首页 > 最新文献

Chemphyschem最新文献

英文 中文
Cover Feature: Chlorine-Modified Soluble Melem-Based Graphitic Carbon Nitrite: Facile Synthesis, Catalytic Property and Ultrafast 2D IR Spectroscopic Characterization (ChemPhysChem 21/2024) 封面特点:氯改性可溶性梅姆基亚硝酸石墨碳:简易合成、催化特性和超快二维红外光谱表征(ChemPhysChem 21/2024)
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1002/cphc.202482103
Yueting Zhao, Pengyun Yu, Jianping Wang

The Cover Feature shows chlorine-modified soluble melem-based graphitic carbon nitrite (CNCl), which showed better photocatalytic performance than g-C3N4 in the decomposition of methyl orange. CNCl showed much improved dispersibility and solubility in water, DMSO and other solvents. Time-resolved two-dimensional infrared vibrational spectroscopy and other analytical methods were used to understand the photocatalytic performance of CNCl on a microscopic level. More information can be found in the Research Article by J. Wang and co-workers (DOI: 10.1002/cphc.202400356).

封面特写展示了氯改性的可溶性melem基亚硝酸石墨碳(CNCl),它在分解甲基橙时的光催化性能优于g-C3N4。CNCl 在水、二甲基亚砜(DMSO)和其他溶剂中的分散性和溶解性都大大提高。利用时间分辨二维红外振动光谱和其他分析方法,从微观层面了解了氯化萘的光催化性能。更多信息请参见 J. Wang 及其合作者的研究文章(DOI: 10.1002/cphc.202400356)。
{"title":"Cover Feature: Chlorine-Modified Soluble Melem-Based Graphitic Carbon Nitrite: Facile Synthesis, Catalytic Property and Ultrafast 2D IR Spectroscopic Characterization (ChemPhysChem 21/2024)","authors":"Yueting Zhao,&nbsp;Pengyun Yu,&nbsp;Jianping Wang","doi":"10.1002/cphc.202482103","DOIUrl":"https://doi.org/10.1002/cphc.202482103","url":null,"abstract":"<p><b>The Cover Feature</b> shows chlorine-modified soluble melem-based graphitic carbon nitrite (CNCl), which showed better photocatalytic performance than g-C<sub>3</sub>N<sub>4</sub> in the decomposition of methyl orange. CNCl showed much improved dispersibility and solubility in water, DMSO and other solvents. Time-resolved two-dimensional infrared vibrational spectroscopy and other analytical methods were used to understand the photocatalytic performance of CNCl on a microscopic level. More information can be found in the Research Article by J. Wang and co-workers (DOI: 10.1002/cphc.202400356).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"25 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202482103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the Exposed Surface Characteristics on the Stability and Photoelectric Properties of MAPbI3. 重新审视暴露表面特性对 MAPbI3 的稳定性和光电特性的影响。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1002/cphc.202400897
Bingdong Zhang, Ruiyang Shi, Hongke Ma, Kai Ma, Zhengyang Gao, Hao Li

CH3NH3PbI3 (MAPbI3), as a promising candidate of photovoltaic materials, has attracted extensive interests due to its excellent photoelectric properties and low preparation cost. However, the relationship between synthesis parameter and performance is still unclear due to the overlook of exposed surface characteristics, limiting the mass-production and commercialization of MAPbI3. Therefore, it is necessary to clarify the stability and photoelectric properties of different exposed surfaces of MAPbI3 under humid environment. In this work, the stability and photoelectric properties of the MAI-terminated and PbI2-terminated of MAPbI3 (001) were thoroughly investigated using density functional theory calculation. To study the stability of exposed surface, adsorption energy of water molecules, ab initio molecular dynamics (AIMD), mean square displacement (MSD) and X-ray diffraction (XRD) were calculated. MSD of PbI2-terminated surface is greater by two orders of magnitude compared to MAI-terminated surface. For the photoelectric properties of MAPbI3, the bandgap, absorption coefficients, joint density of states (JDOS) and dielectric constants were investigated. The inhibitory effect of water on the photoelectric performance for PbI2-terminated surface is more significant than that of MAI-terminated surface. Although the photoelectric properties of water molecules adsorption on MAI-terminated surface is basically unchanged, the diffusion of water molecules reduces the photoelectric properties of MAPbI3. Overall, the stability and photoelectric properties of MAI-terminated surface are superior to PbI2-terminated surface. Therefore, we strongly advocate paying attention to the exposed surface of MAPbI3 during the thin film production process and adjusting synthesis parameters to prepare MAI-terminated surface dominated thin film, which should substantially improve the performance of MAPbI3 in the application.

在这项工作中,利用密度泛函理论计算深入研究了 MAPbI3 (001) 的 MAI 端和 PbI2 端的稳定性和光电特性。为了研究暴露表面的稳定性,计算了水分子的吸附能、ab initio 分子动力学(AIMD)、均方位移(MSD)和 X 射线衍射(XRD)。与 MAI 端面相比,PbI2 端面的 MSD 大两个数量级。在 MAPbI3 的光电特性方面,研究了其带隙、吸收系数、联合态密度(JDOS)和介电常数。与 MAI 端面相比,水对 PbI2 端面光电性能的抑制作用更为显著。虽然水分子吸附在 MAI 端面的光电性能基本不变,但水分子的扩散降低了 MAPbI3 的光电性能。总的来说,MAI 端面的稳定性和光电特性都优于 PbI2 端面。因此,我们提倡在薄膜生产过程中关注 MAPbI3 的裸露表面,通过调整合成参数来制备 MAI 端面为主的薄膜,从而大幅提高 MAPbI3 的应用性能。
{"title":"Revisiting the Exposed Surface Characteristics on the Stability and Photoelectric Properties of MAPbI<sub>3</sub>.","authors":"Bingdong Zhang, Ruiyang Shi, Hongke Ma, Kai Ma, Zhengyang Gao, Hao Li","doi":"10.1002/cphc.202400897","DOIUrl":"10.1002/cphc.202400897","url":null,"abstract":"<p><p>CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>), as a promising candidate of photovoltaic materials, has attracted extensive interests due to its excellent photoelectric properties and low preparation cost. However, the relationship between synthesis parameter and performance is still unclear due to the overlook of exposed surface characteristics, limiting the mass-production and commercialization of MAPbI<sub>3</sub>. Therefore, it is necessary to clarify the stability and photoelectric properties of different exposed surfaces of MAPbI<sub>3</sub> under humid environment. In this work, the stability and photoelectric properties of the MAI-terminated and PbI<sub>2</sub>-terminated of MAPbI<sub>3</sub> (001) were thoroughly investigated using density functional theory calculation. To study the stability of exposed surface, adsorption energy of water molecules, ab initio molecular dynamics (AIMD), mean square displacement (MSD) and X-ray diffraction (XRD) were calculated. MSD of PbI<sub>2</sub>-terminated surface is greater by two orders of magnitude compared to MAI-terminated surface. For the photoelectric properties of MAPbI<sub>3</sub>, the bandgap, absorption coefficients, joint density of states (JDOS) and dielectric constants were investigated. The inhibitory effect of water on the photoelectric performance for PbI<sub>2</sub>-terminated surface is more significant than that of MAI-terminated surface. Although the photoelectric properties of water molecules adsorption on MAI-terminated surface is basically unchanged, the diffusion of water molecules reduces the photoelectric properties of MAPbI<sub>3</sub>. Overall, the stability and photoelectric properties of MAI-terminated surface are superior to PbI<sub>2</sub>-terminated surface. Therefore, we strongly advocate paying attention to the exposed surface of MAPbI<sub>3</sub> during the thin film production process and adjusting synthesis parameters to prepare MAI-terminated surface dominated thin film, which should substantially improve the performance of MAPbI<sub>3</sub> in the application.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400897"},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Combining Nitrogen Doping and Vacancies for Tunable Resonant States in Graphite (ChemPhysChem 21/2024) 封面专题:结合氮掺杂和空位实现石墨中的可调谐谐振态(ChemPhysChem 21/2024)
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1002/cphc.202482102
Demba Demba, Abhishek Karn, Cyril Chacon, Yann Girard, Vincent Repain, Amandine Bellec, Hakim Amara, Philippe Lang, Jérôme Lagoute

The Cover Feature shows a vacancy combined with nitrogen dopants on graphite. The two spectra correspond to the resonant state of a vacancy with (red) or without (yellow) nitrogen doping. In the presence of nitrogen, the vacancy state shifts from an unoccupied to an occupied energy level. More information can be found in the Research Article by J. Lagoute and co-workers (DOI: 10.1002/cphc.202400221).

封面特写显示了石墨上掺杂氮元素的空位。两个光谱分别对应于掺氮(红色)或不掺氮(黄色)的空位的共振态。在氮的存在下,空位状态从未占领能级转变为占领能级。更多信息,请参阅 J. Lagoute 及其合作者的研究文章(DOI: 10.1002/cphc.202400221)。
{"title":"Cover Feature: Combining Nitrogen Doping and Vacancies for Tunable Resonant States in Graphite (ChemPhysChem 21/2024)","authors":"Demba Demba,&nbsp;Abhishek Karn,&nbsp;Cyril Chacon,&nbsp;Yann Girard,&nbsp;Vincent Repain,&nbsp;Amandine Bellec,&nbsp;Hakim Amara,&nbsp;Philippe Lang,&nbsp;Jérôme Lagoute","doi":"10.1002/cphc.202482102","DOIUrl":"https://doi.org/10.1002/cphc.202482102","url":null,"abstract":"<p><b>The Cover Feature</b> shows a vacancy combined with nitrogen dopants on graphite. The two spectra correspond to the resonant state of a vacancy with (red) or without (yellow) nitrogen doping. In the presence of nitrogen, the vacancy state shifts from an unoccupied to an occupied energy level. More information can be found in the Research Article by J. Lagoute and co-workers (DOI: 10.1002/cphc.202400221).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"25 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202482102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Nonadiabatic Photodynamics of Amantadine and 1-Cyanoadamantane Cations (ChemPhysChem 21/2024) 封面:金刚烷胺和 1-氰基金刚烷阳离子的非绝热光动力学(ChemPhysChem 21/2024)
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1002/cphc.202482101
Bonasree Roy, Evgenii Titov, Peter Saalfrank

The Front Cover artistically illustrates different excited-state lifetimes of the cations of 1-cyanoadamantane and amantadine—nitrogen-containing derivatives of the adamantane cation. In their Research Article (DOI: 10.1002/cphc.202400331), B. Roy, E. Titov, and P. Saalfrank relate how the nonadiabatic dynamics and electronic spectra were studied by using surface-hopping molecular dynamics simulations and quantum chemical calculations.

封面艺术地展示了 1-氰基金刚烷阳离子和金刚烷阳离子含氮衍生物的不同激发态寿命。在他们的研究文章(DOI: 10.1002/cphc.202400331)中,B. Roy、E. Titov 和 P. Saalfrank 讲述了如何利用表面跳跃分子动力学模拟和量子化学计算研究非绝热动力学和电子能谱。
{"title":"Front Cover: Nonadiabatic Photodynamics of Amantadine and 1-Cyanoadamantane Cations (ChemPhysChem 21/2024)","authors":"Bonasree Roy,&nbsp;Evgenii Titov,&nbsp;Peter Saalfrank","doi":"10.1002/cphc.202482101","DOIUrl":"https://doi.org/10.1002/cphc.202482101","url":null,"abstract":"<p><b>The Front Cover</b> artistically illustrates different excited-state lifetimes of the cations of 1-cyanoadamantane and amantadine—nitrogen-containing derivatives of the adamantane cation. In their Research Article (DOI: 10.1002/cphc.202400331), B. Roy, E. Titov, and P. Saalfrank relate how the nonadiabatic dynamics and electronic spectra were studied by using surface-hopping molecular dynamics simulations and quantum chemical calculations.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"25 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202482101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absence of the third linker domain of ApcE subunit in phycobilisome from Synechocystis 6803 reduces rods-to-core excitation energy transfer. Synechocystis 6803 的噬菌体中 ApcE 亚基第三连接域的缺失减少了棒-核激发能量的传递。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-05 DOI: 10.1002/cphc.202400933
Dariusz Niedzwiedzki, Rupal Singh Tomar, Fatima Akram, Anna M Williams, Haijun Liu

Phycobilisome (PBS) is a pigment-protein complex utilized by red algae and cyanobacteria in photosynthesis for light harvesting. A cyanobacterium Synechocystis sp. PCC 6803 contains PBS with a tricylindrical core built of allophycocyanin (APC) disks where six phycocyanin (PC) rods are attached. The top core cylinder is seemingly involved in attaching four PC rods and binding orange carotenoid protein (OCP) to quench excess of excitation energy. In this study, we have deleted the third linker domain (LD3) of ApcE subunit of PBS which assembles four APC discs into the top core cylinder. The mutation resulted in PBS with bicylindrical core, structurally comparable to the naturally existing PBS from Synechococcus 7942. Lack of LD3 and the top APC cylinder reduces the excitation energy transfer between PC and APC in the mutant. Moreover, these PBSs are more prone to light induced-photodamage and do not bind to the photoactivated orange carotenoid protein (OCP), a known PBS excitation quencher. These findings highlight the complex and elegant interplay between PBS architecture and functional efficiency, suggesting that in PBSs with naturally tri-cylindrical cores, the top cylinder has essential roles in recruiting the rods and proper binding of OCP and recruitment of the four PC rods.

藻青素体(PBS)是红藻和蓝藻在光合作用中用于采光的色素-蛋白质复合体。蓝藻 Synechocystis sp. PCC 6803 含有一个由异叶绿素(APC)盘构成的三圆柱形核心 PBS,其中连接着六根藻蓝蛋白(PC)棒。顶端的核心圆柱体似乎参与连接四根 PC 棒,并结合橙色类胡萝卜素蛋白(OCP)以熄灭过量的激发能量。在这项研究中,我们删除了 PBS 的 ApcE 亚基的第三个连接子结构域(LD3),该结构域将四个 APC 圆盘组装到顶核圆柱体中。这一突变导致 PBS 具有双圆柱形核心,在结构上与来自 Synechococcus 7942 的天然 PBS 相似。由于缺少 LD3 和顶部 APC 圆柱,突变体中 PC 和 APC 之间的激发能量转移减少。此外,这些 PBS 更容易受到光诱导的光损伤,并且不能与光激活的橙色类胡萝卜素蛋白(OCP)结合,而 OCP 是一种已知的 PBS 激发淬灭剂。这些发现突显了 PBS 结构与功能效率之间复杂而优雅的相互作用,表明在具有天然三圆柱形核心的 PBS 中,顶圆柱在招募杆状体、正确结合 OCP 和招募四个 PC 杆状体方面具有重要作用。
{"title":"Absence of the third linker domain of ApcE subunit in phycobilisome from Synechocystis 6803 reduces rods-to-core excitation energy transfer.","authors":"Dariusz Niedzwiedzki, Rupal Singh Tomar, Fatima Akram, Anna M Williams, Haijun Liu","doi":"10.1002/cphc.202400933","DOIUrl":"https://doi.org/10.1002/cphc.202400933","url":null,"abstract":"<p><p>Phycobilisome (PBS) is a pigment-protein complex utilized by red algae and cyanobacteria in photosynthesis for light harvesting. A cyanobacterium Synechocystis sp. PCC 6803 contains PBS with a tricylindrical core built of allophycocyanin (APC) disks where six phycocyanin (PC) rods are attached. The top core cylinder is seemingly involved in attaching four PC rods and binding orange carotenoid protein (OCP) to quench excess of excitation energy. In this study, we have deleted the third linker domain (LD3) of ApcE subunit of PBS which assembles four APC discs into the top core cylinder. The mutation resulted in PBS with bicylindrical core, structurally comparable to the naturally existing PBS from Synechococcus 7942. Lack of LD3 and the top APC cylinder reduces the excitation energy transfer between PC and APC in the mutant. Moreover, these PBSs are more prone to light induced-photodamage and do not bind to the photoactivated orange carotenoid protein (OCP), a known PBS excitation quencher. These findings highlight the complex and elegant interplay between PBS architecture and functional efficiency, suggesting that in PBSs with naturally tri-cylindrical cores, the top cylinder has essential roles in recruiting the rods and proper binding of OCP and recruitment of the four PC rods.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400933"},"PeriodicalIF":2.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Na-Ion Electrochemical Performance through Cu Doping-Mediated Sb2Se3 Phase Transformation into CuSbSe2 with Improved Kinetics. 通过铜掺杂介导的 Sb2Se3 向 CuSbSe2 的相变增强 Na 离子电化学性能并改善动力学。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1002/cphc.202400793
Shah Jahan Ul Islam, Kowsar Majid, Malik Wahid

This work investigates the influence of structural and electronic modification on the electrochemical performance of conversion and alloying materials. The CuSbSe2, a promising 2D layered conversion-and-alloying material is being investigated with references to parent pristine Sb2Se3 and a doped version of later Sn0.2Sb1.8Se3 for their sodium-ion battery performance. The CuSbSe2 with layered structure is well known to accommodate lattice distortions via inter-layer movement, potentially mitigating distortions brought about by the Alkali ion (Na in this case) insertion. In contrast, the parent conversion-cum-alloying material Sb2Se3 with its one-dimensional crystal structure leads to structural disintegration during battery operation. The Sn-doped analog, Sn0.2Sb1.8Se3, comparatively exhibits enhanced kinetics owing to the reduced long-range order. The 2D layered, CuSbSe2 despite exhibiting  2D long-range order exhibits superior electrochemical performance owing to the favorable electronic and structural features. The CuSbSe2 exhibits a reversible capacity of 881 mAh g-1 compared to 516 mAh g-1 for Sn0.2Sb1.8Se3 and 429 mAh g-1 for Sb2Se3, with an improved Coulombic efficiency as well. The transient electrochemical investigations of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic intermittent titration techniques (GITT) reveal that better performance exhibited by CuSbSe2 may well be attributed to kinetics owing to enhanced diffusion coefficients in the intercalation and conversion regime.

这项研究探讨了结构和电子改性对转换和合金材料电化学性能的影响。CuSbSe2 是一种很有前途的二维层状转换和合金材料,本研究参照母体原始 Sb2Se3 和后来的掺杂版 Sn0.2Sb1.8Se3,对其钠离子电池性能进行了研究。众所周知,具有层状结构的 CuSbSe2 可通过层间移动来适应晶格畸变,从而有可能减轻碱离子(本例中为 Na)插入所带来的畸变。相比之下,具有一维晶体结构的母体转换兼合金材料 Sb2Se3 会在电池运行过程中导致结构解体。掺锡的类似物 Sn0.2Sb1.8Se3 由于长程有序性降低,动力学性能相对增强。二维层状的 CuSbSe2 尽管表现出二维长程阶次,但由于其有利的电子和结构特征,表现出卓越的电化学性能。与 Sn0.2Sb1.8Se3 的 516 mAh g-1 和 Sb2Se3 的 429 mAh g-1 相比,CuSbSe2 的可逆容量达到 881 mAh g-1,库仑效率也有所提高。通过电化学阻抗谱(EIS)和伽伐诺静态间歇滴定技术(GITT)进行的瞬态电化学研究表明,CuSbSe2 表现出的更佳性能很可能是由于在插层和转换过程中扩散系数增强而导致的动力学效应。
{"title":"Enhanced Na-Ion Electrochemical Performance through Cu Doping-Mediated Sb2Se3 Phase Transformation into CuSbSe2 with Improved Kinetics.","authors":"Shah Jahan Ul Islam, Kowsar Majid, Malik Wahid","doi":"10.1002/cphc.202400793","DOIUrl":"https://doi.org/10.1002/cphc.202400793","url":null,"abstract":"<p><p>This work investigates the influence of structural and electronic modification on the electrochemical performance of conversion and alloying materials. The CuSbSe2, a promising 2D layered conversion-and-alloying material is being investigated with references to parent pristine Sb2Se3 and a doped version of later Sn0.2Sb1.8Se3 for their sodium-ion battery performance. The CuSbSe2 with layered structure is well known to accommodate lattice distortions via inter-layer movement, potentially mitigating distortions brought about by the Alkali ion (Na in this case) insertion. In contrast, the parent conversion-cum-alloying material Sb2Se3 with its one-dimensional crystal structure leads to structural disintegration during battery operation. The Sn-doped analog, Sn0.2Sb1.8Se3, comparatively exhibits enhanced kinetics owing to the reduced long-range order. The 2D layered, CuSbSe2 despite exhibiting  2D long-range order exhibits superior electrochemical performance owing to the favorable electronic and structural features. The CuSbSe2 exhibits a reversible capacity of 881 mAh g-1 compared to 516 mAh g-1 for Sn0.2Sb1.8Se3 and 429 mAh g-1 for Sb2Se3, with an improved Coulombic efficiency as well. The transient electrochemical investigations of Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic intermittent titration techniques (GITT) reveal that better performance exhibited by CuSbSe2 may well be attributed to kinetics owing to enhanced diffusion coefficients in the intercalation and conversion regime.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400793"},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-induced transformation of a supramolecular gel to a stronger covalent polymeric gel. 光诱导超分子凝胶向强共价聚合物凝胶的转化。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1002/cphc.202400861
Sabith K Saleem, Thejus Pramod, Pruthvi Kuruva, Shyamkumar V Haridas, Anusha Shanmugam, Madhu Thalakulam, Kana M Sureshan

A polymerizable diacetylene gelator, containing urea and urethane groups, that congeals various non-polar solvents was synthesized. The gelator molecules self-assemble forming non-covalent polymers through intermolecular hydrogen bonding, as evidenced from FT-IR and concentration-dependent 1H NMR spectroscopy. The self-assembly positions the diyne units of adjacent molecules at proximity and in a geometry suitable for their topochemical polymerization. UV irradiation of the gel resulted in topochemical polymerization, transforming the non-covalent polymer to a covalent polymer, in situ, in the gel state. The polymerization was confirmed by characterizing the polydiacetylene (PDA) using UV-Vis and Raman spectroscopy. Time-dependent rheological studies revealed gradual strengthening of the gel with the duration of irradiation, suggesting that the degree of polymerization increases with the duration of irradiation. The PDA formed is a semiconductor, which might be useful for various applications.

我们合成了一种可聚合的二乙炔凝胶剂,其中含有脲基和氨基甲酸乙酯基团,可凝结各种非极性溶剂。凝胶剂分子通过分子间氢键自组装形成非共价聚合物,这一点已在傅立叶变换红外光谱和浓度依赖性 1H NMR 光谱中得到证实。这种自组装使相邻分子的二炔单元位置接近,几何形状适合它们的拓扑化学聚合。紫外线照射凝胶可导致拓扑化学聚合,在凝胶状态下将非共价聚合物原位转化为共价聚合物。利用紫外可见光谱和拉曼光谱对聚二乙烯(PDA)进行表征,证实了这种聚合反应。随时间变化的流变学研究表明,凝胶会随着辐照时间的延长而逐渐增强,这表明聚合度会随着辐照时间的延长而增加。形成的 PDA 是一种半导体,可用于各种用途。
{"title":"Light-induced transformation of a supramolecular gel to a stronger covalent polymeric gel.","authors":"Sabith K Saleem, Thejus Pramod, Pruthvi Kuruva, Shyamkumar V Haridas, Anusha Shanmugam, Madhu Thalakulam, Kana M Sureshan","doi":"10.1002/cphc.202400861","DOIUrl":"https://doi.org/10.1002/cphc.202400861","url":null,"abstract":"<p><p>A polymerizable diacetylene gelator, containing urea and urethane groups, that congeals various non-polar solvents was synthesized. The gelator molecules self-assemble forming non-covalent polymers through intermolecular hydrogen bonding, as evidenced from FT-IR and concentration-dependent 1H NMR spectroscopy. The self-assembly positions the diyne units of adjacent molecules at proximity and in a geometry suitable for their topochemical polymerization. UV irradiation of the gel resulted in topochemical polymerization, transforming the non-covalent polymer to a covalent polymer, in situ, in the gel state. The polymerization was confirmed by characterizing the polydiacetylene (PDA) using UV-Vis and Raman spectroscopy. Time-dependent rheological studies revealed gradual strengthening of the gel with the duration of irradiation, suggesting that the degree of polymerization increases with the duration of irradiation. The PDA formed is a semiconductor, which might be useful for various applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400861"},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Investigation of the Structures of [(Glycine)(1-Methyluracil)]M+ Complexes (M = H, Li, Na, K) in the Gas Phase by IRMPD Spectroscopy and Theoretical Methods. 利用 IRMPD 光谱和理论方法研究气相中 [(Glycine)(1-Methyluracil)]M+ 复合物(M = H、Li、Na、K)的结构。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1002/cphc.202400884
Samuel C Atkinson, Travis D Fridgen

The presence of ions in the complexation of molecules can profoundly affect the structure, resulting in changes to functionality and stability. These non-covalent interactions drive many biological processes both necessary and inimical and require extensive research to understand and predict their effects. Protonated and alkali metalated complexes of glycine (Gly) and 1-methyluracil (1-mUra) were studied using infrared multiphoton dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations. The experimental and simulated vibrational spectra were compared to help elucidate the structure of each complex. The lowest energy structure for [(Gly)(1-mUra)]H+ consists of amine protonated Gly bound to O4 of canonical 1-mUra through a single ionic hydrogen bond with another, intraglycine ionic hydrogen bond between the protonated amine group and the carbonyl oxygen. For [(Gly)(1-mUra)]Li+, [(Gly)(1-mUra)]Na+ and [(Gly)(1-mUra)]K+, the experimental spectra are most consistent with the metal cations binding in a trigonal planar geometry with 1-mUra bound to the metal cation via the O4 carbonyl. In [(Gly)(1-mUra)]Li+ and [(Gly)(1-mUra)]Na+, the metal cation is bound to canonical Gly via the carbonyl oxygen and amine nitrogen, but in [(Gly)(1-mUra)]K+, Gly is bound through both oxygens and contains an intraglycine hydrogen bond from the hydroxyl to the amine nitrogen.

离子在分子络合过程中的存在会对分子结构产生深远影响,导致功能性和稳定性发生变化。这些非共价相互作用推动了许多必要或有害的生物过程,需要进行广泛的研究来了解和预测其影响。研究人员利用红外多光子解离(IRMPD)光谱和密度泛函理论(DFT)计算,对甘氨酸(Gly)和 1-甲基尿嘧啶(1-mUra)的质子化和碱金属化配合物进行了研究。比较了实验和模拟的振动光谱,以帮助阐明每个复合物的结构。能量最低的[(Gly)(1-mUra)]H+结构包括质子化的氨基 Gly 通过一个离子氢键与 1-mUra 的 O4 结合,质子化的氨基与羰基氧之间还有一个甘氨酸内离子氢键。对于[(Gly)(1-mUra)]Li+、[(Gly)(1-mUra)]Na+ 和[(Gly)(1-mUra)]K+,实验光谱最符合金属阳离子以三叉平面几何形状结合,1-mUra 通过 O4 羰基与金属阳离子结合。在[(Gly)(1-mUra)]Li+ 和[(Gly)(1-mUra)]Na+ 中,金属阳离子通过羰基氧和胺氮与典型的 Gly 结合,但在[(Gly)(1-mUra)]K+ 中,Gly 通过两个氧原子结合,并包含一个从羟基到胺氮的甘氨酸内氢键。
{"title":"An Investigation of the Structures of [(Glycine)(1-Methyluracil)]M+ Complexes (M = H, Li, Na, K) in the Gas Phase by IRMPD Spectroscopy and Theoretical Methods.","authors":"Samuel C Atkinson, Travis D Fridgen","doi":"10.1002/cphc.202400884","DOIUrl":"https://doi.org/10.1002/cphc.202400884","url":null,"abstract":"<p><p>The presence of ions in the complexation of molecules can profoundly affect the structure, resulting in changes to functionality and stability. These non-covalent interactions drive many biological processes both necessary and inimical and require extensive research to understand and predict their effects. Protonated and alkali metalated complexes of glycine (Gly) and 1-methyluracil (1-mUra) were studied using infrared multiphoton dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations. The experimental and simulated vibrational spectra were compared to help elucidate the structure of each complex. The lowest energy structure for [(Gly)(1-mUra)]H+ consists of amine protonated Gly bound to O4 of canonical 1-mUra through a single ionic hydrogen bond with another, intraglycine ionic hydrogen bond between the protonated amine group and the carbonyl oxygen. For [(Gly)(1-mUra)]Li+, [(Gly)(1-mUra)]Na+ and [(Gly)(1-mUra)]K+, the experimental spectra are most consistent with the metal cations binding in a trigonal planar geometry with 1-mUra bound to the metal cation via the O4 carbonyl. In [(Gly)(1-mUra)]Li+ and [(Gly)(1-mUra)]Na+, the metal cation is bound to canonical Gly via the carbonyl oxygen and amine nitrogen, but in [(Gly)(1-mUra)]K+, Gly is bound through both oxygens and contains an intraglycine hydrogen bond from the hydroxyl to the amine nitrogen.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400884"},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foams-To-Films: A Facile Approach Towards Space-Confined CVD Growth of MoS2. 泡沫到薄膜:实现 MoS2 空间约束 CVD 生长的简便方法。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-04 DOI: 10.1002/cphc.202400854
Taylor M Currie, Jesse Davalos Barrios, Moc Lan Nguyen, Laurene Tetard, Titel Jurca

2D materials have rapidly become the building blocks for the next generation of semiconducting materials and devices, with chemical vapor deposition (CVD) emerging as a prefered method for their synthesis. However, the predictable and reproducible growth of high quality, large 2D monolayers remains challenging. An important facet is controlling the local environment at the surface of the substrate - here, space-confinement techniques have emerged as promising candidates. We demonstrate that space-confined CVD growth using microstructured MoOx grown on Ni foam is an appealing approach for rapid growth of high quality MoS2 monolayers; a very important subset of 2D materials. This method eschews the use of powders which can be more difficult to control. By incorporation of a porous barrier in the Ni foam support, the rate of delivery of both the Mo and S source to the substrate is dampened, leading to coverage of large, high quality, mono-to-few layer triangular domains as confirmed by Raman and photoluminescence (PL) spectroscopies together with atomic force microscopy (AFM) height measurements.

二维材料已迅速成为下一代半导体材料和设备的基石,化学气相沉积(CVD)成为合成二维材料的首选方法。然而,高质量、大面积二维单层材料的可预测和可重现生长仍然具有挑战性。一个重要的方面是控制基底表面的局部环境--在这方面,空间约束技术已成为有前途的候选方法。我们证明,使用生长在镍泡沫上的微结构氧化钼进行空间约束 CVD 生长,是快速生长高质量 MoS2 单层的一种极具吸引力的方法;MoS2 是二维材料中一个非常重要的子集。这种方法避免了使用更难控制的粉末。通过在镍泡沫衬底中加入多孔阻挡层,钼源和硒源向衬底的传输速度得到抑制,从而覆盖了大面积、高质量、单层到几层的三角形畴,拉曼光谱、光致发光 (PL) 光谱以及原子力显微镜 (AFM) 高度测量均证实了这一点。
{"title":"Foams-To-Films: A Facile Approach Towards Space-Confined CVD Growth of MoS<sub>2</sub>.","authors":"Taylor M Currie, Jesse Davalos Barrios, Moc Lan Nguyen, Laurene Tetard, Titel Jurca","doi":"10.1002/cphc.202400854","DOIUrl":"10.1002/cphc.202400854","url":null,"abstract":"<p><p>2D materials have rapidly become the building blocks for the next generation of semiconducting materials and devices, with chemical vapor deposition (CVD) emerging as a prefered method for their synthesis. However, the predictable and reproducible growth of high quality, large 2D monolayers remains challenging. An important facet is controlling the local environment at the surface of the substrate - here, space-confinement techniques have emerged as promising candidates. We demonstrate that space-confined CVD growth using microstructured MoO<sub>x</sub> grown on Ni foam is an appealing approach for rapid growth of high quality MoS<sub>2</sub> monolayers; a very important subset of 2D materials. This method eschews the use of powders which can be more difficult to control. By incorporation of a porous barrier in the Ni foam support, the rate of delivery of both the Mo and S source to the substrate is dampened, leading to coverage of large, high quality, mono-to-few layer triangular domains as confirmed by Raman and photoluminescence (PL) spectroscopies together with atomic force microscopy (AFM) height measurements.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400854"},"PeriodicalIF":2.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals. 热致性向列液晶中的铁流体液滴链。
IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-03 DOI: 10.1002/cphc.202400858
Varun Chandrasekar, Jian Ren Lu, Ingo Dierking

Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.

在液晶(LC)中分散铁流体可产生独特的系统,这些系统具有磁性功能和液滴链等新现象。这项研究报告了由分散的铁流体引起的液晶导向场内的拓扑缺陷促成的铁流体液滴链的形成。这些液滴链的平移和旋转运动可通过施加外部磁场来控制。液相色谱中液滴链的形成过程可通过添加表面活性剂来稳定。铁流体中的磁性胶体颗粒位于铁流体和低浓液相界面处,因此形成了一个边界层。研究了向列 5CB(4-氰基-4'-戊基联苯)中铁流体液滴链的速度和边界层厚度值,液滴链中液滴的平均尺寸和数量各不相同。在 5CB 中添加表面活性剂聚山梨醇酯 60(吐温-60)和不添加表面活性剂时,对铁流体液滴链的形成和行为进行了比较研究。液晶与铁流体的结合以及功能材料的加入,促进了先进材料的创新发展,有利于未来的应用。
{"title":"Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals.","authors":"Varun Chandrasekar, Jian Ren Lu, Ingo Dierking","doi":"10.1002/cphc.202400858","DOIUrl":"10.1002/cphc.202400858","url":null,"abstract":"<p><p>Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400858"},"PeriodicalIF":2.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemphyschem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1