首页 > 最新文献

Chaos Solitons & Fractals最新文献

英文 中文
Cyclic symmetric dynamics in chaotic maps 混沌图中的循环对称动力学
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-31 DOI: 10.1016/j.chaos.2024.115684
Jin Liu , Kehui Sun , Huihai Wang
In a recent paper (Liu et al., 2024), we reported on the microscopic mechanism underlying multistability in discrete dynamical systems, suggesting the potential for higher, even arbitrary-dimensional multistability in our conclusions. Before we can validate it, a fundamental question arises: what method can preserve the global dynamics of systems while allowing for an increase in dimensionality? This paper identifies the cyclic symmetric structure as a crucial solution and establishes two two-dimensional maps model based on it. The presence of multistability in any direction is affirmed, with this phenomenon representing either homogeneous or heterogeneous infinite expansion of the medium in multidimensional space. Furthermore, we uncover a range of dynamical characteristics, including grid-like phase trajectories, scale-free attractor clusters, fractal basin structures, symmetric attractors, and chaotic diffusion, all rooted in the system’s symmetric dynamical nature. This research not only enhances the comprehension of high-dimensional symmetric dynamics, but also offers a novel perspective for elucidating related models and phenomena.
在最近的一篇论文(Liu et al., 2024)中,我们报告了离散动力系统多稳定性的微观机制,并在结论中提出了更高、甚至任意维度多稳定性的可能性。在我们验证它之前,一个基本问题出现了:什么方法既能保持系统的全局动力学,又能允许维度的增加?本文认为循环对称结构是一个重要的解决方案,并在此基础上建立了两个二维映射模型。本文肯定了任何方向上的多稳定性的存在,这种现象代表了介质在多维空间中的同质或异质无限扩展。此外,我们还发现了一系列动力学特征,包括网格状相轨迹、无标度吸引子簇、分形盆地结构、对称吸引子和混沌扩散,所有这些都植根于系统的对称动力学性质。这项研究不仅加深了对高维对称动力学的理解,还为阐明相关模型和现象提供了新的视角。
{"title":"Cyclic symmetric dynamics in chaotic maps","authors":"Jin Liu ,&nbsp;Kehui Sun ,&nbsp;Huihai Wang","doi":"10.1016/j.chaos.2024.115684","DOIUrl":"10.1016/j.chaos.2024.115684","url":null,"abstract":"<div><div>In a recent paper (Liu et al., 2024), we reported on the microscopic mechanism underlying multistability in discrete dynamical systems, suggesting the potential for higher, even arbitrary-dimensional multistability in our conclusions. Before we can validate it, a fundamental question arises: what method can preserve the global dynamics of systems while allowing for an increase in dimensionality? This paper identifies the cyclic symmetric structure as a crucial solution and establishes two two-dimensional maps model based on it. The presence of multistability in any direction is affirmed, with this phenomenon representing either homogeneous or heterogeneous infinite expansion of the medium in multidimensional space. Furthermore, we uncover a range of dynamical characteristics, including grid-like phase trajectories, scale-free attractor clusters, fractal basin structures, symmetric attractors, and chaotic diffusion, all rooted in the system’s symmetric dynamical nature. This research not only enhances the comprehension of high-dimensional symmetric dynamics, but also offers a novel perspective for elucidating related models and phenomena.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115684"},"PeriodicalIF":5.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Azimuthally dependent spontaneous emission from a coherently microwave-field driven four-level atom-light coupling scheme 相干微波场驱动四级原子-光耦合方案的方位自发辐射
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115672
Muqaddar Abbas , Seyyed Hossein Asadpour , Rahmatullah , Feiran Wang , Hamid R. Hamedi , Pei Zhang
We present a novel technique that makes use of vortex light beams for generating spatially structured spontaneously emission in a atomic four-level configuration. This atomic configuration consists of two closely spaced excited levels linked to a microwave field and two optical vortex fields connecting them to the ground state. After that, the excited states eventually decays to a fourth metastable level. We find that spatially dependent spontaneous emission spectra may be obtained by efficiently transferring the orbital angular momentum (OAM) of the vortex-pumping light beams to the spontaneously emitted photons. This enables the targeted quenching of spontaneous emission in specific azimuthal regions, while simultaneously enhancing it in others. By effectively controlling the OAM of optical vortices and taking into account the correlations of the atomic gas and their collective decay to a metastable state via superradiance, it might be feasible to experimentally modify the probabilistic emission process with deterministic radiation. The approach we propose might be helpful in controlling the quantum level emission characteristics via the nonlinear interaction of the atom–vortex-beam light.
我们介绍了一种利用涡旋光束在原子四级构型中产生空间结构自发辐射的新技术。这种原子构型包括与微波场相连的两个紧密间隔的激发态,以及将它们与基态相连的两个光学涡旋场。在此之后,激发态最终衰减到第四个陨变水平。我们发现,通过有效地将涡旋泵浦光束的轨道角动量(OAM)转移到自发辐射光子上,可以获得空间相关的自发辐射光谱。这样就能有针对性地淬灭特定方位角区域的自发辐射,同时增强其他区域的自发辐射。通过有效控制光学漩涡的 OAM,并考虑到原子气体的相关性及其通过超辐照度集体衰减到陨变态的情况,用确定性辐射在实验中改变概率发射过程也许是可行的。我们提出的方法可能有助于通过原子-涡旋-光束的非线性相互作用来控制量子级发射特性。
{"title":"Azimuthally dependent spontaneous emission from a coherently microwave-field driven four-level atom-light coupling scheme","authors":"Muqaddar Abbas ,&nbsp;Seyyed Hossein Asadpour ,&nbsp;Rahmatullah ,&nbsp;Feiran Wang ,&nbsp;Hamid R. Hamedi ,&nbsp;Pei Zhang","doi":"10.1016/j.chaos.2024.115672","DOIUrl":"10.1016/j.chaos.2024.115672","url":null,"abstract":"<div><div>We present a novel technique that makes use of vortex light beams for generating spatially structured spontaneously emission in a atomic four-level configuration. This atomic configuration consists of two closely spaced excited levels linked to a microwave field and two optical vortex fields connecting them to the ground state. After that, the excited states eventually decays to a fourth metastable level. We find that spatially dependent spontaneous emission spectra may be obtained by efficiently transferring the orbital angular momentum (OAM) of the vortex-pumping light beams to the spontaneously emitted photons. This enables the targeted quenching of spontaneous emission in specific azimuthal regions, while simultaneously enhancing it in others. By effectively controlling the OAM of optical vortices and taking into account the correlations of the atomic gas and their collective decay to a metastable state via superradiance, it might be feasible to experimentally modify the probabilistic emission process with deterministic radiation. The approach we propose might be helpful in controlling the quantum level emission characteristics via the nonlinear interaction of the atom–vortex-beam light.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115672"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation behavior of partially interdependent networks with capacity and loads 具有容量和负载的部分相互依存网络的渗透行为
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115674
Mengjiao Chen, Niu Wang, Daijun Wei, Changcheng Xiang
Capacity-loaded networks with interdependent topologies accurately mirror various infrastructure networks. In this work, a partially interdependent network with capacity and loads model is proposed to portray the network structure in real systems. The theoretical framework based on percolation theory for predicting percolation thresholds in partially interdependent networks with capacity and loads is established using generating functions and self-consistent equations. The percolation transition of network is analyzed by initially removing 1p fraction nodes and exploring the size of the giant component of the network after cascade failure. Random and scale-free networks are used for numerical and simulation experiments. We find that increasing the capacity parameter enhances the robustness of interdependent networks and alters the percolation characteristics within the network. The phase transition types in random networks exhibit notable variations across different average degrees, while those in scale-free networks are influenced by power-law exponents. Finally, the validity and accuracy of the proposed model is confirmed by a double-layer empirical network consisting of the World Cities Network and the U.S. Electricity Network.
具有相互依存拓扑结构的容量负载网络能准确反映各种基础设施网络。本文提出了一个具有容量和负载的部分相互依赖网络模型,以描绘真实系统中的网络结构。利用生成函数和自洽方程,建立了基于渗流理论的理论框架,用于预测具有容量和负载的部分相互依赖网络的渗流阈值。通过初始移除 1-p 部分节点和探索级联失效后网络巨大分量的大小,分析了网络的渗滤转变。随机网络和无标度网络被用于数值和模拟实验。我们发现,增加容量参数会增强相互依存网络的鲁棒性,并改变网络内部的渗流特性。随机网络中的相变类型在不同的平均度上表现出明显的差异,而无标度网络中的相变类型则受到幂律指数的影响。最后,由世界城市网络和美国电力网络组成的双层实证网络证实了所提模型的有效性和准确性。
{"title":"Percolation behavior of partially interdependent networks with capacity and loads","authors":"Mengjiao Chen,&nbsp;Niu Wang,&nbsp;Daijun Wei,&nbsp;Changcheng Xiang","doi":"10.1016/j.chaos.2024.115674","DOIUrl":"10.1016/j.chaos.2024.115674","url":null,"abstract":"<div><div>Capacity-loaded networks with interdependent topologies accurately mirror various infrastructure networks. In this work, a partially interdependent network with capacity and loads model is proposed to portray the network structure in real systems. The theoretical framework based on percolation theory for predicting percolation thresholds in partially interdependent networks with capacity and loads is established using generating functions and self-consistent equations. The percolation transition of network is analyzed by initially removing <span><math><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow></math></span> fraction nodes and exploring the size of the giant component of the network after cascade failure. Random and scale-free networks are used for numerical and simulation experiments. We find that increasing the capacity parameter enhances the robustness of interdependent networks and alters the percolation characteristics within the network. The phase transition types in random networks exhibit notable variations across different average degrees, while those in scale-free networks are influenced by power-law exponents. Finally, the validity and accuracy of the proposed model is confirmed by a double-layer empirical network consisting of the World Cities Network and the U.S. Electricity Network.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115674"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spiral wave chimeras in nonlocally coupled excitable FitzHugh–Nagumo neurons 非局部耦合可兴奋 FitzHugh-Nagumo 神经元中的螺旋波嵌合体
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115681
Yang Li, Haihong Li, Shun Gao, Yirui Chen, Qionglin Dai, Junzhong Yang
Chimera states in excitable systems have received extensive attention in recent years. However, the spiral wave chimera in a two-dimensional excitable system has not been observed yet. In this study, we investigate spiral wave chimeras in two-dimensional nonlocally coupled excitable FitzHugh–Nagumo neurons. Depending on the relative coupling radius and the coupling phase, we find spiral wave chimeras numerically. We also find a novel spiral wave pattern, the spiral wave amplitude death chimera, characterized by a non-excited core. By exploring the phase diagram of different spiral wave chimera dynamics, we find the transition between spiral wave chimeras with an incoherent core and spiral wave amplitude death chimeras with a non-excited core when the coupling phase crosses π/2. We also find that large a (the parameter in the FitzHugh–Nagumo neuron) favors the spiral wave amplitude death chimera.
近年来,可激发系统中的嵌合态受到广泛关注。然而,二维可兴奋系统中的螺旋波嵌合态尚未被观测到。在本研究中,我们研究了二维非局部耦合可激 FitzHugh-Nagumo 神经元中的螺旋波嵌合体。根据相对耦合半径和耦合相位,我们在数值上发现了螺旋波嵌合体。我们还发现了一种新的螺旋波模式--螺旋波振幅死亡嵌合体,其特点是有一个非兴奋核心。通过探索不同螺旋波嵌合体动力学的相图,我们发现当耦合相位跨越 π/2 时,具有非相干核心的螺旋波嵌合体与具有非激发核心的螺旋波振幅死亡嵌合体之间发生了过渡。我们还发现,大 a(FitzHugh-Nagumo 神经元中的参数)有利于螺旋波振幅死亡嵌合体。
{"title":"Spiral wave chimeras in nonlocally coupled excitable FitzHugh–Nagumo neurons","authors":"Yang Li,&nbsp;Haihong Li,&nbsp;Shun Gao,&nbsp;Yirui Chen,&nbsp;Qionglin Dai,&nbsp;Junzhong Yang","doi":"10.1016/j.chaos.2024.115681","DOIUrl":"10.1016/j.chaos.2024.115681","url":null,"abstract":"<div><div>Chimera states in excitable systems have received extensive attention in recent years. However, the spiral wave chimera in a two-dimensional excitable system has not been observed yet. In this study, we investigate spiral wave chimeras in two-dimensional nonlocally coupled excitable FitzHugh–Nagumo neurons. Depending on the relative coupling radius and the coupling phase, we find spiral wave chimeras numerically. We also find a novel spiral wave pattern, the spiral wave amplitude death chimera, characterized by a non-excited core. By exploring the phase diagram of different spiral wave chimera dynamics, we find the transition between spiral wave chimeras with an incoherent core and spiral wave amplitude death chimeras with a non-excited core when the coupling phase crosses <span><math><mrow><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>. We also find that large <span><math><mi>a</mi></math></span> (the parameter in the FitzHugh–Nagumo neuron) favors the spiral wave amplitude death chimera.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115681"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid control design for nonlinear chaotic semi-Markov jump systems via fault alarm approach 通过故障报警方法进行非线性混沌半马尔可夫跃迁系统的混合控制设计
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115663
R. Sakthivel , R. Abinandhitha , T. Satheesh , O.M. Kwon
This paper investigates the stabilisation problem for a class of T-S fuzzy chaotic semi-Markov jump systems against parametric uncertainties, actuator faults and external disturbances. The main objective of this study is to develop a fault alarm-based non-fragile mode-dependent hybrid controller mechanism to withstand the actuator faults in the concerned system, wherein the hybrid control design blends both robust and fault-tolerant control schemes. Therein, the fault-alarm system is configured based on the alarm threshold, which aids in the execution of the hybrid controller. Specifically, it allows the controller to be timely alerted, making it switch from a robust to a fault-tolerant controller, that is, robust control oversees when the system functions without fault and fault-tolerant control takes over when the system encounters a fault. From there on, through the consideration of relevant Lyapunov function, a novel set of mode-dependent sufficient criteria that have a linear matrix inequality structure is acquired, which confirms the (X,Y,)-ζ-dissipativity of the system under study. Following that, the precise design of the robust and fault-tolerant controller is procured by solving the developed sufficient conditions. In the end, the simulation results of Chua’s circuit system are offered to confirm the significance of the theoretical insights acknowledged.
本文研究了一类 T-S 模糊混沌半马尔可夫跃迁系统在参数不确定性、执行器故障和外部干扰下的稳定问题。本研究的主要目的是开发一种基于故障报警的非脆弱模式依赖混合控制器机制,以抵御相关系统中的执行器故障,其中混合控制设计融合了鲁棒性和容错控制方案。其中,故障报警系统根据报警阈值进行配置,有助于混合控制器的执行。具体来说,它允许控制器及时报警,使其从稳健型控制器切换到容错型控制器,也就是说,当系统无故障运行时,稳健型控制负责监督,而当系统遇到故障时,容错型控制负责接管。从那时起,通过考虑相关的 Lyapunov 函数,获得了一组具有线性矩阵不等式结构的与模式相关的新的充分准则,从而确认了所研究系统的(X,Y,ℨ)-ζ-容错性。随后,通过求解所建立的充分条件,精确设计出鲁棒性和容错性控制器。最后,本文提供了 Chua 电路系统的仿真结果,以证实理论见解的重要性。
{"title":"Hybrid control design for nonlinear chaotic semi-Markov jump systems via fault alarm approach","authors":"R. Sakthivel ,&nbsp;R. Abinandhitha ,&nbsp;T. Satheesh ,&nbsp;O.M. Kwon","doi":"10.1016/j.chaos.2024.115663","DOIUrl":"10.1016/j.chaos.2024.115663","url":null,"abstract":"<div><div>This paper investigates the stabilisation problem for a class of T-S fuzzy chaotic semi-Markov jump systems against parametric uncertainties, actuator faults and external disturbances. The main objective of this study is to develop a fault alarm-based non-fragile mode-dependent hybrid controller mechanism to withstand the actuator faults in the concerned system, wherein the hybrid control design blends both robust and fault-tolerant control schemes. Therein, the fault-alarm system is configured based on the alarm threshold, which aids in the execution of the hybrid controller. Specifically, it allows the controller to be timely alerted, making it switch from a robust to a fault-tolerant controller, that is, robust control oversees when the system functions without fault and fault-tolerant control takes over when the system encounters a fault. From there on, through the consideration of relevant Lyapunov function, a novel set of mode-dependent sufficient criteria that have a linear matrix inequality structure is acquired, which confirms the <span><math><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>,</mo><mi>ℨ</mi><mo>)</mo></mrow></math></span>-<span><math><mi>ζ</mi></math></span>-dissipativity of the system under study. Following that, the precise design of the robust and fault-tolerant controller is procured by solving the developed sufficient conditions. In the end, the simulation results of Chua’s circuit system are offered to confirm the significance of the theoretical insights acknowledged.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115663"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Link prediction in multiplex social networks: An information transmission approach 多路社交网络中的链接预测:信息传输方法
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115683
Lei Si , Longjie Li , Hongsheng Luo , Zhixin Ma
In recent years, link prediction in multiplex networks has attracted increasing interest of researchers. Multiplex social networks that model different types of social relationships between the same set of entities in separate layers are a special case of multiplex networks. However, most existing methods usually ignore that new links can also be formed through information transmission. Therefore, we propose a novel link prediction method that applies information transmission approach to multiplex social networks in this paper. To begin with, we define a new index and three new ways of information transmission in a multiplex network. In this regard, the similarities of potential links in the target layer are computed based on the total amount of information they transmit each other via fusing information from all layers. At last, the interlayer relevance method is used to weight all layers. To evaluate the prediction performance of the proposed method, extensive experiments are implemented on eight real-world multiplex networks, and the experimental results demonstrate that the proposed method significantly outperforms several competing state-of-the-art methods in most cases.
近年来,多重网络中的链接预测引起了研究人员越来越多的兴趣。多重社会网络是多重网络的一种特例,它将同一组实体之间不同类型的社会关系分层建模。然而,大多数现有方法通常忽略了新链接也可以通过信息传输形成。因此,我们在本文中提出了一种新颖的链接预测方法,将信息传递方法应用于多重社会网络。首先,我们定义了一个新指标和复用网络中三种新的信息传输方式。在这方面,目标层中潜在链接的相似性是根据它们通过融合各层信息相互传输的信息总量来计算的。最后,使用层间相关性方法对所有层进行加权。为了评估所提方法的预测性能,我们在八个真实世界的多路复用网络上进行了大量实验,实验结果表明,在大多数情况下,所提方法的性能明显优于几种最先进的竞争方法。
{"title":"Link prediction in multiplex social networks: An information transmission approach","authors":"Lei Si ,&nbsp;Longjie Li ,&nbsp;Hongsheng Luo ,&nbsp;Zhixin Ma","doi":"10.1016/j.chaos.2024.115683","DOIUrl":"10.1016/j.chaos.2024.115683","url":null,"abstract":"<div><div>In recent years, link prediction in multiplex networks has attracted increasing interest of researchers. Multiplex social networks that model different types of social relationships between the same set of entities in separate layers are a special case of multiplex networks. However, most existing methods usually ignore that new links can also be formed through information transmission. Therefore, we propose a novel link prediction method that applies information transmission approach to multiplex social networks in this paper. To begin with, we define a new index and three new ways of information transmission in a multiplex network. In this regard, the similarities of potential links in the target layer are computed based on the total amount of information they transmit each other via fusing information from all layers. At last, the interlayer relevance method is used to weight all layers. To evaluate the prediction performance of the proposed method, extensive experiments are implemented on eight real-world multiplex networks, and the experimental results demonstrate that the proposed method significantly outperforms several competing state-of-the-art methods in most cases.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115683"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of a hybrid control algorithm for chaotifying mechanical systems 混沌化机械系统混合控制算法的合成
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115670
Swapnil Mahadev Dhobale, Shyamal Chatterjee
This paper presents a novel hybrid control algorithm for inducing chaos in a limit cycle oscillator by chaotically varying suitable parameters within the chosen bounds. A discrete chaotic map governs the parameter variation at the predetermined Poincaré section. A cubic polynomial mapping is used to obtain the continuous variation between two consecutive crossings at the Poincaré section. A resonant controller with acceleration feedback is designed to implement the proposed control algorithm in a mechanical system with a single degree of freedom. This controller generates a limit cycle at the desired frequency and amplitude. The next step involves using a modified Pomeau-Manneville (PM) map to achieve the chaotification of the limit cycle, which yields a flat Fast Fourier Transform (FFT) of the response within a given bandwidth. The proposed control strategy not only chaotifies the system but also regulates desired response characteristics, such as amplitude, frequency band, chaoticity and power spectral distributions. This is believed to be the first attempt to control the desired characteristics of chaotic response in the case of continuous-time systems. Experiments with an electromagnetic actuator validate the simulation results.
本文提出了一种新颖的混合控制算法,通过在所选范围内混沌改变合适的参数,在极限周期振荡器中诱导混沌。离散混沌映射控制着预定波恩卡莱截面处的参数变化。立方多项式映射用于获得波恩卡莱截面上两个连续交叉点之间的连续变化。为了在单自由度机械系统中实施所提出的控制算法,我们设计了一个带有加速度反馈的谐振控制器。该控制器能以所需的频率和振幅产生一个极限周期。下一步是使用修改后的波莫-曼内维勒(PM)图实现极限周期的混沌化,从而在给定带宽内获得响应的平滑快速傅立叶变换(FFT)。所提出的控制策略不仅能使系统混沌化,还能调节所需的响应特性,如振幅、频带、混沌度和功率谱分布。这是首次尝试在连续时间系统中控制混沌响应的理想特性。电磁致动器的实验验证了模拟结果。
{"title":"Synthesis of a hybrid control algorithm for chaotifying mechanical systems","authors":"Swapnil Mahadev Dhobale,&nbsp;Shyamal Chatterjee","doi":"10.1016/j.chaos.2024.115670","DOIUrl":"10.1016/j.chaos.2024.115670","url":null,"abstract":"<div><div>This paper presents a novel hybrid control algorithm for inducing chaos in a limit cycle oscillator by chaotically varying suitable parameters within the chosen bounds. A discrete chaotic map governs the parameter variation at the predetermined Poincaré section. A cubic polynomial mapping is used to obtain the continuous variation between two consecutive crossings at the Poincaré section. A resonant controller with acceleration feedback is designed to implement the proposed control algorithm in a mechanical system with a single degree of freedom. This controller generates a limit cycle at the desired frequency and amplitude. The next step involves using a modified Pomeau-Manneville (PM) map to achieve the chaotification of the limit cycle, which yields a flat Fast Fourier Transform (FFT) of the response within a given bandwidth. The proposed control strategy not only chaotifies the system but also regulates desired response characteristics, such as amplitude, frequency band, chaoticity and power spectral distributions. This is believed to be the first attempt to control the desired characteristics of chaotic response in the case of continuous-time systems. Experiments with an electromagnetic actuator validate the simulation results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115670"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penetrative convection in Navier–Stokes-Voigt fluid induced by internal heat source 内热源诱导 Navier-Stokes-Voigt 流体中的穿透对流
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115689
Puneet Rana , Mahanthesh Basavarajappa
This study investigates the phenomenon of penetrative convection in a viscoelastic fluid described by the Navier-Stokes-Kelvin-Voigt (NSKV) model, incorporating internal heat sources and realistic rigid boundary conditions. We examine four distinct space-dependent heat source distributions: constant, linearly increasing, decreasing, and non-uniform across the fluid layer. The Kelvin-Voigt fluid layer is simultaneously heated and salted from the bottom. We employ both linear instability analysis using normal mode technique and nonlinear stability analysis through energy method. The resulting differential eigenvalue systems are treated using the Chebyshev-Spectral-QZ method. Our investigation focuses on the effects of the internal heating parameter, Kelvin-Voigt number, and solute Rayleigh number on the threshold values for convection onset. Our results reveal that internal heat sources destabilize the fluid system, while the salt Rayleigh number contributes to system stabilization. Nonlinear analysis reveals that the total energy of perturbations to the steady-state conduction solutions decays exponentially, and the decay rate is stronger for the Kelvin-Voigt fluid than for Newtonian fluid. Furthermore, the Kelvin-Voigt number acts as a stabilizing factor for the onset of convection, exerting a stabilizing effect on the system. Importantly, the thresholds obtained from linear and nonlinear theories differ in both the presence and absence of internal heat sources, suggesting the existence of a subcritical instability region (SIR). This comprehensive analysis provides new insights into the complex dynamics of penetrative convection in viscoelastic fluids with internal heating.
本研究探讨了由纳维-斯托克斯-开尔文-伏依格特(NSKV)模型描述的粘弹性流体中的穿透对流现象,其中包含内部热源和现实的刚性边界条件。我们研究了四种不同的随空间变化的热源分布:恒定、线性增加、递减和整个流体层的非均匀分布。开尔文-伏依格特流体层同时从底部加热和加盐。我们采用法模技术进行线性不稳定性分析,并通过能量法进行非线性稳定性分析。由此产生的微分特征值系统采用切比雪夫-谱-QZ 方法进行处理。我们的研究重点是内部加热参数、开尔文-伏依格特数和溶质雷利数对对流开始阈值的影响。我们的研究结果表明,内部热源会破坏流体系统的稳定性,而盐的雷利数则有助于系统的稳定。非线性分析表明,对稳态传导解的扰动总能量呈指数衰减,开尔文-伏依格特流体的衰减率比牛顿流体更强。此外,开尔文-伏依格特数是对流开始时的一个稳定因子,对系统起着稳定作用。重要的是,在存在和不存在内部热源的情况下,线性理论和非线性理论得到的阈值都不同,这表明存在亚临界不稳定区域(SIR)。这一综合分析为我们提供了关于具有内部加热的粘弹性流体中穿透对流复杂动力学的新见解。
{"title":"Penetrative convection in Navier–Stokes-Voigt fluid induced by internal heat source","authors":"Puneet Rana ,&nbsp;Mahanthesh Basavarajappa","doi":"10.1016/j.chaos.2024.115689","DOIUrl":"10.1016/j.chaos.2024.115689","url":null,"abstract":"<div><div>This study investigates the phenomenon of penetrative convection in a viscoelastic fluid described by the Navier-Stokes-Kelvin-Voigt (NSKV) model, incorporating internal heat sources and realistic rigid boundary conditions. We examine four distinct space-dependent heat source distributions: constant, linearly increasing, decreasing, and non-uniform across the fluid layer. The Kelvin-Voigt fluid layer is simultaneously heated and salted from the bottom. We employ both linear instability analysis using normal mode technique and nonlinear stability analysis through energy method. The resulting differential eigenvalue systems are treated using the Chebyshev-Spectral-QZ method. Our investigation focuses on the effects of the internal heating parameter, Kelvin-Voigt number, and solute Rayleigh number on the threshold values for convection onset. Our results reveal that internal heat sources destabilize the fluid system, while the salt Rayleigh number contributes to system stabilization. Nonlinear analysis reveals that the total energy of perturbations to the steady-state conduction solutions decays exponentially, and the decay rate is stronger for the Kelvin-Voigt fluid than for Newtonian fluid. Furthermore, the Kelvin-Voigt number acts as a stabilizing factor for the onset of convection, exerting a stabilizing effect on the system. Importantly, the thresholds obtained from linear and nonlinear theories differ in both the presence and absence of internal heat sources, suggesting the existence of a subcritical instability region (SIR). This comprehensive analysis provides new insights into the complex dynamics of penetrative convection in viscoelastic fluids with internal heating.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115689"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neural diffusion model for identifying influential nodes in complex networks 在复杂网络中识别有影响力节点的神经扩散模型
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115682
Waseem Ahmad, Bang Wang
Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.
通过影响力扩散模型识别复杂网络中具有影响力的节点是一个具有挑战性的问题,近年来已引起了广泛关注。虽然已经开发了许多启发式算法来解决这一问题,但考虑加权影响力的神经模型仍未得到充分探索。在本文中,我们介绍了一种神经扩散模型(NDM),旨在识别复杂网络中的加权影响力节点。我们的神经扩散模型在小规模网络上进行训练,学会将网络结构映射到节点的相应加权影响力上,利用加权独立级联模型深入了解网络动态。具体来说,我们从不同尺度的节点中提取基于权重的特征,以捕捉其局部结构。然后,我们采用神经编码器来整合邻域信息,并通过将不同尺度的特征整合到连续神经单元中来学习节点嵌入。最后,解码机制将这些节点嵌入转化为加权影响估计值。在真实世界和合成网络上的实验结果表明,我们的 NDM 优于最先进的技术,实现了卓越的预测性能。
{"title":"A neural diffusion model for identifying influential nodes in complex networks","authors":"Waseem Ahmad,&nbsp;Bang Wang","doi":"10.1016/j.chaos.2024.115682","DOIUrl":"10.1016/j.chaos.2024.115682","url":null,"abstract":"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115682"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of strategies in evolution games on small-world networks and applications 小世界网络演化博弈中的策略演化及其应用
IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-30 DOI: 10.1016/j.chaos.2024.115676
Chengyan Liu , Wangyong Lv , Xinzexu Cheng , Yihao Wen , Xiaofeng Yang
In the game-theoretic model of small-world networks, it is traditionally believed that participants randomly select neighbors to learn from. However, in the era of highly interconnected information, we can regard participants as highly rational individuals who can comprehensively consider the strategies of all their neighbors and adjust their own strategies accordingly to seek the best benefits. From this perspective, we utilize the small-world network model to depict the competitive relationship between participants and propose new strategy updating rules by introducing the Markov transition matrix, aiming to explore the specific impact of the small-world network structure on the cooperation rate of participants. Through simulation analysis, we observe that the behavior of the group tends to evolve towards strategies with higher returns. Among them, the number of neighbors in the network, the initial proportion of cooperative participants, and the potential irrational factor in the updating rules significantly affect the evolution speed of the cooperation rate. It is worth noting that the probability of random reconnection and the number of network nodes have no significant impact on the evolution trend of the cooperation rate. Furthermore, we apply this model to practical scenarios of bidding projects. Combined with a specific analysis of the bidding background, we find that reducing the number of adjacent edges and the initial proportion of cooperative participants are crucial factors in effectively reducing the cooperation rate. This discovery not only provides us with a new perspective to understand cooperative behavior in complex networks, but also offers valuable references for strategy making in actual bidding projects.
在小世界网络的博弈论模型中,传统观点认为参与者会随机选择邻居进行学习。然而,在信息高度互联的时代,我们可以将参与者视为高度理性的个体,他们可以综合考虑所有邻居的策略,并据此调整自己的策略,以寻求最佳利益。从这个角度出发,我们利用小世界网络模型来刻画参与者之间的竞争关系,并通过引入马尔科夫转换矩阵提出新的策略更新规则,旨在探索小世界网络结构对参与者合作率的具体影响。通过模拟分析,我们发现群体行为趋向于向收益更高的策略演化。其中,网络中邻居的数量、合作参与者的初始比例以及更新规则中潜在的非理性因素对合作率的演化速度有显著影响。值得注意的是,随机重新连接的概率和网络节点数对合作率的演化趋势没有明显影响。此外,我们还将这一模型应用于招标项目的实际场景。结合对招标背景的具体分析,我们发现减少相邻边的数量和合作参与者的初始比例是有效降低合作率的关键因素。这一发现不仅为我们理解复杂网络中的合作行为提供了新的视角,也为实际招标项目中的策略制定提供了有价值的参考。
{"title":"Evolution of strategies in evolution games on small-world networks and applications","authors":"Chengyan Liu ,&nbsp;Wangyong Lv ,&nbsp;Xinzexu Cheng ,&nbsp;Yihao Wen ,&nbsp;Xiaofeng Yang","doi":"10.1016/j.chaos.2024.115676","DOIUrl":"10.1016/j.chaos.2024.115676","url":null,"abstract":"<div><div>In the game-theoretic model of small-world networks, it is traditionally believed that participants randomly select neighbors to learn from. However, in the era of highly interconnected information, we can regard participants as highly rational individuals who can comprehensively consider the strategies of all their neighbors and adjust their own strategies accordingly to seek the best benefits. From this perspective, we utilize the small-world network model to depict the competitive relationship between participants and propose new strategy updating rules by introducing the Markov transition matrix, aiming to explore the specific impact of the small-world network structure on the cooperation rate of participants. Through simulation analysis, we observe that the behavior of the group tends to evolve towards strategies with higher returns. Among them, the number of neighbors in the network, the initial proportion of cooperative participants, and the potential irrational factor in the updating rules significantly affect the evolution speed of the cooperation rate. It is worth noting that the probability of random reconnection and the number of network nodes have no significant impact on the evolution trend of the cooperation rate. Furthermore, we apply this model to practical scenarios of bidding projects. Combined with a specific analysis of the bidding background, we find that reducing the number of adjacent edges and the initial proportion of cooperative participants are crucial factors in effectively reducing the cooperation rate. This discovery not only provides us with a new perspective to understand cooperative behavior in complex networks, but also offers valuable references for strategy making in actual bidding projects.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115676"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chaos Solitons & Fractals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1