This work presents a detailed comparative analysis of C-H activations catalyzed by three different Fe(IV)O porphyrinoid complexes. The study considers the usual heme porphyrin (complex I) as the base compound, porphyrazine (complex II), which is obtained by replacing carbon with nitrogen at the meso position, and phthalocyanine (complex III), which is obtained through the peripheral benzoannulation of porphyrazine. The main focus here is to explore the impact of bridging groups and peripheral functionalization in heme systems on reactivity. Chloride is used as the axial ligand for all complexes and dihydroanthracene (DHA) is used as the substrate. Factors such as distortion energy and different electron acceptor orbitals significantly affect the overall reactivity. The effect of substitution on quantum mechanical tunneling, using H/D kinetic isotope effect studies, is also included. The results reveal a fascinating reactivity order: meso nitrogen substitution enhances reactivity, while additional benzo-annulation hinders reactivity, leading to the order complex II >complex I >complex III. In comparison to the usual model compound I, which is Fe(IV)O-porphyrin π cation radical with an -SH axial ligand, complex II was found to be more reactive. The electron affinity of the Fe(IV)O complexes and the dissociation energy of the forming Fe(IV)O-H bond aligns with observed reactivity trend. These findings support the use of accessible iron frameworks derived from porphyrin in C-H activation processes.
本研究对三种不同的 Fe(IV)O卟啉配合物催化的 C-H 活化进行了详细的比较分析。研究考虑了作为基化合物的常见血红素卟啉(复合物 I)、通过在中位用氮取代碳而得到的卟嗪(复合物 II)以及通过卟嗪的外围苯并官能化而得到的酞菁(复合物 III)。本文的重点是探讨血红素体系中桥接基团和外围官能化对反应活性的影响。畸变能和电子受体轨道等因素会对整体反应性产生重大影响。此外,还利用 H/D 动力同位素效应研究取代对量子力学隧道的影响。研究结果揭示了一个令人着迷的反应性顺序:介氮取代增强了反应性,而额外的苯并annulation则阻碍了反应性,从而导致络合物 II > 络合物 I > 络合物 III 的顺序。络合物 I 是带有 -SH 轴配体的 Fe(IV)O-卟啉 π 阳离子自由基,与通常的络合物 I 相比,络合物 II 的反应活性更高。Fe(IV)O 复合物的电子亲和力和形成的 Fe(IV)O-H 键的解离能与观察到的反应性趋势一致。这些发现支持在 C-H 活化过程中使用由卟啉衍生的可访问铁框架。
{"title":"Insights into C-H Activation Reactivity of Fe (IV)O Porphyrinoid Complexes: A Computational Investigation.","authors":"Lovleen Kaur, Debasish Mandal","doi":"10.1002/cphc.202400765","DOIUrl":"10.1002/cphc.202400765","url":null,"abstract":"<p><p>This work presents a detailed comparative analysis of C-H activations catalyzed by three different Fe(IV)O porphyrinoid complexes. The study considers the usual heme porphyrin (complex I) as the base compound, porphyrazine (complex II), which is obtained by replacing carbon with nitrogen at the meso position, and phthalocyanine (complex III), which is obtained through the peripheral benzoannulation of porphyrazine. The main focus here is to explore the impact of bridging groups and peripheral functionalization in heme systems on reactivity. Chloride is used as the axial ligand for all complexes and dihydroanthracene (DHA) is used as the substrate. Factors such as distortion energy and different electron acceptor orbitals significantly affect the overall reactivity. The effect of substitution on quantum mechanical tunneling, using H/D kinetic isotope effect studies, is also included. The results reveal a fascinating reactivity order: meso nitrogen substitution enhances reactivity, while additional benzo-annulation hinders reactivity, leading to the order complex II >complex I >complex III. In comparison to the usual model compound I, which is Fe(IV)O-porphyrin π cation radical with an -SH axial ligand, complex II was found to be more reactive. The electron affinity of the Fe(IV)O complexes and the dissociation energy of the forming Fe(IV)O-H bond aligns with observed reactivity trend. These findings support the use of accessible iron frameworks derived from porphyrin in C-H activation processes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400765"},"PeriodicalIF":2.3,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, we propose a purely-organic donor-acceptor (D-A) molecular triad, with a light-absorbing polarized molecular wire (PMW) used as a central linkage, as a proof of concept for the possible future applications of the D-PMW-A arrangement in molecular photovoltaics. This work builds upon our earlier study on the PMW unit itself, which proved to be highly promising for the ultrafast photogeneration of free charge carriers. Quantum-chemical calculations performed for the D-PMW-A triad at a semi-empirical level of theory reveal a large electric dipole moment of the system, and show strong charge-transfer (CT) character of its lowest-energy excited electronic states, including the S1, which favours efficient dissociation of an exciton initially formed upon the absorption of light. The confirmation for this effect was found with nonadiabatic molecular dynamics simulations, revealing an ultrafast relaxation from higher, bright excited states to S1, completed on a subpicosecond timescale. The architecture of the proposed molecular triad enables its electronic coupling to the surrounding environment through chemical bonds, or noncovalent stacking interactions, which might open way for synthesis of a new class of D-PMW-A efficient molecular organic photovoltaic materials.
{"title":"Theoretical Insights into Ultrafast Separation of Photogenerated Charges in a Push-Pull Polarized Molecular Triad.","authors":"Kamil Szychta, Mikołaj Martyka, Joanna Jankowska","doi":"10.1002/cphc.202400671","DOIUrl":"https://doi.org/10.1002/cphc.202400671","url":null,"abstract":"<p><p>Herein, we propose a purely-organic donor-acceptor (D-A) molecular triad, with a light-absorbing polarized molecular wire (PMW) used as a central linkage, as a proof of concept for the possible future applications of the D-PMW-A arrangement in molecular photovoltaics. This work builds upon our earlier study on the PMW unit itself, which proved to be highly promising for the ultrafast photogeneration of free charge carriers. Quantum-chemical calculations performed for the D-PMW-A triad at a semi-empirical level of theory reveal a large electric dipole moment of the system, and show strong charge-transfer (CT) character of its lowest-energy excited electronic states, including the S1, which favours efficient dissociation of an exciton initially formed upon the absorption of light. The confirmation for this effect was found with nonadiabatic molecular dynamics simulations, revealing an ultrafast relaxation from higher, bright excited states to S1, completed on a subpicosecond timescale. The architecture of the proposed molecular triad enables its electronic coupling to the surrounding environment through chemical bonds, or noncovalent stacking interactions, which might open way for synthesis of a new class of D-PMW-A efficient molecular organic photovoltaic materials.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400671"},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumya K Das, Alessandro Longo, Eugenio Bianchi, Claudio V Bordenca, Christoph J Sahle, Maria Pia Casaletto, Alessandro Mirone, Francesco Giannici
Cerium oxide, or ceria, (CeO2) is one of the most studied materials for its wide range of applications in heterogeneous catalysis and energy conversion technologies. The key feature of ceria is the remarkable oxygen storage capacity linked to the switch between Ce4+ and Ce3+ states, in turn creating oxygen vacancies. Changes in the electronic structure occur with oxygen removal from the lattice. Accordingly, the two valence electrons can be accommodated by the reduction of support cations where the electrons can be localized in empty f states of Ce4+ ions nearby. Quantifying the different oxidation states in situ is crucial to understand and model the reaction mechanism. Beside the different techniques to quantify Ce3+ and Ce4+ states, we discuss the use of X-ray Raman Scattering (XRS) spectroscopy as an alternative method. In particular, we show that XRS can observe the oxidation state changes of cerium directly in the bulk of the materials under realistic environmental conditions. The Hilbert++ code is used to simulate the XRS spectra and quantify accurately the Ce3+ and Ce4+ content. These results are compared to those obtained from in situ X-ray Diffraction (XRD) collected in parallel and the differences arising from the two different probes are discussed.
{"title":"Deciphering the Ce3+ to Ce4+ Evolution: Insight from X-ray Raman Scattering Spectroscopy at Ce N4,5 Edges.","authors":"Soumya K Das, Alessandro Longo, Eugenio Bianchi, Claudio V Bordenca, Christoph J Sahle, Maria Pia Casaletto, Alessandro Mirone, Francesco Giannici","doi":"10.1002/cphc.202400742","DOIUrl":"https://doi.org/10.1002/cphc.202400742","url":null,"abstract":"<p><p>Cerium oxide, or ceria, (CeO2) is one of the most studied materials for its wide range of applications in heterogeneous catalysis and energy conversion technologies. The key feature of ceria is the remarkable oxygen storage capacity linked to the switch between Ce4+ and Ce3+ states, in turn creating oxygen vacancies. Changes in the electronic structure occur with oxygen removal from the lattice. Accordingly, the two valence electrons can be accommodated by the reduction of support cations where the electrons can be localized in empty f states of Ce4+ ions nearby. Quantifying the different oxidation states in situ is crucial to understand and model the reaction mechanism. Beside the different techniques to quantify Ce3+ and Ce4+ states, we discuss the use of X-ray Raman Scattering (XRS) spectroscopy as an alternative method. In particular, we show that XRS can observe the oxidation state changes of cerium directly in the bulk of the materials under realistic environmental conditions. The Hilbert++ code is used to simulate the XRS spectra and quantify accurately the Ce3+ and Ce4+ content. These results are compared to those obtained from in situ X-ray Diffraction (XRD) collected in parallel and the differences arising from the two different probes are discussed.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400742"},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Earlier scanning tunneling microscopy (STM) studies have shown that nitrogen forms square c(2x2) islands on Cu(100) surfaces, the assembly of which depends on coverage. Recent calculations have revealed that adatom-adatom interactions are compatible with the formation of square c(2x2) islands. The pair distribution of these islands is a topic of the current investigation. In addition, the domain structure of islands found recently in STM experiments is discussed and explained using two types of island interactions. The potential used for the interaction between N square islands on copper is a combination of previous ab initio calculations and an updated mesoscopic interaction scheme. The 2D-BGY integral equation is extended to handle binary objects like two different types of islands. It is solved for up to a quarter island coverage using a numerical recursion algorithm. Coverage beyond half is accessible with island vacancy symmetry. The calculation predicts the formation of ordered island assemblies with increasing coverage. These results reasonably explain the previous experimental observations. The handling of binary objects also seems to be applicable to assemblies of two adatom types as found in catalysis. The assumptions and limitations of the model are discussed and open questions are formulated.
早期的扫描隧道显微镜(STM)研究表明,氮在铜(100)表面形成了方形的 c(2x2) 岛,其组装取决于覆盖率。最近的计算显示,原子与原子之间的相互作用与方形 c(2x2) 岛的形成是相容的。这些岛屿的配对分布是当前研究的一个主题。此外,我们还讨论了最近在 STM 实验中发现的岛域结构,并用两种类型的岛相互作用进行了解释。用于铜上 N 个方形孤岛之间相互作用的势是以前的 ab initio 计算和更新的介观相互作用方案的结合。二维-BGY 积分方程被扩展用于处理二元对象,如两种不同类型的岛屿。利用数值递归算法,最多可求解四分之一的岛屿覆盖率。超过一半的覆盖率可通过岛空位对称性来实现。计算结果预测,随着覆盖率的增加,会形成有序的岛屿集合体。这些结果合理地解释了之前的实验观察结果。对二元对象的处理似乎也适用于催化过程中发现的两种腺原子类型的集合体。本文讨论了模型的假设和局限性,并提出了一些有待解决的问题。
{"title":"Self-organization of square nitrogen islands on copper (100) surfaces: Island pair distributions based on an ab-initio DFT and mesoscopic interaction model.","authors":"Wolfgang Kappus","doi":"10.1002/cphc.202400899","DOIUrl":"10.1002/cphc.202400899","url":null,"abstract":"<p><p>Earlier scanning tunneling microscopy (STM) studies have shown that nitrogen forms square c(2x2) islands on Cu(100) surfaces, the assembly of which depends on coverage. Recent calculations have revealed that adatom-adatom interactions are compatible with the formation of square c(2x2) islands. The pair distribution of these islands is a topic of the current investigation. In addition, the domain structure of islands found recently in STM experiments is discussed and explained using two types of island interactions. The potential used for the interaction between N square islands on copper is a combination of previous ab initio calculations and an updated mesoscopic interaction scheme. The 2D-BGY integral equation is extended to handle binary objects like two different types of islands. It is solved for up to a quarter island coverage using a numerical recursion algorithm. Coverage beyond half is accessible with island vacancy symmetry. The calculation predicts the formation of ordered island assemblies with increasing coverage. These results reasonably explain the previous experimental observations. The handling of binary objects also seems to be applicable to assemblies of two adatom types as found in catalysis. The assumptions and limitations of the model are discussed and open questions are formulated.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400899"},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Computations based on density functional theory are carried out to examine the mechanism of photocatalytic oxidation of methane to methanol with H2O2 as oxidant and water as co-catalyst over anatase TiO2 (101) surface. The reaction proceeds with hydrogen abstraction from methane followed by the formation of surface methoxy species, which is reduced to methanol. We compare the reaction energetics for C-H dissociation in the presence and absence of surface defect, but find no discernible impact of O-vacancy on methane oxidation. In comparison, hydroxyl produced as a result of H2O2 or H2O photo-decomposition dramatically reduces the barrier for CH3-H bond cleavage. The reaction proceeds further by the reduction of surface methoxy group and is the rate-limiting step for methanol formation. Additionally, we find that methyl can also react with water to form methanol with a considerably lower barrier, suggesting an active involvement of water for methanol formation. We also study the role of water as a co-catalyst and observe significant reduction in barriers, facilitated by alternate pathway for proton transfer. The reaction pathways presented provide valuable in- sights into the mechanism of methane oxidation in the presence of H2O2 as oxidant and demonstrate the rate-enhancing role of water for these steps.
{"title":"Role of H2O2 as Oxidant and H2O as Co-catalyst over Anatase-TiO2 (101) for Conversion of Methane to Methanol.","authors":"Kanishka Charakhwal, Vishal Agarwal","doi":"10.1002/cphc.202400708","DOIUrl":"https://doi.org/10.1002/cphc.202400708","url":null,"abstract":"<p><p>Computations based on density functional theory are carried out to examine the mechanism of photocatalytic oxidation of methane to methanol with H2O2 as oxidant and water as co-catalyst over anatase TiO2 (101) surface. The reaction proceeds with hydrogen abstraction from methane followed by the formation of surface methoxy species, which is reduced to methanol. We compare the reaction energetics for C-H dissociation in the presence and absence of surface defect, but find no discernible impact of O-vacancy on methane oxidation. In comparison, hydroxyl produced as a result of H2O2 or H2O photo-decomposition dramatically reduces the barrier for CH3-H bond cleavage. The reaction proceeds further by the reduction of surface methoxy group and is the rate-limiting step for methanol formation. Additionally, we find that methyl can also react with water to form methanol with a considerably lower barrier, suggesting an active involvement of water for methanol formation. We also study the role of water as a co-catalyst and observe significant reduction in barriers, facilitated by alternate pathway for proton transfer. The reaction pathways presented provide valuable in- sights into the mechanism of methane oxidation in the presence of H2O2 as oxidant and demonstrate the rate-enhancing role of water for these steps.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400708"},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jake Atkinson, Joshua Chopin, Eva Bezak, Hien Le, Ivan Mark Kempson
Metal nanoparticles sensitize cancers to radiotherapy however their mechanisms of action are complex. The conceptual inspiration arose from theories of physical dose deposition but various chemical and biological factors have also been identified. Interpretation of data has been limited by challenges in measuring true DNA damage compared to DNA damage repair factors. Here, we applied a new assay, STRIDE, for the first time to measure DNA double strand breaks (DSBs) in 4T1 cells as a model of triple negative breast cancer exposed to gold nanoparticles and radiation, and compared this to the common γH2AX assay for DSB repair. The STRIDE assay showed no increase in DSB detection 15 mins after irradiation for cells containing nanoparticles compared to cells without. Gold nanoparticles led to prolonged detection of DSBs after irradiation and delayed the DSB repair. The data show no evidence of increased radiation dose deposition with nanoparticles, but rather enhanced radiobiological effects resulting from nanoparticles which includes disruption of the recruitment of essential DDR machinery, thereby impairing DNA repair processes.
金属纳米粒子可使癌症对放射治疗敏感,但其作用机制十分复杂。概念灵感来自物理剂量沉积理论,但也发现了各种化学和生物因素。与 DNA 损伤修复因子相比,测量真正的 DNA 损伤所面临的挑战限制了对数据的解读。在这里,我们首次应用了一种新的检测方法 STRIDE 来测量暴露于金纳米粒子和辐射的三阴性乳腺癌模型 4T1 细胞中的 DNA 双链断裂(DSB),并将其与常见的 DSB 修复 γH2AX 检测方法进行了比较。STRIDE检测显示,与不含纳米粒子的细胞相比,含纳米粒子的细胞在照射15分钟后的DSB检测没有增加。金纳米粒子延长了辐照后DSB的检测时间,并延迟了DSB的修复。数据显示,没有证据表明纳米粒子增加了辐射剂量沉积,而是纳米粒子增强了辐射生物学效应,包括扰乱了基本 DDR 机制的招募,从而损害了 DNA 修复过程。
{"title":"Gold nanoparticles cause radiosensitization in 4T1 cells by inhibiting DNA double strand break repair: Single cell comparisons of DSB formation and γH2AX expression.","authors":"Jake Atkinson, Joshua Chopin, Eva Bezak, Hien Le, Ivan Mark Kempson","doi":"10.1002/cphc.202400764","DOIUrl":"https://doi.org/10.1002/cphc.202400764","url":null,"abstract":"<p><p>Metal nanoparticles sensitize cancers to radiotherapy however their mechanisms of action are complex. The conceptual inspiration arose from theories of physical dose deposition but various chemical and biological factors have also been identified. Interpretation of data has been limited by challenges in measuring true DNA damage compared to DNA damage repair factors. Here, we applied a new assay, STRIDE, for the first time to measure DNA double strand breaks (DSBs) in 4T1 cells as a model of triple negative breast cancer exposed to gold nanoparticles and radiation, and compared this to the common γH2AX assay for DSB repair. The STRIDE assay showed no increase in DSB detection 15 mins after irradiation for cells containing nanoparticles compared to cells without. Gold nanoparticles led to prolonged detection of DSBs after irradiation and delayed the DSB repair. The data show no evidence of increased radiation dose deposition with nanoparticles, but rather enhanced radiobiological effects resulting from nanoparticles which includes disruption of the recruitment of essential DDR machinery, thereby impairing DNA repair processes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400764"},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulfide solid electrolytes have potential in practical all-solid-state batteries owing to their high formability and ionic conductivity. However, sulfide solid electrolytes are limited by the generation of toxic hydrogen sulfide and conductivity deterioration upon moisture exposure. Although numerous studies have investigated the hydrolysis degradation induced by "moisture," the influence of "atmospheric gases" during moisture exposure has not been extensively investigated despite the importance for practical fabrication. Therefore, in this study, we investigated the impact of atmospheric gases during moisture exposure on an argyrodite-type Li6PS5Cl via electrochemical impedance spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. The electrolyte powder was exposed to various atmospheric gases, namely Ar, Ar+500 ppm CO2, O2, and O2+500 ppm CO2, with moisture at a dew point of -20 °C, and H2S gas generation was monitored. As a result, the amount of H2S gas did not depend on the atmospheric gases. However, the atmospheric gases had a significant effect on the decrease in conductivity. Spectroscopic analyses revealed that CO2 facilitates the formation of carbonates and that O2 promotes the formation of phosphates and sulfonates. The formation of these compounds leads to surface degradation, which further decreases the conductivity.
{"title":"Influence of Atmospheric Gas Species on an Argyrodite-Type Sulfide Solid Electrolyte During Moisture Exposure.","authors":"Yusuke Morino, Daisuke Ito, Misae Otoyama, Hikaru Sano","doi":"10.1002/cphc.202400872","DOIUrl":"10.1002/cphc.202400872","url":null,"abstract":"<p><p>Sulfide solid electrolytes have potential in practical all-solid-state batteries owing to their high formability and ionic conductivity. However, sulfide solid electrolytes are limited by the generation of toxic hydrogen sulfide and conductivity deterioration upon moisture exposure. Although numerous studies have investigated the hydrolysis degradation induced by \"moisture,\" the influence of \"atmospheric gases\" during moisture exposure has not been extensively investigated despite the importance for practical fabrication. Therefore, in this study, we investigated the impact of atmospheric gases during moisture exposure on an argyrodite-type Li<sub>6</sub>PS<sub>5</sub>Cl via electrochemical impedance spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. The electrolyte powder was exposed to various atmospheric gases, namely Ar, Ar+500 ppm CO<sub>2</sub>, O<sub>2</sub>, and O<sub>2</sub>+500 ppm CO<sub>2</sub>, with moisture at a dew point of -20 °C, and H<sub>2</sub>S gas generation was monitored. As a result, the amount of H<sub>2</sub>S gas did not depend on the atmospheric gases. However, the atmospheric gases had a significant effect on the decrease in conductivity. Spectroscopic analyses revealed that CO<sub>2</sub> facilitates the formation of carbonates and that O<sub>2</sub> promotes the formation of phosphates and sulfonates. The formation of these compounds leads to surface degradation, which further decreases the conductivity.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400872"},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.
{"title":"Computational Assessment of Clinical Drugs against SARS-CoV-2: Foreseeing Molecular Mechanisms and Potent Mpro Inhibitors.","authors":"Saroj Kumar Panda, Pratyush Pani, Parth Sarthi Sen Gupta, Nimai Charan Mahanandia, Malay Kumar Rana","doi":"10.1002/cphc.202400814","DOIUrl":"https://doi.org/10.1002/cphc.202400814","url":null,"abstract":"<p><p>The emergence of new SARS-CoV-2 variants of concern (VOC) is a propulsion for accelerated potential therapeutic discovery. SARS-CoV-2's main protease (Mpro), essential for host cell viral replication, is a pre-eminent druggable protein target. Here, we perform extensive drug re-profiling of the comprehensive Excelra database, which compiles various under-trial drug candidates for COVID-19 treatment. For mechanistic understanding, the most promising screened-out molecules with targets are subjected to molecular dynamics (MD) simulations. Post-MD analyses demonstrate Darunavir, Ponatinib, and Tomivosertib forming a stable complex with Mpro, characterized by less fluctuation of Cα atoms, smooth and stable root-mean-square deviation (RMSD), and robust contact with the active site residues. Likewise, they all have lower binding free energy with Mpro, demonstrating strong affinity. In free energy landscape profiles, the distances from His41 and Cys145 exhibit a single energy minima basin, implying their preponderance in proximity to Mpro's catalytic dyad. Overall, the computational assessment earmarks promising candidates from the Excelra database, emphasizing on carrying out exhaustive biochemical experiments along with clinical trials. The work lays the foundation for potential therapeutic interventions in treating COVID-19.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400814"},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manganese-based compounds have the characteristics of high theoretical capacity, low cost and stable performance, thus become a research hotspot for cathode materials of zinc-ion batteries (ZIBs). However, in the process of charging and discharging, it is accompanied by problems such as structural collapse and low conductivity, which resulted in severe capacity degration during cycles. In this paper, a kind of Zn2+ doped MnO2 hollow cube cathode material (Zn-MnO2) was prepared by self-sacrificing template method. The Zn2+ doped in MnO2 crystals can induce oxygen vacancies in the structure, thereby improving the structural stability ion diffusion coefficient and electrical conductivity of the material. After 100 cycles at 0.3 A g-1, the high specific capacity of 281.2 mA h g-1 is still maintained. Through ex-situ XPS and ex-situ XRD tests, the mechanism of charge-discharge process was discussed. The results show that the storage mechanism of Zn-MnO2 is H+ and Zn2+ insertion/removal and Mn3+/Mn2+ two-electron reaction pathway. The total state density (TDOS) and partial state density (PDOS) of Zn-MnO2 and MnO2 further demonstrated that the doping of Zn2+ enhanced the electron conductivity and is beneficial to the electron transfer during the electrochemical reaction.
{"title":"Zn-Doped Hollow Cubic MnO<sub>2</sub> as a High-Performance Cathode Material for Zn Ion Batteries.","authors":"Guangming Li, Wenjie Yu, Qiqi Diao, Yutong Zhang, Fen Tang, Xinlong Luo, Liting Yan, Xuebo Zhao, Guangda Li","doi":"10.1002/cphc.202400860","DOIUrl":"10.1002/cphc.202400860","url":null,"abstract":"<p><p>Manganese-based compounds have the characteristics of high theoretical capacity, low cost and stable performance, thus become a research hotspot for cathode materials of zinc-ion batteries (ZIBs). However, in the process of charging and discharging, it is accompanied by problems such as structural collapse and low conductivity, which resulted in severe capacity degration during cycles. In this paper, a kind of Zn<sup>2+</sup> doped MnO<sub>2</sub> hollow cube cathode material (Zn-MnO<sub>2</sub>) was prepared by self-sacrificing template method. The Zn<sup>2+</sup> doped in MnO<sub>2</sub> crystals can induce oxygen vacancies in the structure, thereby improving the structural stability ion diffusion coefficient and electrical conductivity of the material. After 100 cycles at 0.3 A g<sup>-1</sup>, the high specific capacity of 281.2 mA h g<sup>-1</sup> is still maintained. Through ex-situ XPS and ex-situ XRD tests, the mechanism of charge-discharge process was discussed. The results show that the storage mechanism of Zn-MnO<sub>2</sub> is H<sup>+</sup> and Zn<sup>2+</sup> insertion/removal and Mn<sup>3+</sup>/Mn<sup>2+</sup> two-electron reaction pathway. The total state density (TDOS) and partial state density (PDOS) of Zn-MnO<sub>2</sub> and MnO<sub>2</sub> further demonstrated that the doping of Zn2+ enhanced the electron conductivity and is beneficial to the electron transfer during the electrochemical reaction.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400860"},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marta Porcaro, Miguel Sanz-Abad, Laura Michetti, Alessandro Conti, Caterina De Vito, María Teresa Doménech-Carbó, Antonio Doménech-Carbó
The conjoint application of the voltammetry of immobilized particles (VIMP) methodology and the Mott-Schottky analysis (MS) of impedance data to studying metal corrosion patinas is described. The study is applied to copper and bronze objects exploiting the semiconducting character of cuprite and other copper corrosion products. A simplified theoretical modeling of MS analysis at microparticulate deposits extracted from metal corrosion layers attached to graphite electrodes is provided. The proposed model compensates for the disturbing effect of the regions of the basal electrode directly exposed to the electrolyte. Alternative models accounting for the variation of the density of charge carriers with depth are tested as well as the correlation between VIMP and MS data with reasonably satisfactory results.
本文介绍了固定颗粒伏安法(VIMP)和阻抗数据莫特-肖特基分析法(MS)在研究金属腐蚀铜绿的联合应用。该研究利用铜绿石和其他铜腐蚀产物的半导体特性,将其应用于铜和青铜物体。本文提供了一个简化的 MS 分析理论模型,用于分析从附着在石墨电极上的金属腐蚀层中提取的微粒沉积物。提出的模型补偿了直接暴露在电解液中的基极区域的干扰效应。还测试了电荷载体密度随深度变化的其他模型,以及 VIMP 和 MS 数据之间的相关性,结果相当令人满意。
{"title":"Correlation Between Voltammetry of Immobilized Particles and Mott-Schottky Analysis of Metal Corrosion Patinas.","authors":"Marta Porcaro, Miguel Sanz-Abad, Laura Michetti, Alessandro Conti, Caterina De Vito, María Teresa Doménech-Carbó, Antonio Doménech-Carbó","doi":"10.1002/cphc.202400805","DOIUrl":"10.1002/cphc.202400805","url":null,"abstract":"<p><p>The conjoint application of the voltammetry of immobilized particles (VIMP) methodology and the Mott-Schottky analysis (MS) of impedance data to studying metal corrosion patinas is described. The study is applied to copper and bronze objects exploiting the semiconducting character of cuprite and other copper corrosion products. A simplified theoretical modeling of MS analysis at microparticulate deposits extracted from metal corrosion layers attached to graphite electrodes is provided. The proposed model compensates for the disturbing effect of the regions of the basal electrode directly exposed to the electrolyte. Alternative models accounting for the variation of the density of charge carriers with depth are tested as well as the correlation between VIMP and MS data with reasonably satisfactory results.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400805"},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}