首页 > 最新文献

Cellular Polymers最新文献

英文 中文
Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler 氮化铝填料对硬质聚氨酯泡沫塑料导热性能的改善
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2021-03-01 DOI: 10.1177/0262489321988970
Serife Akkoyun, Meral Akkoyun
The aim of this work is the fabrication of electrically insulating composite rigid polyurethane foams with improved thermal conductivity. Therefore, this study is focused on the effect of aluminum nitride (AlN) on the thermal and electrical conductivities of rigid polyurethane foams. For this purpose, aluminum nitride/rigid polyurethane composite foams were prepared using a three-step procedure. The electrical and thermal conductivities of the foams were characterized. The thermal transitions, mechanical properties and morphology of the foams were also examined. The results reveal that AlN induces an increase of the thermal conductivity of rigid polyurethane foam of 24% which seems to be a relatively noticeable increase in polymeric foams. The low electrical conductivity of the foams is preserved.
本工作的目的是制备具有改进导热性的电绝缘复合硬质聚氨酯泡沫。因此,本研究的重点是氮化铝(AlN)对硬质聚氨酯泡沫热导率和电导率的影响。为此,使用三步程序制备氮化铝/硬质聚氨酯复合泡沫。对泡沫的电导率和热导率进行了表征。还考察了泡沫的热转变、力学性能和形态。结果表明,AlN使硬质聚氨酯泡沫的热导率增加了24%,这似乎是聚合物泡沫中相对显著的增加。泡沫的低电导率得以保留。
{"title":"Improvement of thermal conductivity of rigid polyurethane foams with aluminum nitride filler","authors":"Serife Akkoyun, Meral Akkoyun","doi":"10.1177/0262489321988970","DOIUrl":"https://doi.org/10.1177/0262489321988970","url":null,"abstract":"The aim of this work is the fabrication of electrically insulating composite rigid polyurethane foams with improved thermal conductivity. Therefore, this study is focused on the effect of aluminum nitride (AlN) on the thermal and electrical conductivities of rigid polyurethane foams. For this purpose, aluminum nitride/rigid polyurethane composite foams were prepared using a three-step procedure. The electrical and thermal conductivities of the foams were characterized. The thermal transitions, mechanical properties and morphology of the foams were also examined. The results reveal that AlN induces an increase of the thermal conductivity of rigid polyurethane foam of 24% which seems to be a relatively noticeable increase in polymeric foams. The low electrical conductivity of the foams is preserved.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"87 - 98"},"PeriodicalIF":1.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489321988970","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41726370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
An in vitro evaluation on polyurethane foam sheets of the insertion torque, removal torque values, and resonance frequency analysis (RFA) of a self-tapping threads and round apex implant 聚氨酯泡沫片对自攻螺纹和圆顶端植入物插入扭矩、移除扭矩值和共振频率分析(RFA)的体外评估
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-11-25 DOI: 10.1177/0262489320971796
M. Tumedei, A. Piattelli, A. Falco, F. de Angelis, F. Lorusso, M. Di Carmine, G. Iezzi
The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla
牙种植体的初始稳定性和微运动缺失是牙种植体骨整合的关键因素。本体外研究的目的是模拟不同聚氨酯密度下的骨反应——自攻螺纹和圆形种植体几何形状的影响。按照校准的钻孔方案,在D1、D2、D3和D4聚氨酯块密度中总共放置了40个植入物。计算了插入、移除扭矩和共振频率分析(RFA)的平均值。所有实验条件显示插入扭矩值>30Ncm。在D1聚氨酯中存在显著更高的插入扭矩、移除和RFA。D3和D4也有类似的证据。本研究的有效性表明,使用自攻螺纹和圆形顶点植入物具有宝贵的临床优势,例如在上颌骨后部骨密度降低的情况下
{"title":"An in vitro evaluation on polyurethane foam sheets of the insertion torque, removal torque values, and resonance frequency analysis (RFA) of a self-tapping threads and round apex implant","authors":"M. Tumedei, A. Piattelli, A. Falco, F. de Angelis, F. Lorusso, M. Di Carmine, G. Iezzi","doi":"10.1177/0262489320971796","DOIUrl":"https://doi.org/10.1177/0262489320971796","url":null,"abstract":"The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"20 - 30"},"PeriodicalIF":1.6,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320971796","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49492795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Foaming behavior of 1-vinyl-2-pyrrolidone–methyl methacrylate copolymers under ScCO2 1-乙烯基-2-吡咯烷酮-甲基丙烯酸甲酯共聚物在ScCO2下的发泡行为
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-08-04 DOI: 10.1177/0262489320929226
Miriam Trigo-lopez, José A. Reglero Ruiz, Saúl Vallejos, C. Ramos, S. Beltrán, F. García, J. García
We report on the preparation, characterization, and foaming behavior of cellular polymers based on 1-vinyl-2-pyrrolidone (VP) and methyl methacrylate (MMA). Samples with different feed ratios proportions of VP and MMA were prepared following the bulk radical copolymerization procedure, using commercially available monomers and testing two different initiators (photochemical and thermal), obtaining solid samples of around 1.5 mm thick. To evaluate the polymerization process, the chemical structure of VP/MMA copolymers was determined by proton nuclear magnetic resonance measurements. In a second step, single-batch supercritical carbon dioxide (CO2) foaming tests were carried out at different temperatures to evaluate the influence of the VP to MMA feed ratios and the foaming temperature in the density, the presence of solid outer skin, the CO2 sorption–desorption process, and the cellular morphology of the foamed polymers.
我们报道了基于1-乙烯基-2-吡咯烷酮(VP)和甲基丙烯酸甲酯(MMA)的细胞聚合物的制备、表征和发泡行为。根据本体自由基共聚程序制备了不同进料比的VP和MMA样品,使用市购单体并测试了两种不同的引发剂(光化学和热),获得了约1.5 mm厚的固体样品。为了评价聚合过程,用质子核磁共振法测定了VP/MMA共聚物的化学结构。第二步,在不同温度下进行单批次超临界二氧化碳(CO2)发泡试验,以评估VP与MMA进料比和发泡温度对发泡聚合物密度、固体外皮存在、CO2吸附-解吸过程和泡沫聚合物细胞形态的影响。
{"title":"Foaming behavior of 1-vinyl-2-pyrrolidone–methyl methacrylate copolymers under ScCO2","authors":"Miriam Trigo-lopez, José A. Reglero Ruiz, Saúl Vallejos, C. Ramos, S. Beltrán, F. García, J. García","doi":"10.1177/0262489320929226","DOIUrl":"https://doi.org/10.1177/0262489320929226","url":null,"abstract":"We report on the preparation, characterization, and foaming behavior of cellular polymers based on 1-vinyl-2-pyrrolidone (VP) and methyl methacrylate (MMA). Samples with different feed ratios proportions of VP and MMA were prepared following the bulk radical copolymerization procedure, using commercially available monomers and testing two different initiators (photochemical and thermal), obtaining solid samples of around 1.5 mm thick. To evaluate the polymerization process, the chemical structure of VP/MMA copolymers was determined by proton nuclear magnetic resonance measurements. In a second step, single-batch supercritical carbon dioxide (CO2) foaming tests were carried out at different temperatures to evaluate the influence of the VP to MMA feed ratios and the foaming temperature in the density, the presence of solid outer skin, the CO2 sorption–desorption process, and the cellular morphology of the foamed polymers.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"39 1","pages":"203 - 219"},"PeriodicalIF":1.6,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320929226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43158645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Morphological evaluation of ultralow density microcellular foamed composites developed through CO2-induced solid-state batch foaming technique utilizing water as co-blowing agent 以水为共发泡剂,采用co2诱导固态间歇发泡技术制备的超低密度微孔泡沫复合材料的形态评价
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-07-01 DOI: 10.1177/0262489319897633
Rupesh Dugad, G. Radhakrishna, A. Gandhi
In this work, microcellular acrylonitrile-butadiene-styrene foams were developed with utilization of water as a co-blowing agent and CO2 as the primary blowing agent through the solid-state batch foaming process. The effect of saturation parameters with the content of the co-blowing agent has been studied extensively for various foaming attributes. The co-blowing agent enhanced the average cell size and the expansion ratio which are useful for better thermal insulation. The maximum expansion ratio of 29.9 obtained from the effect of saturation temperature and co-blowing agent, 23.6 from the effect of saturation pressure and co-blowing agent, and 22.4 from the effect of saturation time and co-blowing agent. The co-blowing agent significantly affects the cell morphology of polymeric foam with saturation parameters.
以水为助发泡剂,以CO2为主发泡剂,采用固态间歇发泡工艺制备了微孔丙烯腈-丁二烯-苯乙烯泡沫。研究了饱和参数随助发泡剂含量的变化对不同发泡性能的影响。共发泡剂提高了电池的平均尺寸和膨胀率,有利于提高保温性能。饱和温度和共发泡剂的影响下膨胀比最大为29.9,饱和压力和共发泡剂的影响下膨胀比最大为23.6,饱和时间和共发泡剂的影响下膨胀比最大为22.4。共发泡剂对含饱和参数聚合物泡沫的细胞形态有显著影响。
{"title":"Morphological evaluation of ultralow density microcellular foamed composites developed through CO2-induced solid-state batch foaming technique utilizing water as co-blowing agent","authors":"Rupesh Dugad, G. Radhakrishna, A. Gandhi","doi":"10.1177/0262489319897633","DOIUrl":"https://doi.org/10.1177/0262489319897633","url":null,"abstract":"In this work, microcellular acrylonitrile-butadiene-styrene foams were developed with utilization of water as a co-blowing agent and CO2 as the primary blowing agent through the solid-state batch foaming process. The effect of saturation parameters with the content of the co-blowing agent has been studied extensively for various foaming attributes. The co-blowing agent enhanced the average cell size and the expansion ratio which are useful for better thermal insulation. The maximum expansion ratio of 29.9 obtained from the effect of saturation temperature and co-blowing agent, 23.6 from the effect of saturation pressure and co-blowing agent, and 22.4 from the effect of saturation time and co-blowing agent. The co-blowing agent significantly affects the cell morphology of polymeric foam with saturation parameters.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"39 1","pages":"141 - 171"},"PeriodicalIF":1.6,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319897633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41508038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Achievements and prospects for the synthesis of poly(meth)acrylimide foams. Stage of the thermal imidisation of polymer precursors 聚(甲基)丙烯酰亚胺泡沫合成的成就与展望。聚合物前体的热酰亚胺化阶段
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-07-01 DOI: 10.1177/0262489320934258
O. Kazantsev, K. V. Shirshin, P. V. Kornienko, A. P. Sivokhin
The review summarises the trends in the development of research on the synthesis of polymethacrylimides (PMIs) and polyacrylimides by the method of intramolecular thermal imidisation of (meth)acrylic polymers. Along with the widely used industry variant of PMI foam of the ‘Rohacell’ series based on bulk copolymers of methacrylonitrile and methacrylic acid, intensive research on alternative variants began after 2005. This review describes the main and side reactions when using polymer precursors of different structures as well as the effect of precursor composition and structure on the properties of the resulting poly(meth)acrylimides. It has been shown that the achievements of the last 15 years provide a basis for reducing the cost of poly(meth)acrylimides which will significantly expand the areas and scale of their application.
综述了(甲基)丙烯酸聚合物分子内热酰亚胺化合成聚甲基丙烯酰亚胺和聚丙烯酰亚胺的研究进展。随着广泛使用的基于甲基丙烯腈和甲基丙烯酸本体共聚物的“Rohacell”系列PMI泡沫的工业变体,2005年后开始对替代变体进行深入研究。本文介绍了使用不同结构的聚合物前体时的主要反应和副反应,以及前体组成和结构对所得聚(甲基)丙烯酰胺性能的影响。研究表明,过去15年的成就为降低聚(甲基)丙烯酰胺的成本提供了基础,这将显著扩大其应用领域和规模。
{"title":"Achievements and prospects for the synthesis of poly(meth)acrylimide foams. Stage of the thermal imidisation of polymer precursors","authors":"O. Kazantsev, K. V. Shirshin, P. V. Kornienko, A. P. Sivokhin","doi":"10.1177/0262489320934258","DOIUrl":"https://doi.org/10.1177/0262489320934258","url":null,"abstract":"The review summarises the trends in the development of research on the synthesis of polymethacrylimides (PMIs) and polyacrylimides by the method of intramolecular thermal imidisation of (meth)acrylic polymers. Along with the widely used industry variant of PMI foam of the ‘Rohacell’ series based on bulk copolymers of methacrylonitrile and methacrylic acid, intensive research on alternative variants began after 2005. This review describes the main and side reactions when using polymer precursors of different structures as well as the effect of precursor composition and structure on the properties of the resulting poly(meth)acrylimides. It has been shown that the achievements of the last 15 years provide a basis for reducing the cost of poly(meth)acrylimides which will significantly expand the areas and scale of their application.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"31 - 52"},"PeriodicalIF":1.6,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320934258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45435762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermal conductivity and conditioning of grey expanded polystyrene foams 灰色发泡聚苯乙烯泡沫的导热性和热处理
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-06-26 DOI: 10.1177/0262489320934263
A. Simpson, Ig Rattigan, E. Kalavsky, G. Parr
This article focuses on the thermal conductivity of 50 mm thick silver grey (infrared absorbing) expanded polystyrene (EPS) foam boards blown with pentane. The effect of short-term ageing from the point of production, by ambient conditioning at 23°C/50% RH, is compared to conditioning at an elevated temperature of 70°C. The declared thermal properties of the product and CE certification are fulfilled by the requirements of the European EPS product standard and SG19 Guidance. Measured thermal conductivity levels within 1% of the final value are acceptable and considered representative throughout the economic life of the product. Levels within the criteria were determined for 50 mm silver EPS after conditioning for 5 days at an elevated temperature of 70°C, whereas for conditioning at 23°C/50% RH the time taken was 23 days. The latter time is in good accord with retesting retained grey EPS boards of similar density and up to 9 years old, after initial testing 22 days from production, and conditioning at 23°C/50% RH. Elevated temperature conditioning increases the rate of diffusion of the blowing agent, but there has been concern about EPS beads softening above 60°C. Although there is little evidence from scanning electron microscopy of significant increase in perforation of the cell membranes at elevated temperatures, there is some indication of a small increase in wrinkling of the walls and intercell skeletal strands at 60°C and 70°C. It takes longer to eliminate the pentane gas by conditioning at 23°C/50% RH but there is no risk of material change from heat conditioning.
本文主要研究了用戊烷吹制的50 mm厚银灰色(红外吸收)发泡聚苯乙烯(EPS)泡沫板的导热性能。从生产点开始,通过在23°C/50%RH的环境条件下进行短期老化的影响与在70°C的高温条件下进行的老化进行了比较。产品的声明热性能和CE认证符合欧洲EPS产品标准和SG19指南的要求。测量的热导率水平在最终值的1%以内是可接受的,并被认为在产品的整个经济寿命内具有代表性。在70°C的高温下处理5天后,确定50 mm银EPS在标准范围内的水平,而在23°C/50%RH下处理所需时间为23天。后一个时间与在生产后22天进行初步测试并在23°C/50%RH条件下进行调节后,重新测试密度相似且使用年限长达9年的保留灰色EPS板非常一致。高温处理增加了发泡剂的扩散速率,但人们担心EPS珠粒在60°C以上会软化。尽管扫描电子显微镜几乎没有证据表明在高温下细胞膜穿孔显著增加,但有迹象表明,在60°C和70°C下,细胞壁和细胞间骨骼链的褶皱略有增加。在23°C/50%RH条件下进行处理,消除戊烷气体需要更长的时间,但不存在热处理导致材料变化的风险。
{"title":"Thermal conductivity and conditioning of grey expanded polystyrene foams","authors":"A. Simpson, Ig Rattigan, E. Kalavsky, G. Parr","doi":"10.1177/0262489320934263","DOIUrl":"https://doi.org/10.1177/0262489320934263","url":null,"abstract":"This article focuses on the thermal conductivity of 50 mm thick silver grey (infrared absorbing) expanded polystyrene (EPS) foam boards blown with pentane. The effect of short-term ageing from the point of production, by ambient conditioning at 23°C/50% RH, is compared to conditioning at an elevated temperature of 70°C. The declared thermal properties of the product and CE certification are fulfilled by the requirements of the European EPS product standard and SG19 Guidance. Measured thermal conductivity levels within 1% of the final value are acceptable and considered representative throughout the economic life of the product. Levels within the criteria were determined for 50 mm silver EPS after conditioning for 5 days at an elevated temperature of 70°C, whereas for conditioning at 23°C/50% RH the time taken was 23 days. The latter time is in good accord with retesting retained grey EPS boards of similar density and up to 9 years old, after initial testing 22 days from production, and conditioning at 23°C/50% RH. Elevated temperature conditioning increases the rate of diffusion of the blowing agent, but there has been concern about EPS beads softening above 60°C. Although there is little evidence from scanning electron microscopy of significant increase in perforation of the cell membranes at elevated temperatures, there is some indication of a small increase in wrinkling of the walls and intercell skeletal strands at 60°C and 70°C. It takes longer to eliminate the pentane gas by conditioning at 23°C/50% RH but there is no risk of material change from heat conditioning.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"39 1","pages":"238 - 262"},"PeriodicalIF":1.6,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320934263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46025099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Gas transport properties of cellular hollow fiber membranes based on LLDPE/LDPE blends 基于LLDPE/LDPE共混物的蜂窝中空纤维膜的气体传输性能
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-06-10 DOI: 10.1177/0262489320929300
Z. Razzaz, A. Mohebbi, D. Rodrigue
The production of foamed hollow fiber membranes (HFMs) is presented based on polymer blends using various concentrations of linear low-density polyethylene (LLDPE) and low-density polyethylene (LPDE) combined with azodicarbonamide (chemical blowing agent) to prepare samples via twin-screw extrusion. In particular, the blowing agent concentration as well as the stretching speed were found to be the most important parameters to achieve a good cellular structure for membrane application. From the samples obtained, a complete set of morphological, thermal, and gas transport characterization was performed. The results show that LLDPE/LDPE blends compared to neat LLDPE lead to higher cell density at high stretching speed, which is appropriate for membranes having higher gas permeability and selectivity due to lower cell wall thickness. The results also show that the developed cellular structure has high potential for the continuous production of HFMs for different gas separation, especially for hydrogen recovery.
以不同浓度的线性低密度聚乙烯(LLDPE)和低密度聚乙烯(LPDE)与偶氮二甲酰胺(化学发泡剂)为原料,采用双螺杆挤出法制备泡沫中空纤维膜(HFMs)。特别是发泡剂浓度和拉伸速度是获得良好的膜应用细胞结构的最重要参数。从获得的样品中,进行了一套完整的形态学,热学和气体传输表征。结果表明,与纯LLDPE相比,LLDPE/LDPE共混物在高拉伸速度下具有更高的细胞密度,这适用于具有较高透气性和选择性的膜,因为细胞壁厚度较低。研究结果还表明,成熟的细胞结构对于连续生产不同气体分离,特别是氢气回收的氢膜具有很大的潜力。
{"title":"Gas transport properties of cellular hollow fiber membranes based on LLDPE/LDPE blends","authors":"Z. Razzaz, A. Mohebbi, D. Rodrigue","doi":"10.1177/0262489320929300","DOIUrl":"https://doi.org/10.1177/0262489320929300","url":null,"abstract":"The production of foamed hollow fiber membranes (HFMs) is presented based on polymer blends using various concentrations of linear low-density polyethylene (LLDPE) and low-density polyethylene (LPDE) combined with azodicarbonamide (chemical blowing agent) to prepare samples via twin-screw extrusion. In particular, the blowing agent concentration as well as the stretching speed were found to be the most important parameters to achieve a good cellular structure for membrane application. From the samples obtained, a complete set of morphological, thermal, and gas transport characterization was performed. The results show that LLDPE/LDPE blends compared to neat LLDPE lead to higher cell density at high stretching speed, which is appropriate for membranes having higher gas permeability and selectivity due to lower cell wall thickness. The results also show that the developed cellular structure has high potential for the continuous production of HFMs for different gas separation, especially for hydrogen recovery.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"119 - 140"},"PeriodicalIF":1.6,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320929300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43631947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cell structure and mechanical properties of microcellular PLA foams prepared via autoclave constrained foaming 高压釜约束发泡法制备微孔PLA泡沫的细胞结构和力学性能
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-06-05 DOI: 10.1177/0262489320930328
Jinwei Chen, Ling Yang, Dahua Chen, Qunshan Mai, Meigui Wang, Lixuan Wu, Ping Kong
Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.
采用超临界二氧化碳(sc-CO2)固态发泡法制备了具有不同孔尺寸和孔形态的微孔聚乳酸(PLA)泡沫,研究了其孔结构与力学性能的关系。使用了限制性发泡,并通过调节饱和压力(8–24 MPa)开发了一系列恒定孔隙率为~75%的细胞结构。在保持其他变量不变的情况下改变饱和压力的实验表明,随着压力的增加,平均孔尺寸和平均孔壁厚度减小,而孔密度和开孔率增加。PLA泡沫的拉伸模量随着饱和压力的增加而降低,但其比拉伸模量仍比固体PLA高15-80%。拉伸强度和断裂伸长率首先随着饱和压力的增加而增加,最高可达16MPa,然后随着饱和压力(20MPa和24MPa)的进一步增加而降低,在饱和压力下产生开孔结构。压缩模量、压缩强度和压缩屈服应力也遵循相同的变化趋势。结果表明,泡孔尺寸不仅对PLA泡沫的性能起着重要作用,而且泡孔形态也会对这些性能产生显著影响。
{"title":"Cell structure and mechanical properties of microcellular PLA foams prepared via autoclave constrained foaming","authors":"Jinwei Chen, Ling Yang, Dahua Chen, Qunshan Mai, Meigui Wang, Lixuan Wu, Ping Kong","doi":"10.1177/0262489320930328","DOIUrl":"https://doi.org/10.1177/0262489320930328","url":null,"abstract":"Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"101 - 118"},"PeriodicalIF":1.6,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320930328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49474206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Preparation and properties of melamine-formaldehyde rigid closed-cell foam toughened by ethylene glycol/carbon fiber 乙二醇/碳纤维增韧三聚氰胺甲醛刚性闭孔泡沫的制备及性能
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-06-04 DOI: 10.1177/0262489320929232
Chunhui Li, Haihong Ma, Zhengfa Zhou, Weibing Xu, F. Ren, Xinyu Yang
Toughing melamine-formaldehyde (MF) rigid closed-cell foams were prepared by using ethylene glycol (EG) and carbon fiber (CF) as composite toughening agents. The pulverization rate, compressive strength, bending strength, cellular structure, closed-cell ratio, water absorption ratio, thermal conductivity, thermal stability, limiting oxygen index (LOI), and char yield were characterized to study the morphology, mechanical, thermal, and fire-retardant properties of as-prepared toughing MF rigid foams. The pulverization rate result showed that introduction of composite modifier can obviously improve the toughness of MF rigid foams. The cellular structure, closed-cell ratio, and water absorption results showed that the addition of EG/CF can increase the closed-cell ratio and control the cell size of MF rigid foams. The compressive strength and bending strength results showed that the incorporation of composite modifier of MF rigid foams dramatically improved the mechanical properties. The LOI, char yield, and thermal stability results showed that the toughing MF rigid foams remained more intact char skeleton with flame-retardant effect, thus reducing the fire hazards. The as-prepared toughing MF rigid foams showed the best comprehensive performance with pulverization rate of 5.21%, compressive strength of 355.3 kPa, bending strength of 0.44 MPa, closed-cell ratio of 79.1%, water absorption of 9%, thermal conductivity of 0.031 W m−1 K−1, and LOI of 39.6%. Compared with unmodified MF rigid foams, toughing rigid closed-cell MF foams possess excellent pulverization rate, compressive strength, bending strength, cellular structure, thermal insulation, and flame retardancy.
以乙二醇(EG)和碳纤维(CF)为复合增韧剂,制备了三聚氰胺-甲醛(MF)刚性闭孔泡沫塑料。通过表征制粒率、抗压强度、抗弯强度、孔结构、闭孔比、吸水率、导热系数、热稳定性、极限氧指数(LOI)和炭产率,研究了制备的增韧MF刚性泡沫的形貌、力学性能、热性能和阻燃性能。粉碎率试验结果表明,复合改性剂的加入能明显提高MF刚性泡沫的韧性。细胞结构、闭孔率和吸水率结果表明,EG/CF的加入可以提高MF刚性泡沫的闭孔率,控制孔的大小。抗压强度和弯曲强度结果表明,复合改性剂的掺入显著改善了MF刚性泡沫的力学性能。LOI、炭产率和热稳定性结果表明,增韧MF刚性泡沫保持了更完整的炭骨架,具有阻燃作用,从而降低了火灾危险。制备的增韧MF刚性泡沫粉化率为5.21%,抗压强度为355.3 kPa,抗弯强度为0.44 MPa,闭孔率为79.1%,吸水率为9%,导热系数为0.031 W m−1 K−1,LOI为39.6%,综合性能最佳。与未改性的MF刚性泡沫相比,增韧MF闭孔刚性泡沫具有优异的粉碎率、抗压强度、抗弯强度、孔状结构、保温性能和阻燃性能。
{"title":"Preparation and properties of melamine-formaldehyde rigid closed-cell foam toughened by ethylene glycol/carbon fiber","authors":"Chunhui Li, Haihong Ma, Zhengfa Zhou, Weibing Xu, F. Ren, Xinyu Yang","doi":"10.1177/0262489320929232","DOIUrl":"https://doi.org/10.1177/0262489320929232","url":null,"abstract":"Toughing melamine-formaldehyde (MF) rigid closed-cell foams were prepared by using ethylene glycol (EG) and carbon fiber (CF) as composite toughening agents. The pulverization rate, compressive strength, bending strength, cellular structure, closed-cell ratio, water absorption ratio, thermal conductivity, thermal stability, limiting oxygen index (LOI), and char yield were characterized to study the morphology, mechanical, thermal, and fire-retardant properties of as-prepared toughing MF rigid foams. The pulverization rate result showed that introduction of composite modifier can obviously improve the toughness of MF rigid foams. The cellular structure, closed-cell ratio, and water absorption results showed that the addition of EG/CF can increase the closed-cell ratio and control the cell size of MF rigid foams. The compressive strength and bending strength results showed that the incorporation of composite modifier of MF rigid foams dramatically improved the mechanical properties. The LOI, char yield, and thermal stability results showed that the toughing MF rigid foams remained more intact char skeleton with flame-retardant effect, thus reducing the fire hazards. The as-prepared toughing MF rigid foams showed the best comprehensive performance with pulverization rate of 5.21%, compressive strength of 355.3 kPa, bending strength of 0.44 MPa, closed-cell ratio of 79.1%, water absorption of 9%, thermal conductivity of 0.031 W m−1 K−1, and LOI of 39.6%. Compared with unmodified MF rigid foams, toughing rigid closed-cell MF foams possess excellent pulverization rate, compressive strength, bending strength, cellular structure, thermal insulation, and flame retardancy.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"40 1","pages":"55 - 72"},"PeriodicalIF":1.6,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489320929232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44801488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Analysis of static sealing rules of foamed silicone rubber based on a porous media model 基于多孔介质模型的发泡硅橡胶静密封规律分析
IF 1.6 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2020-05-01 DOI: 10.1177/0262489319890076
Tianzheng Wen, Fei Guo, Yijie Huang, S. Zhu, X. Jia
We established a method for calculating and analyzing the static leakage rate based on a porous media model for foamed silicone rubber materials. The mechanical properties of the foamed silicone rubber material under macroscopic compression were described by the Ogden third (foam) model in the finite-element hyperelastic model. It solved the problem of difficult convergence of large compressible and volume compressible cell materials. The size and distribution of the cells on the surface of the foamed material were obtained by a white-light interferometer and mathematical fitting. The boundary conditions for solving the porous medium model were obtained by the coupling of the macroscopic contact pressure and the microscopic cell contact pressure. For the unique cell structure and contact state of the surface of the foamed material, the flow state of the fluid at the sealing interface was described by a porous medium model, and the leak rate was obtained. In addition, this article analyzed the effect of different compression and the relative pressure of the sealing end face on the leakage.
基于多孔介质模型,我们建立了一种计算和分析泡沫硅橡胶材料静态泄漏率的方法。泡沫硅橡胶材料在宏观压缩下的力学性能由有限元超弹性模型中的Ogden-third(泡沫)模型描述。它解决了大可压缩和体积可压缩单元材料难以收敛的问题。通过白光干涉仪和数学拟合获得了泡沫材料表面细胞的大小和分布。通过宏观接触压力和微观细胞接触压力的耦合,得到了求解多孔介质模型的边界条件。针对发泡材料表面独特的孔道结构和接触状态,通过多孔介质模型描述了流体在密封界面的流动状态,并获得了泄漏率。此外,本文还分析了不同压缩和密封端面相对压力对泄漏的影响。
{"title":"Analysis of static sealing rules of foamed silicone rubber based on a porous media model","authors":"Tianzheng Wen, Fei Guo, Yijie Huang, S. Zhu, X. Jia","doi":"10.1177/0262489319890076","DOIUrl":"https://doi.org/10.1177/0262489319890076","url":null,"abstract":"We established a method for calculating and analyzing the static leakage rate based on a porous media model for foamed silicone rubber materials. The mechanical properties of the foamed silicone rubber material under macroscopic compression were described by the Ogden third (foam) model in the finite-element hyperelastic model. It solved the problem of difficult convergence of large compressible and volume compressible cell materials. The size and distribution of the cells on the surface of the foamed material were obtained by a white-light interferometer and mathematical fitting. The boundary conditions for solving the porous medium model were obtained by the coupling of the macroscopic contact pressure and the microscopic cell contact pressure. For the unique cell structure and contact state of the surface of the foamed material, the flow state of the fluid at the sealing interface was described by a porous medium model, and the leak rate was obtained. In addition, this article analyzed the effect of different compression and the relative pressure of the sealing end face on the leakage.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"39 1","pages":"101 - 116"},"PeriodicalIF":1.6,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319890076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46359606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Cellular Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1