Pub Date : 2024-11-18Epub Date: 2024-09-16DOI: 10.1002/cphc.202400587
Zhenyu Hu, Zijie Wang, Peng Gao
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm2) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm2) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.
{"title":"Advancements in Scaling Up Perovskite Solar Cells: From Small-Area Devices to Large-Scale Modules.","authors":"Zhenyu Hu, Zijie Wang, Peng Gao","doi":"10.1002/cphc.202400587","DOIUrl":"10.1002/cphc.202400587","url":null,"abstract":"<p><p>The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm<sup>2</sup>) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm<sup>2</sup>) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400587"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-09-11DOI: 10.1002/cphc.202400606
Lea C Meyer, Patrik Johansson, Andrea Balducci
Glyoxal-based electrolytes have been identified as promising for potassium-ion batteries (PIBs). Here we investigate the properties of electrolytes containing potassium bis(fluorosulfonyl)imide (KFSI) in 1,1,2,2-tetra-ethoxy-ethane (tetra-ethyl-glyoxal, TEG) using density functional theory (DFT) calculations, Raman spectroscopy, and impedance spectroscopy. The coordination and configuration of the complexes possible to arise from coordination of the K+ ions by FSI and TEG were investigated both from an energetic point of view as well as qualitatively determined via comparing experimental and artificial Raman spectra. Overall, the K+ coordination depends heavily on the electrolyte composition with contributions both from FSI and TEG. Energetically the coordination by both the trans FSI anion conformer and the TEG solvent with four z-chain conformation is preferrable. From the spectroscopy we find that at lower concentrations, the predominant coordination is by TEG, whereas at higher concentrations, K+ is coordinated mostly by FSI. Concerning the diffusion of ions, investigated by impedance spectroscopy, show that the diffusion of the potassium salt is faster as compared to lithium and sodium salts in comparable electrolytes.
{"title":"Coordination and Diffusion in Glyoxal-Based Electrolytes for Potassium-Ion Batteries.","authors":"Lea C Meyer, Patrik Johansson, Andrea Balducci","doi":"10.1002/cphc.202400606","DOIUrl":"10.1002/cphc.202400606","url":null,"abstract":"<p><p>Glyoxal-based electrolytes have been identified as promising for potassium-ion batteries (PIBs). Here we investigate the properties of electrolytes containing potassium bis(fluorosulfonyl)imide (KFSI) in 1,1,2,2-tetra-ethoxy-ethane (tetra-ethyl-glyoxal, TEG) using density functional theory (DFT) calculations, Raman spectroscopy, and impedance spectroscopy. The coordination and configuration of the complexes possible to arise from coordination of the K<sup>+</sup> ions by FSI and TEG were investigated both from an energetic point of view as well as qualitatively determined via comparing experimental and artificial Raman spectra. Overall, the K<sup>+</sup> coordination depends heavily on the electrolyte composition with contributions both from FSI and TEG. Energetically the coordination by both the trans FSI anion conformer and the TEG solvent with four z-chain conformation is preferrable. From the spectroscopy we find that at lower concentrations, the predominant coordination is by TEG, whereas at higher concentrations, K<sup>+</sup> is coordinated mostly by FSI. Concerning the diffusion of ions, investigated by impedance spectroscopy, show that the diffusion of the potassium salt is faster as compared to lithium and sodium salts in comparable electrolytes.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400606"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C[C4H4], the simplest compound of the [4]-pyramidane family, has so far eluded experimental characterization, although several of its analogs, E[C4(SiMe3)4] in which the E apex atom is a tetrel group element, have been successfully prepared. The non-classical bonding mode of E, similar to that found in propellanes, has prompted a considerable number of theoretical studies to unravel the nature of the apex-base interaction. Here, we contribute to this knowledge by analyzing the electron localization function (ELF) and classical QTAIM descriptors; as well the statistical distribution of electrons in atomic regions by means of the so-called electron distribution functions (EDFs), calculation of multicenter indices (MCI) as aromaticity descriptors and by performing orbital invariant energy decompositions with the interacting quantum atoms (IQA) approach on a series of E[C4(SiMe3)4] compounds. We find that the bonding evolves from covalent to electrostatic as E changes from C to Pb, with an anomaly when E=Si, which is shown to be the most charged moiety, compatible with an aromatic [C4(SiMe3)4]2- scaffold in the pyramidane base.
C[C4H4]是[4]-pyramidane 家族中最简单的化合物,虽然已经成功制备出了几种类似物 E[C4(SiMe3)4],其中 E 的顶点原子是一个四元基团元素,但至今仍未得到实验表征。E 的非经典成键模式与推进烷中发现的成键模式相似,这促使人们进行了大量理论研究,以揭示顶点与基团相互作用的本质。在此,我们通过分析电子定位函数(ELF)和经典 QTAIM 描述因子,以及通过所谓的电子分布函数(EDF)分析电子在原子区域中的统计分布,计算作为芳香性描述因子的多中心指数(MCI),并采用量子原子相互作用(IQA)方法对一系列 E[C4(SiMe3)4] 化合物进行轨道不变能量分解,为这方面的研究做出了贡献。我们发现,随着 E 从 C 到 Pb 的变化,化学键从共价键演变为静电键,当 E=Si 时出现异常,表明 Si 是带电荷最多的分子,这与金字塔烷基中的芳香族 [C4(SiMe3)4]2- 支架相一致。
{"title":"Deciphering Pyramidanes: A Quantum Chemical Topology Approach.","authors":"Lucía Vidal, Daniel Barrena-Espés, Jorge Echeverría, Julen Munárriz, Ángel Martín Pendás","doi":"10.1002/cphc.202400329","DOIUrl":"10.1002/cphc.202400329","url":null,"abstract":"<p><p>C[C<sub>4</sub>H<sub>4</sub>], the simplest compound of the [4]-pyramidane family, has so far eluded experimental characterization, although several of its analogs, E[C<sub>4</sub>(SiMe<sub>3</sub>)<sub>4</sub>] in which the E apex atom is a tetrel group element, have been successfully prepared. The non-classical bonding mode of E, similar to that found in propellanes, has prompted a considerable number of theoretical studies to unravel the nature of the apex-base interaction. Here, we contribute to this knowledge by analyzing the electron localization function (ELF) and classical QTAIM descriptors; as well the statistical distribution of electrons in atomic regions by means of the so-called electron distribution functions (EDFs), calculation of multicenter indices (MCI) as aromaticity descriptors and by performing orbital invariant energy decompositions with the interacting quantum atoms (IQA) approach on a series of E[C<sub>4</sub>(SiMe<sub>3</sub>)<sub>4</sub>] compounds. We find that the bonding evolves from covalent to electrostatic as E changes from C to Pb, with an anomaly when E=Si, which is shown to be the most charged moiety, compatible with an aromatic [C<sub>4</sub>(SiMe<sub>3</sub>)<sub>4</sub>]<sup>2-</sup> scaffold in the pyramidane base.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400329"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-09-12DOI: 10.1002/cphc.202400595
Guoxiao Liu, Jörn Manz, Huihui Wang, Yonggang Yang
Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( or ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic Ra to Sa to Ra to Sa etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( , , , ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the and as well as the and combinations generate opposite electronic enantiomers, e. g. Ra versus Sa, followed by opposite periodic chirality flips, e. g. from Ra to Sa to Ra to Sa etc. versus from Sa to Ra to Sa to Ra etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.
最近的研究表明,两个设计良好的、具有两种不同圆偏振(++ 或 -+)组合的重合激光脉冲可以在定向异核二原子分子中产生手性电子密度。随后,手性从电子 Ra 对映体翻转到 Sa 对映体,再从 Ra 对映体翻转到 Sa 对映体等,翻转周期为飞秒(fs)和阿秒(as)时域。这些结果是通过量子动力学模拟定向 NaK 得到的。在此,我们研究了取向 RbCs 中所有可能的(++ , -+ , +- , -- )圆偏振组合诱导的电子手性翻转。因此,++ 和 -- 以及 +- 和 -+ 组合会产生相反的电子对映体,例如 Ra 对 Sa,随后会产生相反的周期性手性翻转,例如从 Ra 到 Sa 再到 Ra 到 Sa 等与从 Sa 到 Ra 再到 Sa 到 Ra 等,周期分别为 fs 和时间域。激光诱导的时空对称性源自第一原理,并通过量子动力学模拟加以说明。
{"title":"Spatio-Temporal Symmetries of Electronic Chirality Flips in Oriented RbCs Induced by two Coincident Laser Pulses with Circular ++, +-, -+, -- Polarizations.","authors":"Guoxiao Liu, Jörn Manz, Huihui Wang, Yonggang Yang","doi":"10.1002/cphc.202400595","DOIUrl":"10.1002/cphc.202400595","url":null,"abstract":"<p><p>Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( <math> <semantics><mrow><mo>+</mo> <mo>+</mo></mrow> <annotation>${ + + }$</annotation> </semantics> </math> or <math> <semantics><mrow><mo>-</mo> <mo>+</mo></mrow> <annotation>${ - + }$</annotation> </semantics> </math> ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic R<sub>a</sub> to S<sub>a</sub> to R<sub>a</sub> to S<sub>a</sub> etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( <math> <semantics><mrow><mo>+</mo> <mo>+</mo></mrow> <annotation>${ + + }$</annotation> </semantics> </math> , <math> <semantics><mrow><mo>-</mo> <mo>+</mo></mrow> <annotation>${ - + }$</annotation> </semantics> </math> , <math> <semantics><mrow><mo>+</mo> <mo>-</mo></mrow> <annotation>${ + - }$</annotation> </semantics> </math> , <math> <semantics><mrow><mo>-</mo> <mo>-</mo></mrow> <annotation>${ - - }$</annotation> </semantics> </math> ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the <math> <semantics><mrow><mo>+</mo> <mo>+</mo></mrow> <annotation>${ + + }$</annotation> </semantics> </math> and <math> <semantics><mrow><mo>-</mo> <mo>-</mo></mrow> <annotation>${ - - }$</annotation> </semantics> </math> as well as the <math> <semantics><mrow><mo>+</mo> <mo>-</mo></mrow> <annotation>${ + - }$</annotation> </semantics> </math> and <math> <semantics><mrow><mo>-</mo> <mo>+</mo></mrow> <annotation>${ - + }$</annotation> </semantics> </math> combinations generate opposite electronic enantiomers, e. g. R<sub>a</sub> versus S<sub>a</sub>, followed by opposite periodic chirality flips, e. g. from R<sub>a</sub> to S<sub>a</sub> to R<sub>a</sub> to S<sub>a</sub> etc. versus from S<sub>a</sub> to R<sub>a</sub> to S<sub>a</sub> to R<sub>a</sub> etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400595"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.
{"title":"Density Functional Theory Study on Screening and Key Metrics for Non-metallic Oxygen Reduction Catalysts.","authors":"Jinlong Wang, Jinmin Guo, Weiwei Shao, Bingling He, Daping Liu, Wei Song, Xiao-Chun Li","doi":"10.1002/cphc.202400830","DOIUrl":"10.1002/cphc.202400830","url":null,"abstract":"<p><p>This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400830"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-10-22DOI: 10.1002/cphc.202400502
Srijita Paul, Parbati Biswas
Among the two isoforms of amyloid-β i. e., Aβ-40 and Aβ-42, Aβ-42 is more toxic due to its increased aggregation propensity. The oligomerization pathways of amyloid-β may be investigated by studying its dimerization process at an atomic level. Intrinsically disordered proteins (IDPs) lack well-defined structures and are associated with numerous neurodegenerative disorders. Molecular dynamics simulations of these proteins are often limited by the choice of parameters due to inconsistencies in the empirically developed protein force fields and water models. To evaluate the accuracy of recently developed force fields for IDPs, we study the dimerization of full-length Aβ-42 in aqueous solution with three different combinations of AMBER force field parameters and water models such as ff14SB/TIP3P, ff19SB/OPC, and ff19SB/TIP3P using classical MD and Umbrella Sampling method. This work may be used as a benchmark to compare the performance of different force fields for the simulations of IDPs.
{"title":"Dimerization of Full-Length Aβ-42 Peptide: A Comparison of Different Force Fields and Water Models.","authors":"Srijita Paul, Parbati Biswas","doi":"10.1002/cphc.202400502","DOIUrl":"10.1002/cphc.202400502","url":null,"abstract":"<p><p>Among the two isoforms of amyloid-β i. e., Aβ-40 and Aβ-42, Aβ-42 is more toxic due to its increased aggregation propensity. The oligomerization pathways of amyloid-β may be investigated by studying its dimerization process at an atomic level. Intrinsically disordered proteins (IDPs) lack well-defined structures and are associated with numerous neurodegenerative disorders. Molecular dynamics simulations of these proteins are often limited by the choice of parameters due to inconsistencies in the empirically developed protein force fields and water models. To evaluate the accuracy of recently developed force fields for IDPs, we study the dimerization of full-length Aβ-42 in aqueous solution with three different combinations of AMBER force field parameters and water models such as ff14SB/TIP3P, ff19SB/OPC, and ff19SB/TIP3P using classical MD and Umbrella Sampling method. This work may be used as a benchmark to compare the performance of different force fields for the simulations of IDPs.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400502"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-09-11DOI: 10.1002/cphc.202400580
Caterina Summonte, Francesco Borgatti, Cristiano Albonetti
In formulas employed for analysis of organic electronic devices, the relative dielectric constant value of the semiconductor organic films is often assumed rather than measured, even though it is a fundamental parameter for a correct interpretation. This is particularly true for ultrathin films made of discrete molecular layers. In this work, Spectroscopy Ellipsometry and Scanning Capacitance Microscopy were used to study thin films made of N,N'-bis(n-octyl)-x:y,dicyanoperylene-3,4 : 9,10-bis(dicarboximide). The relative dielectric constant presents a non-monotonic trend with thickness: it is equal to 2.1 for one molecular layer, saturating at 3.2 for increasing thickness. This maximum value, equivalent to the bulk one, occurs when the coverage is in between the third to the fourth layer. In this range, the growth switches from a Frank-Van der Merwe (2D growth) to a Volmer-Weber mode (3D growth); in addition, the molecular configuration assumes a bent/distorted geometry with respect to the initial edge-on one. These results establish a morphological dependence of the dielectric constant, especially in the vicinity of the substrate interface, that disappears at a certain distance from it.
在用于分析有机电子设备的公式中,半导体有机薄膜的相对介电常数值通常是假定的,而不是测量的,尽管它是正确解释的基本参数。这对于由离散分子层构成的超薄薄膜来说尤其如此。在这项研究中,我们使用了光谱椭偏仪和扫描电容显微镜来研究 N,N'-双(正辛基)-x:y,二氰基过炔-3,4:9,10-双(二甲酰亚胺)薄膜。相对介电常数随厚度的变化呈非单调趋势:一个分子层的介电常数等于 2.1,随着厚度的增加,介电常数在 3.2 时达到饱和。当覆盖层介于第三层和第四层之间时,介电常数会达到最大值,相当于大体积介电常数。在这一范围内,生长模式从 Frank-Van der Merwe(二维生长)转换为 Volmer-Weber 模式(三维生长);此外,相对于最初的边缘生长,分子构型呈现出弯曲/扭曲的几何形状。这些结果确定了介电常数的形态依赖性,尤其是在基底界面附近,在与基底界面保持一定距离后,介电常数就会消失。
{"title":"Thickness-Dependent Relative Dielectric Constant of Organic Ultrathin Films.","authors":"Caterina Summonte, Francesco Borgatti, Cristiano Albonetti","doi":"10.1002/cphc.202400580","DOIUrl":"10.1002/cphc.202400580","url":null,"abstract":"<p><p>In formulas employed for analysis of organic electronic devices, the relative dielectric constant value of the semiconductor organic films is often assumed rather than measured, even though it is a fundamental parameter for a correct interpretation. This is particularly true for ultrathin films made of discrete molecular layers. In this work, Spectroscopy Ellipsometry and Scanning Capacitance Microscopy were used to study thin films made of N,N'-bis(n-octyl)-x:y,dicyanoperylene-3,4 : 9,10-bis(dicarboximide). The relative dielectric constant presents a non-monotonic trend with thickness: it is equal to 2.1 for one molecular layer, saturating at 3.2 for increasing thickness. This maximum value, equivalent to the bulk one, occurs when the coverage is in between the third to the fourth layer. In this range, the growth switches from a Frank-Van der Merwe (2D growth) to a Volmer-Weber mode (3D growth); in addition, the molecular configuration assumes a bent/distorted geometry with respect to the initial edge-on one. These results establish a morphological dependence of the dielectric constant, especially in the vicinity of the substrate interface, that disappears at a certain distance from it.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400580"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-09-16DOI: 10.1002/cphc.202400023
Megi Bejko, Yasmina Al Yaman, Anthony Keyes, Auriane Bagur, Patrick Rosa, Marion Gayot, Francois Weill, Stéphane Mornet, Olivier Sandre
Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al., presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values on the order of 1 kW g-1, as large as "magnetosomes" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by high resolution transmission electron microscopy (HR-TEM) to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features (diameter, morphology, defects…) to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field (AMF) conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores. These variations are in qualitative agreement with theoretical predictions either by the Linear Response Theory (LRT) at low fields or with the Stoner-Wohlfarth (SW) model at larger amplitudes, and with numerical simulations reported previously. More precisely, our results show a continuous (almost quadratic) increase of SAR with IONF diameter for AMF amplitudes of 20 kA m-1 and above, whatever the frequency between 146 and 344 kHz, and a pronounced maximum at an IONF diameter of 22 nm for amplitudes of 16 kA m-1 and below. Thank to this understanding of the impact of size and core multiplicity, stable colloidal solutions of IONPs can be synthesized with diameters targeting a SAR value adapted to the theragnostic approach envisioned.
{"title":"Structure-Function Relationship of Iron Oxide Nanoflowers: Optimal Sizes for Magnetic Hyperthermia Depending on Alternating Magnetic Field Conditions.","authors":"Megi Bejko, Yasmina Al Yaman, Anthony Keyes, Auriane Bagur, Patrick Rosa, Marion Gayot, Francois Weill, Stéphane Mornet, Olivier Sandre","doi":"10.1002/cphc.202400023","DOIUrl":"10.1002/cphc.202400023","url":null,"abstract":"<p><p>Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al., presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values on the order of 1 kW g<sup>-1</sup>, as large as \"magnetosomes\" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by high resolution transmission electron microscopy (HR-TEM) to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features (diameter, morphology, defects…) to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field (AMF) conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores. These variations are in qualitative agreement with theoretical predictions either by the Linear Response Theory (LRT) at low fields or with the Stoner-Wohlfarth (SW) model at larger amplitudes, and with numerical simulations reported previously. More precisely, our results show a continuous (almost quadratic) increase of SAR with IONF diameter for AMF amplitudes of 20 kA m<sup>-1</sup> and above, whatever the frequency between 146 and 344 kHz, and a pronounced maximum at an IONF diameter of 22 nm for amplitudes of 16 kA m<sup>-1</sup> and below. Thank to this understanding of the impact of size and core multiplicity, stable colloidal solutions of IONPs can be synthesized with diameters targeting a SAR value adapted to the theragnostic approach envisioned.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400023"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-10-22DOI: 10.1002/cphc.202400515
James O'Brien, Nika Melnyk, Rico Shing Lee, Michael James, Cristina Trujillo
In recent years, halogen bond-based organocatalysis has garnered significant attention as an alternative to hydrogen-based catalysis, capturing considerable interest within the scientific community. This transition has witnessed the evolution of catalytic scaffolds from monodentate to bidentate architectures, and from monovalent to hypervalent species. In this DFT-based study, we explored a bidentate hypervalent iodine(III)-based system that has already undergone experimental validation. Additionally, we explore various functionalisations (-CF3, -CH3, -tBu, -OH, -OMe, -NO2, -CN) and scaffold modifications, such as sulfur oxidation, theoretically proposed for an indole-based Michael addition. The investigated systems favour bidentate O-type binding, underlining the importance of ligand coordination in catalytic activity. Electron-deficient scaffolds exhibited stronger binding and lower activation energies, indicating the pivotal role of electronic properties for σ-hole-based catalysis. Of these groups, Lewis-base-like moieties formed stabilising intramolecular interactions with hypervalent iodines when in the ortho-position. Furthermore, inductive electron withdrawal was deemed more effective than mesomeric withdrawal in enhancing catalytic efficacy for these systems. Lastly, increasing sulfur oxidation was theoretically proven to improve catalytic activity significantly.
近年来,卤素键有机催化作为氢基催化的一种替代方法,引起了科学界的极大关注。这一转变见证了催化支架从单价结构到双价结构,以及从单价物种到超价物种的演变。在这项基于 DFT 的研究中,我们探索了一种基于双齿超价碘(III)的体系,该体系已经过实验验证。此外,我们还探讨了各种官能团(-CF$_3$、-CH$_3$、-tBu、-OH、-OMe、-NO$_2$、-CN)和支架修饰(如硫氧化),这些都是理论上针对基于吲哚的迈克尔加成反应而提出的。所研究的体系有利于双交 O 型结合,强调了配体配位在催化活性中的重要性。缺电子支架表现出更强的结合力和更低的活化能,这表明电子特性在基于 $sigma$ 孔的催化中起着关键作用。在这些基团中,当处于正交位置时,类路易斯碱分子会与超价碘形成稳定的分子内相互作用。此外,在提高这些系统的催化效率方面,感应式电子抽取被认为比介子抽取更有效。最后,理论证明增加硫的氧化程度可显著提高催化活性。
{"title":"Computational Design of Bidentate Hypervalent Iodine Catalysts in Halogen Bond-Mediated Organocatalysis.","authors":"James O'Brien, Nika Melnyk, Rico Shing Lee, Michael James, Cristina Trujillo","doi":"10.1002/cphc.202400515","DOIUrl":"10.1002/cphc.202400515","url":null,"abstract":"<p><p>In recent years, halogen bond-based organocatalysis has garnered significant attention as an alternative to hydrogen-based catalysis, capturing considerable interest within the scientific community. This transition has witnessed the evolution of catalytic scaffolds from monodentate to bidentate architectures, and from monovalent to hypervalent species. In this DFT-based study, we explored a bidentate hypervalent iodine(III)-based system that has already undergone experimental validation. Additionally, we explore various functionalisations (-CF<sub>3</sub>, -CH<sub>3</sub>, -tBu, -OH, -OMe, -NO<sub>2</sub>, -CN) and scaffold modifications, such as sulfur oxidation, theoretically proposed for an indole-based Michael addition. The investigated systems favour bidentate O-type binding, underlining the importance of ligand coordination in catalytic activity. Electron-deficient scaffolds exhibited stronger binding and lower activation energies, indicating the pivotal role of electronic properties for σ-hole-based catalysis. Of these groups, Lewis-base-like moieties formed stabilising intramolecular interactions with hypervalent iodines when in the ortho-position. Furthermore, inductive electron withdrawal was deemed more effective than mesomeric withdrawal in enhancing catalytic efficacy for these systems. Lastly, increasing sulfur oxidation was theoretically proven to improve catalytic activity significantly.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400515"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-10-25DOI: 10.1002/cphc.202400274
Jonas Schlagin, Dennis F Dinu, Jürgen Bernard, Thomas Loerting, Hinrich Grothe, Klaus R Liedl
Against the general belief that carbonic acid is too unstable for synthesis, it was possible to synthesize the solid[1,2] as well as gas-phase carbonic acid.[3] It was suggested that solid carbonic acid might exist in Earth's upper troposphere and in the harsh environments of other solar bodies,[4] where it undergoes a cycle of synthesis, decomposition, and dimerization.[5] To provide spectroscopic data for probing the existence of extraterrestrial carbonic acid,[2,6] matrix-isolation infrared (MI-IR) spectroscopy has shown to be essential.[3,4,6-8] However, early assignments within the harmonic approximation using scaling factors impeded a full interpretation of the rather complex MI-IR spectrum of H2CO3. Recently, carbonic acid was detected in the Galactic center molecular cloud,[9] triggering new interest in the anharmonic spectrum.[10] In this regard, we substantially reassign our argon MI-IR spectra based on accurate anharmonic calculations. We calculate a four-mode potential energy surface (PES) at the explicitly correlated coupled-cluster theory using up to triple-zeta basis sets, i. e., CCSD(T)-F12/cc-pVTZ-F12. On this PES, we perform vibrational self-consistent field and configuration interaction (VSCF/VCI) calculations to obtain accurate vibrational transition frequencies and resonance analysis of the fundamentals, first overtones, and combination bands. In total, 12 new bands can be assigned, extending the spectral data for carbonic acid and thus simplifying detection in more complex environments. Furthermore, we clarify disputed assignments between the cc- and ct-conformer.
{"title":"Solving the Puzzle of the Carbonic Acid Vibrational Spectrum - an Anharmonic Story.","authors":"Jonas Schlagin, Dennis F Dinu, Jürgen Bernard, Thomas Loerting, Hinrich Grothe, Klaus R Liedl","doi":"10.1002/cphc.202400274","DOIUrl":"10.1002/cphc.202400274","url":null,"abstract":"<p><p>Against the general belief that carbonic acid is too unstable for synthesis, it was possible to synthesize the solid<sup>[1,2]</sup> as well as gas-phase carbonic acid.<sup>[3]</sup> It was suggested that solid carbonic acid might exist in Earth's upper troposphere and in the harsh environments of other solar bodies,<sup>[4]</sup> where it undergoes a cycle of synthesis, decomposition, and dimerization.<sup>[5]</sup> To provide spectroscopic data for probing the existence of extraterrestrial carbonic acid,<sup>[2,6]</sup> matrix-isolation infrared (MI-IR) spectroscopy has shown to be essential.<sup>[3,4,6-8]</sup> However, early assignments within the harmonic approximation using scaling factors impeded a full interpretation of the rather complex MI-IR spectrum of H<sub>2</sub>CO<sub>3</sub>. Recently, carbonic acid was detected in the Galactic center molecular cloud,<sup>[9]</sup> triggering new interest in the anharmonic spectrum.<sup>[10]</sup> In this regard, we substantially reassign our argon MI-IR spectra based on accurate anharmonic calculations. We calculate a four-mode potential energy surface (PES) at the explicitly correlated coupled-cluster theory using up to triple-zeta basis sets, i. e., CCSD(T)-F12/cc-pVTZ-F12. On this PES, we perform vibrational self-consistent field and configuration interaction (VSCF/VCI) calculations to obtain accurate vibrational transition frequencies and resonance analysis of the fundamentals, first overtones, and combination bands. In total, 12 new bands can be assigned, extending the spectral data for carbonic acid and thus simplifying detection in more complex environments. Furthermore, we clarify disputed assignments between the cc- and ct-conformer.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400274"},"PeriodicalIF":2.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}