The rapid rise of antibiotic resistance poses a severe global health crisis, necessitating new approaches to counter this growing threat. The problem is exacerbated in Gram-negative bacterial pathogens as many antibiotics are unable to enter these cells owing to their unique additional outer membrane barrier. In this review, we discuss the challenges of targeting Gram-negative bacteria, including the complexity of the outer membrane, as well as the presence of efflux pumps and β-lactamases that contribute to resistance. We also review solutions proposed to facilitate the entry and accumulation of antibiotics in Gram-negative bacteria. These involve using existing antibiotics in combination with other inhibitors to attack the bacterial cell synergistically. We also highlight approaches to target Gram-negative pathogens via novel modes of action, providing new strategies to tackle antibiotic resistance.
{"title":"Navigating Antibiotic Resistance in Gram-Negative Bacteria: Current Challenges and Emerging Therapeutic Strategies.","authors":"Reshma Kumari, Ishu Saraogi","doi":"10.1002/cphc.202401057","DOIUrl":"https://doi.org/10.1002/cphc.202401057","url":null,"abstract":"<p><p>The rapid rise of antibiotic resistance poses a severe global health crisis, necessitating new approaches to counter this growing threat. The problem is exacerbated in Gram-negative bacterial pathogens as many antibiotics are unable to enter these cells owing to their unique additional outer membrane barrier. In this review, we discuss the challenges of targeting Gram-negative bacteria, including the complexity of the outer membrane, as well as the presence of efflux pumps and β-lactamases that contribute to resistance. We also review solutions proposed to facilitate the entry and accumulation of antibiotics in Gram-negative bacteria. These involve using existing antibiotics in combination with other inhibitors to attack the bacterial cell synergistically. We also highlight approaches to target Gram-negative pathogens via novel modes of action, providing new strategies to tackle antibiotic resistance.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401057"},"PeriodicalIF":2.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid development of science and technology and for a sustainable future, the main energy resources in the world are transitioning from fossil fuels to electricity which is conceived to play a predominant role in the future. Therefore, it is essential to develop high-performance energy-storage devices such as supercapacitors and rechargeable batteries; even though they are commercialized, intense research efforts are still devoted to further improve the device performances, e.g. energy density, safety, durability and the charging rate. In this respect, exploring new advanced materials for better devices is a promising approach. The recently emerged two-dimensional conductive metal-organic frameworks (2D c-MOFs) with their inherent electrical conductivities and porosity, rich redox active sites and tailor-made architectures and functions have attracted considerable attention among energy-storage community. The initial research results reveal 2D c-MOFs are superb and advantageous electrode materials for advanced energy storage.
{"title":"Two-Dimensional Conductive Metal-Organic Frameworks: Promising Materials for Advanced Energy Storage.","authors":"Guang Zhang, Long Chen","doi":"10.1002/cphc.202400769","DOIUrl":"https://doi.org/10.1002/cphc.202400769","url":null,"abstract":"<p><p>With the rapid development of science and technology and for a sustainable future, the main energy resources in the world are transitioning from fossil fuels to electricity which is conceived to play a predominant role in the future. Therefore, it is essential to develop high-performance energy-storage devices such as supercapacitors and rechargeable batteries; even though they are commercialized, intense research efforts are still devoted to further improve the device performances, e.g. energy density, safety, durability and the charging rate. In this respect, exploring new advanced materials for better devices is a promising approach. The recently emerged two-dimensional conductive metal-organic frameworks (2D c-MOFs) with their inherent electrical conductivities and porosity, rich redox active sites and tailor-made architectures and functions have attracted considerable attention among energy-storage community. The initial research results reveal 2D c-MOFs are superb and advantageous electrode materials for advanced energy storage.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400769"},"PeriodicalIF":2.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photovoltaic technologies have garnered significant attention towards generating renewable and clean energy from solar power. Quantum-dot-sensitized solar cells represent a promising third-generation photovoltaic technology that offers alternatives to conventional silicon-based solar cells due to their unique properties, their favourable optoelectronic properties for photovoltaic applications including simplified manufacturing, lower processing temperatures, enhanced flexibility, semi-transparent design, and a theoretical efficiency up to 44%. The unique characteristic of tailoring the size and composition of quantum dots makes them valuable absorber materials capable of efficiently harnessing a broader range of the solar spectrum. The potential of quantum dot-sensitized solar cells to revolutionize the field of photovoltaic technology is a cause for optimism. However, the major limitation of the overall power conversion efficiency lies in their inability to absorb ultraviolet and near-infrared. Therefore, a photovoltaic technology that can effectively harness the entire solar spectrum becomes imperative. This review discusses the synthesis and light conversion mechanisms of these solar cells. Additionally, this review offers an overview of the various advancements made in quantum dot-sensitized solar cells for enhancement in the efficiency of energy conversion. It focuses on the light-absorbing materials used, their efficiency, and the advantages and drawbacks of quantum dot solar cell technology.
{"title":"Exploring the Potential of Quantum Dot-Sensitized Solar Cells: Innovation and Insights.","authors":"Jyoti Singh, Rakhi Thareja, Pragati Malik","doi":"10.1002/cphc.202400800","DOIUrl":"https://doi.org/10.1002/cphc.202400800","url":null,"abstract":"<p><p>Photovoltaic technologies have garnered significant attention towards generating renewable and clean energy from solar power. Quantum-dot-sensitized solar cells represent a promising third-generation photovoltaic technology that offers alternatives to conventional silicon-based solar cells due to their unique properties, their favourable optoelectronic properties for photovoltaic applications including simplified manufacturing, lower processing temperatures, enhanced flexibility, semi-transparent design, and a theoretical efficiency up to 44%. The unique characteristic of tailoring the size and composition of quantum dots makes them valuable absorber materials capable of efficiently harnessing a broader range of the solar spectrum. The potential of quantum dot-sensitized solar cells to revolutionize the field of photovoltaic technology is a cause for optimism. However, the major limitation of the overall power conversion efficiency lies in their inability to absorb ultraviolet and near-infrared. Therefore, a photovoltaic technology that can effectively harness the entire solar spectrum becomes imperative. This review discusses the synthesis and light conversion mechanisms of these solar cells. Additionally, this review offers an overview of the various advancements made in quantum dot-sensitized solar cells for enhancement in the efficiency of energy conversion. It focuses on the light-absorbing materials used, their efficiency, and the advantages and drawbacks of quantum dot solar cell technology.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400800"},"PeriodicalIF":2.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organofluorine compounds have revolutionized chemical and pharmaceutical industries, serving as essential components in numerous applications and aspects of modern life. However, their bioaccumulation and resistance to degradation have resulted in environmental pollution, posing significant risks to human and animal health. The exceptionally strong C-F bond in these compounds makes their degradation challenging, with current methods often requiring extreme experimental conditions. Therefore, the development of eco-friendly approaches that operate under milder conditions is crucial, with enzyme-mediated C-F bond cleavage strategies emerging as a particularly promising solution. In this review, we present an overview of how computational approaches, including molecular docking, molecular dynamics simulations, quantum mechanics/molecular mechanics calculations, and bioinformatics, have been utilized to investigate the mechanisms underlying enzymatic C-F bond degradation and functionalization. This review highlights how these computational approaches provide critical insights into the atomic-level interactions and energetics underlying enzymatic processes, offering a foundation for the rational design and engineering of enzymes capable of addressing the challenges posed by fluorinated compounds. This review covers several types of enzymes including: fluoroacetate dehalogenases, cysteine dioxygenase, L-2-haloacid dehalogenase, cytochrome P450, fluorinase and tyrosine hydroxylase.
{"title":"Computational Studies of Enzymes for C-F Bond Degradation and Functionalization.","authors":"Kendra M Cunningham, Wook Shin, Zhongyue J Yang","doi":"10.1002/cphc.202401130","DOIUrl":"10.1002/cphc.202401130","url":null,"abstract":"<p><p>Organofluorine compounds have revolutionized chemical and pharmaceutical industries, serving as essential components in numerous applications and aspects of modern life. However, their bioaccumulation and resistance to degradation have resulted in environmental pollution, posing significant risks to human and animal health. The exceptionally strong C-F bond in these compounds makes their degradation challenging, with current methods often requiring extreme experimental conditions. Therefore, the development of eco-friendly approaches that operate under milder conditions is crucial, with enzyme-mediated C-F bond cleavage strategies emerging as a particularly promising solution. In this review, we present an overview of how computational approaches, including molecular docking, molecular dynamics simulations, quantum mechanics/molecular mechanics calculations, and bioinformatics, have been utilized to investigate the mechanisms underlying enzymatic C-F bond degradation and functionalization. This review highlights how these computational approaches provide critical insights into the atomic-level interactions and energetics underlying enzymatic processes, offering a foundation for the rational design and engineering of enzymes capable of addressing the challenges posed by fluorinated compounds. This review covers several types of enzymes including: fluoroacetate dehalogenases, cysteine dioxygenase, L-2-haloacid dehalogenase, cytochrome P450, fluorinase and tyrosine hydroxylase.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401130"},"PeriodicalIF":2.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Front Cover illustrates the effects of various atmospheric gas species on an argyrodite-type sulfide solid electrolyte, Li6PS5Cl during moisture exposure, examined by using multiple analytical methods. The electrolyte powder was exposed to different gases: Ar, Ar+CO2, O2, and O2+CO2, all under a dew point of −20 °C. The generation of H2S gas was unaffected by the atmospheric gases; however, the conductivity retention of the electrolyte significantly differed. CO2 exposure promoted the formation of carbonates, whereas O2 exposure facilitated the formation of phosphates and sulfonates. These reactions led to surface degradation and a consequent reduction in conductivity. More information can be found in the Research Article by Y. Morino, H. Sano and co-workers (DOI: 10.1002/cphc.202400872).