它们之间的能量转移途径变得更加复杂。本研究利用超快瞬态吸收光谱,在有单线猝灭和无单线猝灭的条件下,研究了光系统 II(PSII)LHCII-CP24-CP29 亚复合物及其组成成分,从而弥补了这一空白。我们的研究结果表明,单体复合物内的平衡速度很快,而 LHCII 三聚体内的平衡速度要慢六倍,LHCII-CP24-CP29 亚复合物内的平衡速度要慢八倍。
{"title":"Inter-protein energy transfer dynamics in the PSII antenna","authors":"Eduard Elias, Chen Hu, Roberta Croce","doi":"10.1016/j.xcrp.2024.102198","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102198","url":null,"abstract":"<p>Efficient long-distance energy transport is a cornerstone of photosynthetic light harvesting, enabling excitation energy to traverse multiple antenna proteins to reach the reaction center (RC), where it drives photochemistry. While extensive studies on energy transfer dynamics within individual light-harvesting complexes (LHCs) have been conducted, the inter-protein transfers crucial for understanding the overall efficiency of these systems have remained experimentally elusive. This arises mainly because the spectral signatures of the subunits are often remarkably similar, complicating the identification of energy transfer pathways among them. This study bridges this gap by utilizing ultrafast transient absorption spectroscopy, under conditions with and without singlet-singlet annihilation, on the photosystem II (PSII) LHCII-CP24-CP29 subcomplex and on its constituents. Our findings reveal rapid equilibration within monomeric complexes, contrasted by six-times slower equilibration in the LHCII trimer and eight-times slower equilibration in the LHCII-CP24-CP29 subcomplex, highlighting the inter-complex energy transfer as the rate-limiting step in excitation delivery to the RC.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"2 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-learning-assisted insights into molecular transport in heterogeneous electrolyte films on electrodes 深度学习辅助洞察电极上异质电解质薄膜中的分子传输
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102196
Linhao Fan, Ruiwang Zuo, Yumeng Zhou, Aoxin Ran, Xing Li, Qing Du, Kui Jiao

Mass transfer in electrolyte films on electrodes is crucial to the performance of electrochemical energy devices, which is difficult or impossible to observe experimentally. Here, we develop a framework utilizing deep learning to analyze vast molecular dynamics (MD) data to reveal the molecular-level transport properties in electrolyte films. This framework contains physical feature analysis and selection based on MD simulations, surrogate model training, structure-transport relationship analysis, and structure discovery. This framework is then applied to explore oxygen transport in fuel cells, which allows the transport properties and their relationships to the structural characteristics of electrolyte films to be revealed, and thus, the critical features limiting oxygen transport are identified. Accordingly, increasing the catalyst surface hydrophilicity and suppressing the electrolyte film density fluctuation are favorable for oxygen transport. Moreover, this framework is transferable to revealing similar molecular-level transport phenomena in electrolyte films that widely exist in other electrochemical energy devices.

电极上电解质薄膜中的质量传输对电化学能源设备的性能至关重要,但这很难或根本无法在实验中观察到。在此,我们开发了一个利用深度学习分析大量分子动力学(MD)数据的框架,以揭示电解质薄膜的分子级传输特性。该框架包含基于 MD 模拟的物理特征分析和选择、代用模型训练、结构-传输关系分析和结构发现。然后将此框架应用于探索燃料电池中的氧气传输,从而揭示传输特性及其与电解质薄膜结构特征的关系,进而确定限制氧气传输的关键特征。因此,增加催化剂表面亲水性和抑制电解质膜密度波动有利于氧气传输。此外,这一框架还可用于揭示其他电化学能源装置中广泛存在的电解质薄膜中类似的分子级传输现象。
{"title":"Deep-learning-assisted insights into molecular transport in heterogeneous electrolyte films on electrodes","authors":"Linhao Fan, Ruiwang Zuo, Yumeng Zhou, Aoxin Ran, Xing Li, Qing Du, Kui Jiao","doi":"10.1016/j.xcrp.2024.102196","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102196","url":null,"abstract":"<p>Mass transfer in electrolyte films on electrodes is crucial to the performance of electrochemical energy devices, which is difficult or impossible to observe experimentally. Here, we develop a framework utilizing deep learning to analyze vast molecular dynamics (MD) data to reveal the molecular-level transport properties in electrolyte films. This framework contains physical feature analysis and selection based on MD simulations, surrogate model training, structure-transport relationship analysis, and structure discovery. This framework is then applied to explore oxygen transport in fuel cells, which allows the transport properties and their relationships to the structural characteristics of electrolyte films to be revealed, and thus, the critical features limiting oxygen transport are identified. Accordingly, increasing the catalyst surface hydrophilicity and suppressing the electrolyte film density fluctuation are favorable for oxygen transport. Moreover, this framework is transferable to revealing similar molecular-level transport phenomena in electrolyte films that widely exist in other electrochemical energy devices.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"2 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical boundary conditions for motor protein dictate geometric pattern and dynamics of actin gel contraction 运动蛋白的机械边界条件决定了肌动蛋白凝胶收缩的几何形态和动态变化
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102195
Donyoung Kang, Hyungsuk Lee

The actomyosin network, consisting of actin filaments and myosin motors, is essential for cell dynamic behaviors. The sliding motion of actin filaments propelled by myosin motors is converted into contraction of the cytoskeleton network, leading to cell deformation. Here, we demonstrated that active gels of actomyosin networks exhibited varied contraction geometries such as local radial patterns and global network contraction depending on the motor mobility condition at the boundary. Under two motor conditions (immobile and mobile), both experimental and computational methods were utilized to characterize the contraction dynamics at varied network connectivities. We revealed that the effect of network connectivity on the contraction dynamics depends on the motor mobility condition. Our computational models simulate the cellular functions such as cell division and muscle contraction, providing insights into disease development related to motor mobility conditions. Our study helps to explain the dynamics of active materials under varied mechanical environments.

肌动蛋白网络由肌动蛋白丝和肌动蛋白马达组成,对细胞的动态行为至关重要。肌动蛋白马达推动肌动蛋白丝的滑动运动转化为细胞骨架网络的收缩,从而导致细胞变形。在这里,我们证明了肌动蛋白网络的活性凝胶表现出不同的收缩几何形状,如局部径向模式和整体网络收缩,这取决于边界处电机的移动条件。在两种运动条件下(不运动和运动),我们利用实验和计算方法描述了不同网络连通性下的收缩动态。我们发现,网络连通性对收缩动力学的影响取决于电机移动条件。我们的计算模型模拟了细胞分裂和肌肉收缩等细胞功能,为了解与运动性条件相关的疾病发展提供了见解。我们的研究有助于解释活性材料在不同机械环境下的动力学。
{"title":"Mechanical boundary conditions for motor protein dictate geometric pattern and dynamics of actin gel contraction","authors":"Donyoung Kang, Hyungsuk Lee","doi":"10.1016/j.xcrp.2024.102195","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102195","url":null,"abstract":"<p>The actomyosin network, consisting of actin filaments and myosin motors, is essential for cell dynamic behaviors. The sliding motion of actin filaments propelled by myosin motors is converted into contraction of the cytoskeleton network, leading to cell deformation. Here, we demonstrated that active gels of actomyosin networks exhibited varied contraction geometries such as local radial patterns and global network contraction depending on the motor mobility condition at the boundary. Under two motor conditions (immobile and mobile), both experimental and computational methods were utilized to characterize the contraction dynamics at varied network connectivities. We revealed that the effect of network connectivity on the contraction dynamics depends on the motor mobility condition. Our computational models simulate the cellular functions such as cell division and muscle contraction, providing insights into disease development related to motor mobility conditions. Our study helps to explain the dynamics of active materials under varied mechanical environments.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"63 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunoregulatory cryogel-based contact lenses for bacterial keratitis prevention and treatment 用于预防和治疗细菌性角膜炎的基于免疫调节冷凝胶的隐形眼镜
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102179
Yuzhuo Fan, Fanfan Chen, Wanzhong Yuan, Yuchun Sun, Jiarui Li, Yan Li, Mingwei Zhao, Xu Zhang, Kai Wang

Contact lens (CL)-associated bacterial keratitis (BK), a prevalent and underestimated disorder caused by unhygienic CL wear, poses a risk to permanent loss of visual acuity. Clinically, low drug-delivery efficiency, frequent administration, hormone complications, and antibiotic resistance remain the major unsolved challenges. Here, we introduce a chlorogenic acid (CGA)-conjugated CL material based on gelatin methacrylate via cryogelation(cGelMA/CGA-CL) to strengthen the prevention and treatment of BK. The cGelMA/CGA-CL features a highly moist, macroporous, adjustable structure for sustained release of CGA and is favorably biocompatible to cells, providing antimicrobial protection against opportunistic pathogens and inhibiting excessive ocular inflammatory responses through the JAK2-STAT1/STAT2 signaling pathway. Furthermore, the cGelMA/CGA-CL effectively alleviates the symptoms of BK with immunoregulation of macrophage recruitment and anti-inflammatory factor release in a mouse model of BK. The cGelMA/CGA-CL offers a promising candidate for the prevention and treatment of BK, which may significantly reduce the risk of infection for CL wearers.

隐形眼镜(CL)相关细菌性角膜炎(BK)是一种因配戴隐形眼镜不卫生而导致的普遍存在且被低估的疾病,有可能导致视力永久丧失。在临床上,给药效率低、给药频繁、激素并发症和抗生素耐药性仍是尚未解决的主要难题。在此,我们通过冷凝胶技术推出了一种基于甲基丙烯酸明胶的绿原酸(CGA)共轭 CL 材料(cGelMA/CGA-CL),以加强对 BK 的预防和治疗。cGelMA/CGA-CL 具有高湿润性、大孔可调结构,可持续释放 CGA,与细胞具有良好的生物相容性,可提供抗菌保护,抵御机会性病原体,并通过 JAK2-STAT1/STAT2 信号通路抑制过度的眼部炎症反应。此外,在小鼠 BK 模型中,cGelMA/CGA-CL 通过免疫调节巨噬细胞的招募和抗炎因子的释放,有效缓解了 BK 的症状。cGelMA/CGA-CL 为预防和治疗 BK 提供了一个很有前景的候选方案,可大大降低 CL 佩戴者的感染风险。
{"title":"Immunoregulatory cryogel-based contact lenses for bacterial keratitis prevention and treatment","authors":"Yuzhuo Fan, Fanfan Chen, Wanzhong Yuan, Yuchun Sun, Jiarui Li, Yan Li, Mingwei Zhao, Xu Zhang, Kai Wang","doi":"10.1016/j.xcrp.2024.102179","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102179","url":null,"abstract":"<p>Contact lens (CL)-associated bacterial keratitis (BK), a prevalent and underestimated disorder caused by unhygienic CL wear, poses a risk to permanent loss of visual acuity. Clinically, low drug-delivery efficiency, frequent administration, hormone complications, and antibiotic resistance remain the major unsolved challenges. Here, we introduce a chlorogenic acid (CGA)-conjugated CL material based on gelatin methacrylate via cryogelation(cGelMA/CGA-CL) to strengthen the prevention and treatment of BK. The cGelMA/CGA-CL features a highly moist, macroporous, adjustable structure for sustained release of CGA and is favorably biocompatible to cells, providing antimicrobial protection against opportunistic pathogens and inhibiting excessive ocular inflammatory responses through the JAK2-STAT1/STAT2 signaling pathway. Furthermore, the cGelMA/CGA-CL effectively alleviates the symptoms of BK with immunoregulation of macrophage recruitment and anti-inflammatory factor release in a mouse model of BK. The cGelMA/CGA-CL offers a promising candidate for the prevention and treatment of BK, which may significantly reduce the risk of infection for CL wearers.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"21 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation generalist energy artificial intelligence for navigating smart energy 新一代通用能源人工智能,为智慧能源导航
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102192
Xu Zhu, Siliang Chen, Xinbin Liang, Xinqiao Jin, Zhimin Du

The rapid advancement of highly flexible and reliable artificial intelligence (AI) holds the promise of unlocking transformative capabilities in response to imminent energy and environmental challenges. Toward future energy, we propose this perspective and introduce a groundbreaking paradigm for a versatile energy AI, termed artificial general intelligence for energy (AGIE). AGIE is designed to address a spectrum of energy-related issues with flexibility, drawing upon information such as energy parameters, equipment images, and expert voice feedback. The applications of AGIE are diverse, ranging from energy diagnostics and operational optimization to offering advice on energy policies. By incorporating human-in-the-loop interactions and leveraging domain knowledge, AGIE has the capacity to assimilate the habits of energy users. Through continuous reinforcement learning, it aspires to establish a new paradigm of explainable reasoning, paving the way for the development of credible energy robots with attributes similar to human understanding. We anticipate that AGIE-enabled applications will lead to new approaches in energy usage and the consideration of serious technical and societal challenges ranging from data integration to privacy and security concerns, environmental impacts, and constraints in hardware and software. Addressing these issues is crucial for realizing the full potential of generalist energy intelligence, leading to enhanced energy efficiency and contributing to the resolution of global energy problems.

高度灵活可靠的人工智能(AI)的快速发展有望释放出变革能力,以应对迫在眉睫的能源和环境挑战。面向未来能源,我们提出了这一观点,并引入了一种开创性的多功能能源人工智能范式,即能源人工通用智能(AGIE)。AGIE 的设计目的是利用能源参数、设备图像和专家语音反馈等信息,灵活地解决一系列与能源相关的问题。AGIE 的应用多种多样,从能源诊断和运行优化到提供能源政策建议,不一而足。通过融入人机交互和利用领域知识,AGIE 能够吸收能源用户的习惯。通过持续强化学习,它希望建立一种可解释推理的新范例,为开发具有类似人类理解能力的可靠能源机器人铺平道路。我们预计,支持 AGIE 的应用将为能源利用带来新的方法,并带来严峻的技术和社会挑战,包括数据整合、隐私和安全问题、环境影响以及软硬件限制等。解决这些问题对于充分发挥通用能源智能的潜力、提高能源效率和解决全球能源问题至关重要。
{"title":"Next-generation generalist energy artificial intelligence for navigating smart energy","authors":"Xu Zhu, Siliang Chen, Xinbin Liang, Xinqiao Jin, Zhimin Du","doi":"10.1016/j.xcrp.2024.102192","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102192","url":null,"abstract":"<p>The rapid advancement of highly flexible and reliable artificial intelligence (AI) holds the promise of unlocking transformative capabilities in response to imminent energy and environmental challenges. Toward future energy, we propose this perspective and introduce a groundbreaking paradigm for a versatile energy AI, termed artificial general intelligence for energy (AGIE). AGIE is designed to address a spectrum of energy-related issues with flexibility, drawing upon information such as energy parameters, equipment images, and expert voice feedback. The applications of AGIE are diverse, ranging from energy diagnostics and operational optimization to offering advice on energy policies. By incorporating human-in-the-loop interactions and leveraging domain knowledge, AGIE has the capacity to assimilate the habits of energy users. Through continuous reinforcement learning, it aspires to establish a new paradigm of explainable reasoning, paving the way for the development of credible energy robots with attributes similar to human understanding. We anticipate that AGIE-enabled applications will lead to new approaches in energy usage and the consideration of serious technical and societal challenges ranging from data integration to privacy and security concerns, environmental impacts, and constraints in hardware and software. Addressing these issues is crucial for realizing the full potential of generalist energy intelligence, leading to enhanced energy efficiency and contributing to the resolution of global energy problems.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"45 1","pages":""},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Physical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1