首页 > 最新文献

Cell Reports Physical Science最新文献

英文 中文
Inter-protein energy transfer dynamics in the PSII antenna PSII 天线中的蛋白质间能量传递动力学
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-07 DOI: 10.1016/j.xcrp.2024.102198
Eduard Elias, Chen Hu, Roberta Croce

Efficient long-distance energy transport is a cornerstone of photosynthetic light harvesting, enabling excitation energy to traverse multiple antenna proteins to reach the reaction center (RC), where it drives photochemistry. While extensive studies on energy transfer dynamics within individual light-harvesting complexes (LHCs) have been conducted, the inter-protein transfers crucial for understanding the overall efficiency of these systems have remained experimentally elusive. This arises mainly because the spectral signatures of the subunits are often remarkably similar, complicating the identification of energy transfer pathways among them. This study bridges this gap by utilizing ultrafast transient absorption spectroscopy, under conditions with and without singlet-singlet annihilation, on the photosystem II (PSII) LHCII-CP24-CP29 subcomplex and on its constituents. Our findings reveal rapid equilibration within monomeric complexes, contrasted by six-times slower equilibration in the LHCII trimer and eight-times slower equilibration in the LHCII-CP24-CP29 subcomplex, highlighting the inter-complex energy transfer as the rate-limiting step in excitation delivery to the RC.

高效的长距离能量传输是光合作用光收集的基石,它能使激发能量穿过多个天线蛋白到达反应中心(RC),并在那里驱动光化学反应。虽然已经对单个光收集复合物(LHC)内部的能量传递动力学进行了广泛研究,但对了解这些系统整体效率至关重要的蛋白质间能量传递在实验中仍然难以捉摸。这主要是因为亚基的光谱特征往往非常相似,从而使识别它们之间的能量转移途径变得更加复杂。本研究利用超快瞬态吸收光谱,在有单线猝灭和无单线猝灭的条件下,研究了光系统 II(PSII)LHCII-CP24-CP29 亚复合物及其组成成分,从而弥补了这一空白。我们的研究结果表明,单体复合物内的平衡速度很快,而 LHCII 三聚体内的平衡速度要慢六倍,LHCII-CP24-CP29 亚复合物内的平衡速度要慢八倍。
{"title":"Inter-protein energy transfer dynamics in the PSII antenna","authors":"Eduard Elias, Chen Hu, Roberta Croce","doi":"10.1016/j.xcrp.2024.102198","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102198","url":null,"abstract":"<p>Efficient long-distance energy transport is a cornerstone of photosynthetic light harvesting, enabling excitation energy to traverse multiple antenna proteins to reach the reaction center (RC), where it drives photochemistry. While extensive studies on energy transfer dynamics within individual light-harvesting complexes (LHCs) have been conducted, the inter-protein transfers crucial for understanding the overall efficiency of these systems have remained experimentally elusive. This arises mainly because the spectral signatures of the subunits are often remarkably similar, complicating the identification of energy transfer pathways among them. This study bridges this gap by utilizing ultrafast transient absorption spectroscopy, under conditions with and without singlet-singlet annihilation, on the photosystem II (PSII) LHCII-CP24-CP29 subcomplex and on its constituents. Our findings reveal rapid equilibration within monomeric complexes, contrasted by six-times slower equilibration in the LHCII trimer and eight-times slower equilibration in the LHCII-CP24-CP29 subcomplex, highlighting the inter-complex energy transfer as the rate-limiting step in excitation delivery to the RC.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical boundary conditions for motor protein dictate geometric pattern and dynamics of actin gel contraction 运动蛋白的机械边界条件决定了肌动蛋白凝胶收缩的几何形态和动态变化
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102195
Donyoung Kang, Hyungsuk Lee

The actomyosin network, consisting of actin filaments and myosin motors, is essential for cell dynamic behaviors. The sliding motion of actin filaments propelled by myosin motors is converted into contraction of the cytoskeleton network, leading to cell deformation. Here, we demonstrated that active gels of actomyosin networks exhibited varied contraction geometries such as local radial patterns and global network contraction depending on the motor mobility condition at the boundary. Under two motor conditions (immobile and mobile), both experimental and computational methods were utilized to characterize the contraction dynamics at varied network connectivities. We revealed that the effect of network connectivity on the contraction dynamics depends on the motor mobility condition. Our computational models simulate the cellular functions such as cell division and muscle contraction, providing insights into disease development related to motor mobility conditions. Our study helps to explain the dynamics of active materials under varied mechanical environments.

肌动蛋白网络由肌动蛋白丝和肌动蛋白马达组成,对细胞的动态行为至关重要。肌动蛋白马达推动肌动蛋白丝的滑动运动转化为细胞骨架网络的收缩,从而导致细胞变形。在这里,我们证明了肌动蛋白网络的活性凝胶表现出不同的收缩几何形状,如局部径向模式和整体网络收缩,这取决于边界处电机的移动条件。在两种运动条件下(不运动和运动),我们利用实验和计算方法描述了不同网络连通性下的收缩动态。我们发现,网络连通性对收缩动力学的影响取决于电机移动条件。我们的计算模型模拟了细胞分裂和肌肉收缩等细胞功能,为了解与运动性条件相关的疾病发展提供了见解。我们的研究有助于解释活性材料在不同机械环境下的动力学。
{"title":"Mechanical boundary conditions for motor protein dictate geometric pattern and dynamics of actin gel contraction","authors":"Donyoung Kang, Hyungsuk Lee","doi":"10.1016/j.xcrp.2024.102195","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102195","url":null,"abstract":"<p>The actomyosin network, consisting of actin filaments and myosin motors, is essential for cell dynamic behaviors. The sliding motion of actin filaments propelled by myosin motors is converted into contraction of the cytoskeleton network, leading to cell deformation. Here, we demonstrated that active gels of actomyosin networks exhibited varied contraction geometries such as local radial patterns and global network contraction depending on the motor mobility condition at the boundary. Under two motor conditions (immobile and mobile), both experimental and computational methods were utilized to characterize the contraction dynamics at varied network connectivities. We revealed that the effect of network connectivity on the contraction dynamics depends on the motor mobility condition. Our computational models simulate the cellular functions such as cell division and muscle contraction, providing insights into disease development related to motor mobility conditions. Our study helps to explain the dynamics of active materials under varied mechanical environments.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-learning-assisted insights into molecular transport in heterogeneous electrolyte films on electrodes 深度学习辅助洞察电极上异质电解质薄膜中的分子传输
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102196
Linhao Fan, Ruiwang Zuo, Yumeng Zhou, Aoxin Ran, Xing Li, Qing Du, Kui Jiao

Mass transfer in electrolyte films on electrodes is crucial to the performance of electrochemical energy devices, which is difficult or impossible to observe experimentally. Here, we develop a framework utilizing deep learning to analyze vast molecular dynamics (MD) data to reveal the molecular-level transport properties in electrolyte films. This framework contains physical feature analysis and selection based on MD simulations, surrogate model training, structure-transport relationship analysis, and structure discovery. This framework is then applied to explore oxygen transport in fuel cells, which allows the transport properties and their relationships to the structural characteristics of electrolyte films to be revealed, and thus, the critical features limiting oxygen transport are identified. Accordingly, increasing the catalyst surface hydrophilicity and suppressing the electrolyte film density fluctuation are favorable for oxygen transport. Moreover, this framework is transferable to revealing similar molecular-level transport phenomena in electrolyte films that widely exist in other electrochemical energy devices.

电极上电解质薄膜中的质量传输对电化学能源设备的性能至关重要,但这很难或根本无法在实验中观察到。在此,我们开发了一个利用深度学习分析大量分子动力学(MD)数据的框架,以揭示电解质薄膜的分子级传输特性。该框架包含基于 MD 模拟的物理特征分析和选择、代用模型训练、结构-传输关系分析和结构发现。然后将此框架应用于探索燃料电池中的氧气传输,从而揭示传输特性及其与电解质薄膜结构特征的关系,进而确定限制氧气传输的关键特征。因此,增加催化剂表面亲水性和抑制电解质膜密度波动有利于氧气传输。此外,这一框架还可用于揭示其他电化学能源装置中广泛存在的电解质薄膜中类似的分子级传输现象。
{"title":"Deep-learning-assisted insights into molecular transport in heterogeneous electrolyte films on electrodes","authors":"Linhao Fan, Ruiwang Zuo, Yumeng Zhou, Aoxin Ran, Xing Li, Qing Du, Kui Jiao","doi":"10.1016/j.xcrp.2024.102196","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102196","url":null,"abstract":"<p>Mass transfer in electrolyte films on electrodes is crucial to the performance of electrochemical energy devices, which is difficult or impossible to observe experimentally. Here, we develop a framework utilizing deep learning to analyze vast molecular dynamics (MD) data to reveal the molecular-level transport properties in electrolyte films. This framework contains physical feature analysis and selection based on MD simulations, surrogate model training, structure-transport relationship analysis, and structure discovery. This framework is then applied to explore oxygen transport in fuel cells, which allows the transport properties and their relationships to the structural characteristics of electrolyte films to be revealed, and thus, the critical features limiting oxygen transport are identified. Accordingly, increasing the catalyst surface hydrophilicity and suppressing the electrolyte film density fluctuation are favorable for oxygen transport. Moreover, this framework is transferable to revealing similar molecular-level transport phenomena in electrolyte films that widely exist in other electrochemical energy devices.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunoregulatory cryogel-based contact lenses for bacterial keratitis prevention and treatment 用于预防和治疗细菌性角膜炎的基于免疫调节冷凝胶的隐形眼镜
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102179
Yuzhuo Fan, Fanfan Chen, Wanzhong Yuan, Yuchun Sun, Jiarui Li, Yan Li, Mingwei Zhao, Xu Zhang, Kai Wang

Contact lens (CL)-associated bacterial keratitis (BK), a prevalent and underestimated disorder caused by unhygienic CL wear, poses a risk to permanent loss of visual acuity. Clinically, low drug-delivery efficiency, frequent administration, hormone complications, and antibiotic resistance remain the major unsolved challenges. Here, we introduce a chlorogenic acid (CGA)-conjugated CL material based on gelatin methacrylate via cryogelation(cGelMA/CGA-CL) to strengthen the prevention and treatment of BK. The cGelMA/CGA-CL features a highly moist, macroporous, adjustable structure for sustained release of CGA and is favorably biocompatible to cells, providing antimicrobial protection against opportunistic pathogens and inhibiting excessive ocular inflammatory responses through the JAK2-STAT1/STAT2 signaling pathway. Furthermore, the cGelMA/CGA-CL effectively alleviates the symptoms of BK with immunoregulation of macrophage recruitment and anti-inflammatory factor release in a mouse model of BK. The cGelMA/CGA-CL offers a promising candidate for the prevention and treatment of BK, which may significantly reduce the risk of infection for CL wearers.

隐形眼镜(CL)相关细菌性角膜炎(BK)是一种因配戴隐形眼镜不卫生而导致的普遍存在且被低估的疾病,有可能导致视力永久丧失。在临床上,给药效率低、给药频繁、激素并发症和抗生素耐药性仍是尚未解决的主要难题。在此,我们通过冷凝胶技术推出了一种基于甲基丙烯酸明胶的绿原酸(CGA)共轭 CL 材料(cGelMA/CGA-CL),以加强对 BK 的预防和治疗。cGelMA/CGA-CL 具有高湿润性、大孔可调结构,可持续释放 CGA,与细胞具有良好的生物相容性,可提供抗菌保护,抵御机会性病原体,并通过 JAK2-STAT1/STAT2 信号通路抑制过度的眼部炎症反应。此外,在小鼠 BK 模型中,cGelMA/CGA-CL 通过免疫调节巨噬细胞的招募和抗炎因子的释放,有效缓解了 BK 的症状。cGelMA/CGA-CL 为预防和治疗 BK 提供了一个很有前景的候选方案,可大大降低 CL 佩戴者的感染风险。
{"title":"Immunoregulatory cryogel-based contact lenses for bacterial keratitis prevention and treatment","authors":"Yuzhuo Fan, Fanfan Chen, Wanzhong Yuan, Yuchun Sun, Jiarui Li, Yan Li, Mingwei Zhao, Xu Zhang, Kai Wang","doi":"10.1016/j.xcrp.2024.102179","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102179","url":null,"abstract":"<p>Contact lens (CL)-associated bacterial keratitis (BK), a prevalent and underestimated disorder caused by unhygienic CL wear, poses a risk to permanent loss of visual acuity. Clinically, low drug-delivery efficiency, frequent administration, hormone complications, and antibiotic resistance remain the major unsolved challenges. Here, we introduce a chlorogenic acid (CGA)-conjugated CL material based on gelatin methacrylate via cryogelation(cGelMA/CGA-CL) to strengthen the prevention and treatment of BK. The cGelMA/CGA-CL features a highly moist, macroporous, adjustable structure for sustained release of CGA and is favorably biocompatible to cells, providing antimicrobial protection against opportunistic pathogens and inhibiting excessive ocular inflammatory responses through the JAK2-STAT1/STAT2 signaling pathway. Furthermore, the cGelMA/CGA-CL effectively alleviates the symptoms of BK with immunoregulation of macrophage recruitment and anti-inflammatory factor release in a mouse model of BK. The cGelMA/CGA-CL offers a promising candidate for the prevention and treatment of BK, which may significantly reduce the risk of infection for CL wearers.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation generalist energy artificial intelligence for navigating smart energy 新一代通用能源人工智能,为智慧能源导航
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1016/j.xcrp.2024.102192
Xu Zhu, Siliang Chen, Xinbin Liang, Xinqiao Jin, Zhimin Du

The rapid advancement of highly flexible and reliable artificial intelligence (AI) holds the promise of unlocking transformative capabilities in response to imminent energy and environmental challenges. Toward future energy, we propose this perspective and introduce a groundbreaking paradigm for a versatile energy AI, termed artificial general intelligence for energy (AGIE). AGIE is designed to address a spectrum of energy-related issues with flexibility, drawing upon information such as energy parameters, equipment images, and expert voice feedback. The applications of AGIE are diverse, ranging from energy diagnostics and operational optimization to offering advice on energy policies. By incorporating human-in-the-loop interactions and leveraging domain knowledge, AGIE has the capacity to assimilate the habits of energy users. Through continuous reinforcement learning, it aspires to establish a new paradigm of explainable reasoning, paving the way for the development of credible energy robots with attributes similar to human understanding. We anticipate that AGIE-enabled applications will lead to new approaches in energy usage and the consideration of serious technical and societal challenges ranging from data integration to privacy and security concerns, environmental impacts, and constraints in hardware and software. Addressing these issues is crucial for realizing the full potential of generalist energy intelligence, leading to enhanced energy efficiency and contributing to the resolution of global energy problems.

高度灵活可靠的人工智能(AI)的快速发展有望释放出变革能力,以应对迫在眉睫的能源和环境挑战。面向未来能源,我们提出了这一观点,并引入了一种开创性的多功能能源人工智能范式,即能源人工通用智能(AGIE)。AGIE 的设计目的是利用能源参数、设备图像和专家语音反馈等信息,灵活地解决一系列与能源相关的问题。AGIE 的应用多种多样,从能源诊断和运行优化到提供能源政策建议,不一而足。通过融入人机交互和利用领域知识,AGIE 能够吸收能源用户的习惯。通过持续强化学习,它希望建立一种可解释推理的新范例,为开发具有类似人类理解能力的可靠能源机器人铺平道路。我们预计,支持 AGIE 的应用将为能源利用带来新的方法,并带来严峻的技术和社会挑战,包括数据整合、隐私和安全问题、环境影响以及软硬件限制等。解决这些问题对于充分发挥通用能源智能的潜力、提高能源效率和解决全球能源问题至关重要。
{"title":"Next-generation generalist energy artificial intelligence for navigating smart energy","authors":"Xu Zhu, Siliang Chen, Xinbin Liang, Xinqiao Jin, Zhimin Du","doi":"10.1016/j.xcrp.2024.102192","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102192","url":null,"abstract":"<p>The rapid advancement of highly flexible and reliable artificial intelligence (AI) holds the promise of unlocking transformative capabilities in response to imminent energy and environmental challenges. Toward future energy, we propose this perspective and introduce a groundbreaking paradigm for a versatile energy AI, termed artificial general intelligence for energy (AGIE). AGIE is designed to address a spectrum of energy-related issues with flexibility, drawing upon information such as energy parameters, equipment images, and expert voice feedback. The applications of AGIE are diverse, ranging from energy diagnostics and operational optimization to offering advice on energy policies. By incorporating human-in-the-loop interactions and leveraging domain knowledge, AGIE has the capacity to assimilate the habits of energy users. Through continuous reinforcement learning, it aspires to establish a new paradigm of explainable reasoning, paving the way for the development of credible energy robots with attributes similar to human understanding. We anticipate that AGIE-enabled applications will lead to new approaches in energy usage and the consideration of serious technical and societal challenges ranging from data integration to privacy and security concerns, environmental impacts, and constraints in hardware and software. Addressing these issues is crucial for realizing the full potential of generalist energy intelligence, leading to enhanced energy efficiency and contributing to the resolution of global energy problems.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon dioxide photoreduction using a photocatalyst with prolonged charge-separated states and excess electron reservoirs 利用具有长时间电荷分离态和过剩电子库的光催化剂进行二氧化碳光还原
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1016/j.xcrp.2024.102194
Lang Pei, Zhenggang Luo, Jiasong Zhong, Xusheng Wang, Peng Zhou, Shicheng Yan, Zhigang Zou

A persistent challenge in operating S-scheme photocatalysts involves maintaining complete neutralization of low-energy electrons and holes between reducing and oxidizing photocatalysts. To address this, we propose a charge replenishment-assisted S-scheme mechanism that combines a compatible host catalyst with a luminescence phosphor semiconductor capable of long-term storage of photogenerated electrons. Stored electrons can replenish the host photocatalyst, depleting the low-oxidizing holes, thus prolonging the charge-separated state. The concept is demonstrated in a core-shell-structured SrGa2O4:Cu2+/g-C3N4 (SGO/CN) photocatalyst, where stored electrons with a lifetime of up to several hours can continuously consume holes in the CN. The well-defined core-shell structure, abundant interfacial Sr-N bonds, and staggered band alignment between SGO and CN are crucial for this S-scheme interfacial charge transfer, which contributes to the enhanced CO2-to-CO transformation activity and selectivity. This S-scheme heterojunction, incorporating a charge-storing material as an excess electron reservoir, offers a promising template for designing efficient photocatalytic systems.

在运行 S 型光催化剂过程中,一个长期存在的难题是如何在还原型光催化剂和氧化型光催化剂之间保持低能电子和空穴的完全中和。为了解决这个问题,我们提出了一种电荷补充辅助 S-scheme机制,它将兼容的主催化剂与能够长期储存光生电子的发光荧光粉半导体相结合。储存的电子可以补充主光催化剂,消耗低氧空穴,从而延长电荷分离状态。这一概念在核壳结构的 SrGa2O4:Cu2+/g-C3N4 (SGO/CN) 光催化剂中得到了验证,在这种光催化剂中,寿命长达数小时的存储电子可持续消耗 CN 中的空穴。定义明确的核壳结构、丰富的界面 Sr-N 键以及 SGO 和 CN 之间的交错能带排列对这种 S 型界面电荷转移至关重要,这有助于提高 CO2 到 CO 的转化活性和选择性。这种 S 型异质结结合了电荷存储材料作为过剩电子库,为设计高效光催化系统提供了一个很有前景的模板。
{"title":"Carbon dioxide photoreduction using a photocatalyst with prolonged charge-separated states and excess electron reservoirs","authors":"Lang Pei, Zhenggang Luo, Jiasong Zhong, Xusheng Wang, Peng Zhou, Shicheng Yan, Zhigang Zou","doi":"10.1016/j.xcrp.2024.102194","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102194","url":null,"abstract":"<p>A persistent challenge in operating S-scheme photocatalysts involves maintaining complete neutralization of low-energy electrons and holes between reducing and oxidizing photocatalysts. To address this, we propose a charge replenishment-assisted S-scheme mechanism that combines a compatible host catalyst with a luminescence phosphor semiconductor capable of long-term storage of photogenerated electrons. Stored electrons can replenish the host photocatalyst, depleting the low-oxidizing holes, thus prolonging the charge-separated state. The concept is demonstrated in a core-shell-structured SrGa<sub>2</sub>O<sub>4</sub>:Cu<sup>2+</sup>/g-C<sub>3</sub>N<sub>4</sub> (SGO/CN) photocatalyst, where stored electrons with a lifetime of up to several hours can continuously consume holes in the CN. The well-defined core-shell structure, abundant interfacial Sr-N bonds, and staggered band alignment between SGO and CN are crucial for this S-scheme interfacial charge transfer, which contributes to the enhanced CO<sub>2</sub>-to-CO transformation activity and selectivity. This S-scheme heterojunction, incorporating a charge-storing material as an excess electron reservoir, offers a promising template for designing efficient photocatalytic systems.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetically powered cancer cell microrobots for surgery-free generation of targeted tumor mouse models 磁动力癌细胞微型机器人,用于免手术生成靶向肿瘤小鼠模型
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-04 DOI: 10.1016/j.xcrp.2024.102182
Zehao Wu, Heng Sun, Zichen Xu, Kai Feng, Josh Haipeng Lei, Chu-Xia Deng, Qingsong Xu

In precision therapy, patient-derived cancer cells are inoculated into the same organ from which they are derived to simulate the microenvironment of the original tumor. However, due to the high technical difficulty and low success rate of the required surgical operation, appropriate animal models are lacking, which restricts its application. Here, we report a surgery-free method for creating a desired tumor mouse model using cancer cell microrobots guided by rotating gradient magnetic fields. The uptake of magnetic particles produces cancer cell microrobots. The external magnetic field enables the microrobots to hover around the target localization, enhancing their ability to penetrate the vascular endothelium. In vivo tests in mice demonstrate the capability of creating a desired tumor mass in a particular body location. This work provides a promising method to generate a targeted tumor mouse model without using conventional surgery operations for further precision medicine treatment study of cancer.

在精准治疗中,将患者来源的癌细胞接种到其来源的同一器官,以模拟原始肿瘤的微环境。然而,由于所需的外科手术技术难度高、成功率低,目前缺乏合适的动物模型,限制了其应用。在此,我们报告了一种利用旋转梯度磁场引导的癌细胞微型机器人创建所需肿瘤小鼠模型的免手术方法。磁性微粒的吸收产生了癌细胞微机器人。外部磁场可使微机器人在目标定位周围盘旋,增强其穿透血管内皮的能力。在小鼠体内进行的测试表明,这项技术能够在特定身体部位产生所需的肿瘤块。这项工作为在不使用传统外科手术的情况下生成靶向肿瘤小鼠模型提供了一种很有前景的方法,可用于进一步的癌症精准医学治疗研究。
{"title":"Magnetically powered cancer cell microrobots for surgery-free generation of targeted tumor mouse models","authors":"Zehao Wu, Heng Sun, Zichen Xu, Kai Feng, Josh Haipeng Lei, Chu-Xia Deng, Qingsong Xu","doi":"10.1016/j.xcrp.2024.102182","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102182","url":null,"abstract":"<p>In precision therapy, patient-derived cancer cells are inoculated into the same organ from which they are derived to simulate the microenvironment of the original tumor. However, due to the high technical difficulty and low success rate of the required surgical operation, appropriate animal models are lacking, which restricts its application. Here, we report a surgery-free method for creating a desired tumor mouse model using cancer cell microrobots guided by rotating gradient magnetic fields. The uptake of magnetic particles produces cancer cell microrobots. The external magnetic field enables the microrobots to hover around the target localization, enhancing their ability to penetrate the vascular endothelium. <em>In vivo</em> tests in mice demonstrate the capability of creating a desired tumor mass in a particular body location. This work provides a promising method to generate a targeted tumor mouse model without using conventional surgery operations for further precision medicine treatment study of cancer.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning pH-dependent cytotoxicity in cancer cells by peripheral fluorine substitution on pseudopeptidic cages 通过伪肽笼上的外围氟替代物调节癌细胞的 pH 依赖性细胞毒性
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1016/j.xcrp.2024.102152
Lucía Tapia, Yolanda Pérez, Israel Carreira-Barral, Jordi Bujons, Michael Bolte, Carmen Bedia, Jordi Solà, Roberto Quesada, Ignacio Alfonso

The acidic microenvironment of solid tumors is a potential source of selectivity in the anti-cancer activity of ionophores, which requires delicate control of their biophysical properties. In this context, we have systematically studied fluorine substitutions in the aromatic side chains of HCl-binding pseudopeptidic cages. Interconnected factors like chloride binding, protonation, lipophilicity, and conformation and diffusiveness of the cages can impact their ability to transport HCl through the aqueous-lipid interphase, as demonstrated by robust experimental (X-ray, nuclear magnetic resonance [NMR], fluorescence) and theoretical results. The fine-tuning of these properties allows the modulation of their pH-dependent cytotoxicity against cancer cells, from essentially non-cytotoxic at pH 7.5 (like the extracellular surroundings of healthy tissues) to highly toxic in slightly acidic microenvironments (like those around solid tumors). Thus, a distal fluorine substitution produces a big impact on the physicochemical and biological properties of the cages, improving their selectivity as potential therapeutic ionophores.

实体瘤的酸性微环境是离子源抗癌活性选择性的潜在来源,这需要对其生物物理特性进行精细控制。在此背景下,我们系统地研究了盐酸结合伪肽笼芳香侧链中的氟取代。正如可靠的实验(X 射线、核磁共振 [NMR]、荧光)和理论结果所证明的那样,笼子的氯化物结合、质子化、亲油性、构象和扩散性等相互关联的因素会影响它们通过水-脂质间质转运 HCl 的能力。通过对这些特性进行微调,可以调节它们对癌细胞的 pH 值依赖性细胞毒性,从 pH 值为 7.5 时的无毒性(如健康组织的细胞外环境)到微酸性微环境中的高毒性(如实体瘤周围环境)。因此,远端氟取代对笼子的物理化学和生物特性产生了很大影响,提高了它们作为潜在治疗离子源的选择性。
{"title":"Tuning pH-dependent cytotoxicity in cancer cells by peripheral fluorine substitution on pseudopeptidic cages","authors":"Lucía Tapia, Yolanda Pérez, Israel Carreira-Barral, Jordi Bujons, Michael Bolte, Carmen Bedia, Jordi Solà, Roberto Quesada, Ignacio Alfonso","doi":"10.1016/j.xcrp.2024.102152","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102152","url":null,"abstract":"<p>The acidic microenvironment of solid tumors is a potential source of selectivity in the anti-cancer activity of ionophores, which requires delicate control of their biophysical properties. In this context, we have systematically studied fluorine substitutions in the aromatic side chains of HCl-binding pseudopeptidic cages. Interconnected factors like chloride binding, protonation, lipophilicity, and conformation and diffusiveness of the cages can impact their ability to transport HCl through the aqueous-lipid interphase, as demonstrated by robust experimental (X-ray, nuclear magnetic resonance [NMR], fluorescence) and theoretical results. The fine-tuning of these properties allows the modulation of their pH-dependent cytotoxicity against cancer cells, from essentially non-cytotoxic at pH 7.5 (like the extracellular surroundings of healthy tissues) to highly toxic in slightly acidic microenvironments (like those around solid tumors). Thus, a distal fluorine substitution produces a big impact on the physicochemical and biological properties of the cages, improving their selectivity as potential therapeutic ionophores.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pure radiant cooling device for “air conditioning” without conditioning air 无需调节空气即可实现 "空调 "的纯辐射冷却装置
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1016/j.xcrp.2024.102191
Xinyao Zheng, Yuekuan Zhou, Jinbo Li, Siyi Li

Ever since the birth of the first air conditioner (Carrier air conditioner) in 1902, over one hundred years ago, it has been accompanied by several technical problems, e.g., (1) low energy efficiency in large open spaces, (2) spread of pollutants, airborne pandemic transmission (e.g., severe acute respiratory syndrome [SARS], COVID-19) through air-conditioning systems, and (3) low comfort caused by fan noise and blowing sounds. Here, we report a personalized pure radiant cooling device that decouples the fresh air supply from space cooling to achieve air conditioning without conditioning the air. Condensation-free radiant cooling with a radiant cooling capacity of 152 W/m2 is achieved with a polyethylene (PE) film-covered super-cold infrared-emissive surface. By optimizing the design and operation parameters, the device saves up to 50.4% of cooling energy in a typical summer building environment. Our concept opens up the possibility of pandemic-free personalized thermal management with high energy efficiency and thermal comfort.

自 1902 年第一台空调(开利空调)诞生以来,一百多年来,空调一直伴随着一些技术问题,例如:(1)大型开放空间能效低;(2)污染物通过空调系统传播,空气传播流行病(如严重急性呼吸系统综合征 [SARS]、COVID-19);(3)风扇噪音和吹风声导致舒适度低。在此,我们报告了一种个性化的纯辐射冷却装置,它将新风供应与空间冷却分离开来,在不调节空气的情况下实现空气调节。通过聚乙烯(PE)薄膜覆盖的超冷红外辐射表面实现了无结露辐射制冷,辐射制冷量为 152 W/m2。通过优化设计和运行参数,该设备在典型的夏季建筑环境中可节省高达 50.4% 的冷却能源。我们的概念为实现无大流行病的个性化热管理、高能效和热舒适性提供了可能。
{"title":"A pure radiant cooling device for “air conditioning” without conditioning air","authors":"Xinyao Zheng, Yuekuan Zhou, Jinbo Li, Siyi Li","doi":"10.1016/j.xcrp.2024.102191","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102191","url":null,"abstract":"<p>Ever since the birth of the first air conditioner (Carrier air conditioner) in 1902, over one hundred years ago, it has been accompanied by several technical problems, e.g., (1) low energy efficiency in large open spaces, (2) spread of pollutants, airborne pandemic transmission (e.g., severe acute respiratory syndrome [SARS], COVID-19) through air-conditioning systems, and (3) low comfort caused by fan noise and blowing sounds. Here, we report a personalized pure radiant cooling device that decouples the fresh air supply from space cooling to achieve air conditioning without conditioning the air. Condensation-free radiant cooling with a radiant cooling capacity of 152 W/m<sup>2</sup> is achieved with a polyethylene (PE) film-covered super-cold infrared-emissive surface. By optimizing the design and operation parameters, the device saves up to 50.4% of cooling energy in a typical summer building environment. Our concept opens up the possibility of pandemic-free personalized thermal management with high energy efficiency and thermal comfort.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disordered regions of inhibitor-bound α-synuclein suppress seed-induced fibril nucleation in cells 抑制剂结合的α-突触核蛋白的无序区可抑制细胞中种子诱导的纤维核形成
IF 8.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-02 DOI: 10.1016/j.xcrp.2024.102180
Celina M. Schulz, Emil D. Agerschou, Luis Gardon, Miriam Alexander, Matthias Stoldt, Henrike Heise, Gültekin Tamgüney, Wolfgang Hoyer

Inhibitors of amyloid fibril formation can act in diverse ways and aid in elucidating the mechanisms of protein aggregation. The engineered binding protein β-wrapin AS69 binds monomers of Parkinson-disease-associated α-synuclein (αS), yet achieves inhibition at substoichiometric concentration. The substoichiometric activity was not attributed to the binding protein per se, but to its 1:1 complex with αS, in which AS69 sequesters αS residues 30–60 into a globular protein fold, whereas other αS parts remain intrinsically disordered regions (IDRs). Here, we investigate AS69-αS fusion constructs that form the AS69:αS complex by intramolecular folding and expose different IDRs. We find that not only the globular part of the complex but also αS IDRs are critical for substoichiometric inhibition, which is achieved by interference with primary and secondary fibril nucleation. The effects in vitro are reproduced in cellular seeding assays, indicating that secondary nucleation drives seeding in aggregate biosensing.

淀粉样纤维形成抑制剂的作用方式多种多样,有助于阐明蛋白质的聚集机制。经过改造的结合蛋白β-wrapin AS69能与帕金森病相关的α-突触核蛋白(αS)的单体结合,但在亚几何浓度下也能实现抑制作用。亚几何浓度的活性并不是由于结合蛋白本身,而是由于它与αS的1:1复合物,其中AS69将αS残基30-60封存在一个球状蛋白质折叠中,而αS的其他部分则保持在本征无序区(IDR)。在这里,我们研究了通过分子内折叠形成 AS69:αS 复合物并暴露出不同 IDR 的 AS69-αS 融合构建体。我们发现,不仅是复合物的球状部分,αS IDR 也是亚计量抑制的关键,这种抑制是通过干扰原生和次生纤维成核实现的。体外效应在细胞播种试验中得以重现,这表明在聚合体生物传感过程中,次生成核驱动了播种。
{"title":"Disordered regions of inhibitor-bound α-synuclein suppress seed-induced fibril nucleation in cells","authors":"Celina M. Schulz, Emil D. Agerschou, Luis Gardon, Miriam Alexander, Matthias Stoldt, Henrike Heise, Gültekin Tamgüney, Wolfgang Hoyer","doi":"10.1016/j.xcrp.2024.102180","DOIUrl":"https://doi.org/10.1016/j.xcrp.2024.102180","url":null,"abstract":"<p>Inhibitors of amyloid fibril formation can act in diverse ways and aid in elucidating the mechanisms of protein aggregation. The engineered binding protein β-wrapin AS69 binds monomers of Parkinson-disease-associated α-synuclein (αS), yet achieves inhibition at substoichiometric concentration. The substoichiometric activity was not attributed to the binding protein per se, but to its 1:1 complex with αS, in which AS69 sequesters αS residues 30–60 into a globular protein fold, whereas other αS parts remain intrinsically disordered regions (IDRs). Here, we investigate AS69-αS fusion constructs that form the AS69:αS complex by intramolecular folding and expose different IDRs. We find that not only the globular part of the complex but also αS IDRs are critical for substoichiometric inhibition, which is achieved by interference with primary and secondary fibril nucleation. The effects <em>in vitro</em> are reproduced in cellular seeding assays, indicating that secondary nucleation drives seeding in aggregate biosensing.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":8.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Reports Physical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1