Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2023.03.005
Minhang Dou , Jiayi Huang , Mimi Yu , Huahua Li , Yang Song , Ziwei Peng , Shouying Du , Jie Bai
Objective
Huamaoyan Granules (HMYG) and Huamaoyan Capsules (HMYC) are Chinese patent medicines with different dosage forms of the same prescription. Due to the different preparation process, the chemical composition of these Chinese patent medicines varies greatly among different forms, but there were few studies on the difference comparison and quality control of them. In order to improve the effectiveness and safety in its clinical application, an idea combining high performance liquid chromatography (HPLC) and chemometrics was put forward to study the quality control of Chinese patent medicines in different dosage forms of the same prescription.
Methods
The differential markers of HMYG and HMYC were explored based on HPLC fingerprint and chemometrics including orthogonal projections to latent structures-discriminant analysis (OPLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA). Finally, the quantitative analysis method of related components was established by HPLC.
Results
A quality control method for HMYG and HMYC was established. Firstly, the chemical components of HMYG and HMYC were systematically analyzed by HPLC fingerprinting. Further exploration showed that there were 20 characteristic peaks and 57 common peaks. Then, the potential differential markers between HMYG and HMYC were explored by chemometrics, and the differential markers were screened after intersection with the 20 characteristic peaks. Finally, HPLC quantitative analysis methods for nine components were established, including seven differential markers (neochlorogenic acid, protocatechualdehyde, chlorogenic acid, cryptochlorogenic acid, caffeic acid, rosmarinic acid and salvianolic acid A). The results of HPLC quantitative analysis showed that the contents of eight components in HMYG and HMYC samples were significantly different. According to the above results, the differential markers between HMYG and HMYC screened based on HPLC fingerprint and chemometrics can effectively characterize the differences between the two dosage forms.
Conclusion
The present work provides a rapid and effective method for routine quality evaluation and control of HMYG and HMYC. This work also provides feasible methods for the quality evaluation and control of Chinese patent medicines with different dosage forms of the same prescription.
{"title":"HPLC combined with chemometrics for quality control of Huamoyan Granules or Capsules","authors":"Minhang Dou , Jiayi Huang , Mimi Yu , Huahua Li , Yang Song , Ziwei Peng , Shouying Du , Jie Bai","doi":"10.1016/j.chmed.2023.03.005","DOIUrl":"10.1016/j.chmed.2023.03.005","url":null,"abstract":"<div><h3>Objective</h3><p>Huamaoyan Granules (HMYG) and Huamaoyan Capsules (HMYC) are Chinese patent medicines with different dosage forms of the same prescription. Due to the different preparation process, the chemical composition of these Chinese patent medicines varies greatly among different forms, but there were few studies on the difference comparison and quality control of them. In order to improve the effectiveness and safety in its clinical application, an idea combining high performance liquid chromatography (HPLC) and chemometrics was put forward to study the quality control of Chinese patent medicines in different dosage forms of the same prescription.</p></div><div><h3>Methods</h3><p>The differential markers of HMYG and HMYC were explored based on HPLC fingerprint and chemometrics including orthogonal projections to latent structures-discriminant analysis (OPLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA). Finally, the quantitative analysis method of related components was established by HPLC.</p></div><div><h3>Results</h3><p>A quality control method for HMYG and HMYC was established. Firstly, the chemical components of HMYG and HMYC were systematically analyzed by HPLC fingerprinting. Further exploration showed that there were 20 characteristic peaks and 57 common peaks. Then, the potential differential markers between HMYG and HMYC were explored by chemometrics, and the differential markers were screened after intersection with the 20 characteristic peaks. Finally, HPLC quantitative analysis methods for nine components were established, including seven differential markers (neochlorogenic acid, protocatechualdehyde, chlorogenic acid, cryptochlorogenic acid, caffeic acid, rosmarinic acid and salvianolic acid A). The results of HPLC quantitative analysis showed that the contents of eight components in HMYG and HMYC samples were significantly different. According to the above results, the differential markers between HMYG and HMYC screened based on HPLC fingerprint and chemometrics can effectively characterize the differences between the two dosage forms.</p></div><div><h3>Conclusion</h3><p>The present work provides a rapid and effective method for routine quality evaluation and control of HMYG and HMYC. This work also provides feasible methods for the quality evaluation and control of Chinese patent medicines with different dosage forms of the same prescription.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 449-456"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423000722/pdfft?md5=cdb74b0fbddd8abb2d541fd9031160c6&pid=1-s2.0-S1674638423000722-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41446455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2024.01.006
Ping Wei , Shiying Huang , Juan Yang , Mo Zhao , Qiugu Chen , Xiaoyu Deng , Jianping Chen , Yisheng Li
Objective
Mahuang Guizhi Decoction (MGD), an essential herbal pair in traditional Chinese medicine, is able to release cold, fever and asthma, mainly containing alkaloids, flavonoids, phenylpropanoids and amino acids. However, the absorption and distribution of these four category compounds in vivo still remained unclearly.
Methods
In our research, we utilized UPLC-Q-TOF-MS technique to identify the constituents within MGD, as well as the prototypes of MGD and their metabolites absorbed in plasma and brain. We further profiled the drug-time curve of prototypes and metabolites of MGD both in plasma and brain.
Results
Our results showed that 105 constituents were characterized in MGD. Thirty of them could be absorbed into blood, and ten of them could be distributed into brain. We also discovered eight new bio-transformed metabolites in blood, and a half of which could pass through the blood–brain barrier. In addition, all components detected in vivo could be absorbed and distributed immediately.
Conclusion
These findings provide an approachable method to analyze the potential bio-active compounds in MGD and their in vivo behaviors, which could promote the efficacious material basis study of MGD and the security of clinical utilization.
{"title":"Identification and characterization of chemical constituents in Mahuang Guizhi Decoction and their metabolites in rat plasma and brain by UPLC-Q-TOF/MS","authors":"Ping Wei , Shiying Huang , Juan Yang , Mo Zhao , Qiugu Chen , Xiaoyu Deng , Jianping Chen , Yisheng Li","doi":"10.1016/j.chmed.2024.01.006","DOIUrl":"https://doi.org/10.1016/j.chmed.2024.01.006","url":null,"abstract":"<div><h3>Objective</h3><p>Mahuang Guizhi Decoction (MGD), an essential herbal pair in traditional Chinese medicine, is able to release cold, fever and asthma, mainly containing alkaloids, flavonoids, phenylpropanoids and amino acids. However, the absorption and distribution of these four category compounds <em>in vivo</em> still remained unclearly.</p></div><div><h3>Methods</h3><p>In our research, we utilized UPLC-Q-TOF-MS technique to identify the constituents within MGD, as well as the prototypes of MGD and their metabolites absorbed in plasma and brain. We further profiled the drug-time curve of prototypes and metabolites of MGD both in plasma and brain.</p></div><div><h3>Results</h3><p>Our results showed that 105 constituents were characterized in MGD. Thirty of them could be absorbed into blood, and ten of them could be distributed into brain. We also discovered eight new bio-transformed metabolites in blood, and a half of which could pass through the blood–brain barrier. In addition, all components detected <em>in vivo</em> could be absorbed and distributed immediately.</p></div><div><h3>Conclusion</h3><p>These findings provide an approachable method to analyze the potential bio-active compounds in MGD and their <em>in vivo</em> behaviors, which could promote the efficacious material basis study of MGD and the security of clinical utilization.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 466-480"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000479/pdfft?md5=65c0244ee53b36a8b86b7af6cc5fb975&pid=1-s2.0-S1674638424000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2024.01.004
Lin Shi , Tong Cui , Xinyue Wang , Rina Wu , Junrui Wu , Yanqun Wang , Weiming Wang
In Northeast China, Goubao pickle is a popular food fermented from the roots of Platycodon grandiflorum as the main material, offering a unique flavor and rich nutritional value. Platycosides in roots of P. grandiflorum may play a crucial role in determining the quality of Goubao pickle through microorganism fermentation. However, biotransfermation of platycosides has not been reviewed during fermentation. In this study, we reviewed platycosides in chemical diversity, metabolic processes in vivo, biotransformation of platycosides in vitro, and pharmacological effects. Finally, we also discussed how to improve the bioactive secondary platycosides we desire by regulating enzymes from microorganisms in the future.
{"title":"Biotransformation and pharmacological activities of platycosides from Platycodon grandiflorum roots","authors":"Lin Shi , Tong Cui , Xinyue Wang , Rina Wu , Junrui Wu , Yanqun Wang , Weiming Wang","doi":"10.1016/j.chmed.2024.01.004","DOIUrl":"https://doi.org/10.1016/j.chmed.2024.01.004","url":null,"abstract":"<div><p>In Northeast China, Goubao pickle is a popular food fermented from the roots of <em>Platycodon grandiflorum</em> as the main material, offering a unique flavor and rich nutritional value. Platycosides in roots of <em>P. grandiflorum</em> may play a crucial role in determining the quality of Goubao pickle through microorganism fermentation. However, biotransfermation of platycosides has not been reviewed during fermentation. In this study, we reviewed platycosides in chemical diversity, metabolic processes <em>in vivo</em>, biotransformation of platycosides <em>in vitro,</em> and pharmacological effects. Finally, we also discussed how to improve the bioactive secondary platycosides we desire by regulating enzymes from microorganisms in the future.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 392-400"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000388/pdfft?md5=eb1aa15706a1576af4661e204dcd8a22&pid=1-s2.0-S1674638424000388-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2023.07.005
Xin Li , Min Wang , Yuhong Zhong , Qianqian Yin , Zheming Hu , Wenli Tian , Zhongyan Liu , Zhidong Liu
Objective
To investigate the plasma pharmacokinetics of six representative components (nodakenin, osthole, 5-O-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin), which were the ingredients of Qianghuo Shengshi Decoction (QSD) granules, in normal and rheumatoid arthritis (RA) rats administrated QSD granules intragastrically.
Methods
A rapid and accurate ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of six components in plasma, and it showed a good specificity, linearity, intra-day and inter-day precision, intra-day and inter-day accuracy, extraction recovery, stability, and the less matrix effect.
Results
The validated LC-MS/MS method was successfully used to compare the plasma pharmacokinetics of six ingredients between normal and RA rats after intragastrical administration of QSD granules and differences in the pharmacokinetics were found in two types of rats. The absorption rate in the RA rats was lower for nodakenin, osthole, 5-O-methylvisammioside, liquiritigenin and liquiritin than in the normal group, while the absorption rate of ferulic acid remained constant in two groups. In comparison with the normal rats, the exposure concentration of nodakenin was higher and that of other five components except for nodakenin was lower under pathological conditions. Additionally, the absorptive amount of nodakenin, osthole, 5-O-methylvisammioside and liquiritin was increased and that of ferulic acid and liquiritigenin was reduced in the RA rats than in the normal rats. Compared with the normal rats, the retention time of nodakenin, ferulic acid and liquiritin was reduced in vivo, whereas the retention time of osthole, 5-O-methylvisammioside and liquiritigenin was raised in the body for the RA rats. In contrast to the normal rats, the data demonstrated an increase in the elimination velocity of nodakenin and a decrease in the elimination velocity of the other five components except for nodakenin in the pathological state.
Conclusion
This study showed that the pharmacokinetic behavior of the six components, nodakenin, osthole, 5-O-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin, is different in vivo between normal and pathological states of rats, and this research provided the necessary experimental data to explain the pharmacokinetics of QSD granules in both normal and pathological states and provide some references for its clinical application at some level.
{"title":"Comparative pharmacokinetics of six components in normal and rheumatoid arthritis rats after intragastrical administration of Qianghuo Shengshi Decoction granules by LC-MS/MS","authors":"Xin Li , Min Wang , Yuhong Zhong , Qianqian Yin , Zheming Hu , Wenli Tian , Zhongyan Liu , Zhidong Liu","doi":"10.1016/j.chmed.2023.07.005","DOIUrl":"10.1016/j.chmed.2023.07.005","url":null,"abstract":"<div><h3>Objective</h3><p>To investigate the plasma pharmacokinetics of six representative components (nodakenin, osthole, 5-<em>O</em>-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin), which were the ingredients of Qianghuo Shengshi Decoction (QSD) granules, in normal and rheumatoid arthritis (RA) rats administrated QSD granules intragastrically.</p></div><div><h3>Methods</h3><p>A rapid and accurate ultra-high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of six components in plasma, and it showed a good specificity, linearity, intra-day and inter-day precision, intra-day and inter-day accuracy, extraction recovery, stability, and the less matrix effect.</p></div><div><h3>Results</h3><p>The validated LC-MS/MS method was successfully used to compare the plasma pharmacokinetics of six ingredients between normal and RA rats after intragastrical administration of QSD granules and differences in the pharmacokinetics were found in two types of rats. The absorption rate in the RA rats was lower for nodakenin, osthole, 5-<em>O</em>-methylvisammioside, liquiritigenin and liquiritin than in the normal group, while the absorption rate of ferulic acid remained constant in two groups. In<!--> <!-->comparison<!--> <!-->with the normal rats, the exposure concentration of nodakenin was higher and that of other five components except for nodakenin was lower under pathological conditions. Additionally, the absorptive amount of nodakenin, osthole, 5-<em>O</em>-methylvisammioside and liquiritin was increased and that of ferulic acid and liquiritigenin was reduced in the RA rats than in the normal rats. Compared with the normal rats, the retention time of nodakenin, ferulic acid and liquiritin was reduced <em>in vivo</em>, whereas the retention time of osthole, 5-<em>O</em>-methylvisammioside and liquiritigenin was raised in the body for the RA rats. In contrast to the normal rats, the data demonstrated an increase in the elimination velocity of nodakenin and a decrease in the elimination velocity of the other five components except for nodakenin in the pathological state.</p></div><div><h3>Conclusion</h3><p>This study showed that the pharmacokinetic behavior of the six components, nodakenin, osthole, 5-<em>O</em>-methylvisammioside, ferulic acid, liquiritigenin, and liquiritin, is different <em>in vivo</em> between normal and pathological states of rats, and this research provided the necessary experimental data to explain the pharmacokinetics of QSD granules in both normal and pathological states and provide some references for its clinical application at some level.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 457-465"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000145/pdfft?md5=eaf1505a26431ba6e1e0cb6495d30c55&pid=1-s2.0-S1674638424000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140273177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2024.05.001
Wenyuan Gao
{"title":"Comprehensive summary of material basis − Laying a foundation for substances of medicine food homology development","authors":"Wenyuan Gao","doi":"10.1016/j.chmed.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.chmed.2024.05.001","url":null,"abstract":"","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 311-312"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000509/pdfft?md5=2732d4acbd6b3aeaa19ee4eba0412798&pid=1-s2.0-S1674638424000509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2023.04.001
Zhiyong Zhang , Xiaoyang Zhang , Xi Wang , Xuting Guo , Xinhao Yan , Zheng Li , Wenlong Li
The genus Hippocampus is a multi-origin animal species with high medicinal and healthcare values. About 57 species of Hippocampus spread worldwide, of which about 14 species can be used as medicine, showing anti-oxidation, anti-inflammation, anti-depressant, anti-hypertension, anti-prostatic hyperplasia, antivirus, anti-apoptotic, antifatigue, and so on. And those pharmacological effects are mainly related to their active ingredients, including amino acids, abundant proteins (peptides and oligopeptides), fatty acids, nucleosides, steroids, and other small molecular compounds. The main means of authentication of Hippocampus species are morphological identification, microscopic identification, thin layer chromatography method, fingerprint method and genomics method. This review will provide useful insight for exploration, further study and precise medication of Hippocampus in the future.
{"title":"Chemical constituents, pharmacological activities and quality evaluation methods of genus Hippocampus: A comprehensive review","authors":"Zhiyong Zhang , Xiaoyang Zhang , Xi Wang , Xuting Guo , Xinhao Yan , Zheng Li , Wenlong Li","doi":"10.1016/j.chmed.2023.04.001","DOIUrl":"10.1016/j.chmed.2023.04.001","url":null,"abstract":"<div><p>The genus <em>Hippocampus</em> is a multi-origin animal species with high medicinal and healthcare values. About 57 species of <em>Hippocampus</em> spread worldwide, of which about 14 species can be used as medicine, showing anti-oxidation, anti-inflammation, anti-depressant, anti-hypertension, anti-prostatic hyperplasia, antivirus, anti-apoptotic, antifatigue, and so on. And those pharmacological effects are mainly related to their active ingredients, including amino acids, abundant proteins (peptides and oligopeptides), fatty acids, nucleosides, steroids, and other small molecular compounds. The main means of authentication of <em>Hippocampus</em> species are morphological identification, microscopic identification, thin layer chromatography method, fingerprint method and genomics method. This review will provide useful insight for exploration, further study and precise medication of <em>Hippocampus</em> in the future.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 344-357"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423000758/pdfft?md5=7d393b3e1d7cb7ad98f133b791592db0&pid=1-s2.0-S1674638423000758-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46497095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2023.07.002
Xiqin Du , Meng Zhang , Shuping Wang , Jingyang Li , Jingze Zhang , Dailin Liu
Cymbopogon citratus in the gramineous family, also known as lemongrass (LG), is a perennial herb. LG, a drug and food homologous medicine, has a widely recorded medicinal value and food applications. To date, 158 LG compounds have been reported, including terpenoids, flavonoids, phenolic acids. Pharmacological and clinical studies have indicated that LG has antibacterial, neuroprotective, hypoglycemic, hypotensive, anti-inflammatory, and anti-tumor effects. This article reviews LG in ethnopharmacology, chemical composition, pharmacology, food, medicine, and daily chemical applications to provide a basis for the subsequent development of food and medicine.
{"title":"Ethnopharmacology, chemical composition and functions of Cymbopogon citratus","authors":"Xiqin Du , Meng Zhang , Shuping Wang , Jingyang Li , Jingze Zhang , Dailin Liu","doi":"10.1016/j.chmed.2023.07.002","DOIUrl":"10.1016/j.chmed.2023.07.002","url":null,"abstract":"<div><p><em>Cymbopogon citratus</em> in the gramineous family, also known as lemongrass (LG), is a perennial herb. LG, a drug and food homologous medicine, has a widely recorded medicinal value and food applications. To date, 158 LG compounds have been reported, including terpenoids, flavonoids, phenolic acids. Pharmacological and clinical studies have indicated that LG has antibacterial, neuroprotective, hypoglycemic, hypotensive, anti-inflammatory, and anti-tumor effects. This article reviews LG in ethnopharmacology, chemical composition, pharmacology, food, medicine, and daily chemical applications to provide a basis for the subsequent development of food and medicine.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 358-374"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638423001028/pdfft?md5=d2d8916343465fcb851d609b65726f5f&pid=1-s2.0-S1674638423001028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139305520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2023.09.007
Jianying Liu , Binzhi Zhang , Leqi Wang , Shasha Li , Qinqiang Long , Xue Xiao
Ganoderma lucidum is a Chinese medicinal fungus with a long history of use in healthcare and disease treatment. G. lucidum spores (GLS) are tiny germ cells released from the mushroom cap during the mature stage of growth. They contain all the genetic active substances of G. lucidum. G. lucidum spore oil (GLSO) is a lipid component extracted from broken-walled Ganoderma spores using supercritical CO2 extraction technology. GLSO contains fatty acids, Ganoderma triterpenes, sterols and other bioactive compounds. Previous studies have demonstrated that GLSO has a wide range of pharmacological properties, including anti-tumor, anti-aging, neuroprotection, immunomodulation, hepatoprotection and modulation of metabolic diseases. This review summarizes the research progress of GLSO over the past two decades in terms of its bioactive components, extraction and processing techniques, pharmacological effects and safety evaluation. This provides a solid foundation for further research and application of GLSO.
{"title":"Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review","authors":"Jianying Liu , Binzhi Zhang , Leqi Wang , Shasha Li , Qinqiang Long , Xue Xiao","doi":"10.1016/j.chmed.2023.09.007","DOIUrl":"10.1016/j.chmed.2023.09.007","url":null,"abstract":"<div><p><em>Ganoderma lucidum</em> is a Chinese medicinal fungus with a long history of use in healthcare and disease treatment. <em>G. lucidum</em> spores (GLS) are tiny germ cells released from the mushroom cap during the mature stage of growth. They contain all the genetic active substances of <em>G. lucidum</em>. <em>G. lucidum</em> spore oil (GLSO) is a lipid component extracted from broken-walled <em>Ganoderma</em> spores using supercritical CO<sub>2</sub> extraction technology. GLSO contains fatty acids, <em>Ganoderma</em> triterpenes, sterols and other bioactive compounds. Previous studies have demonstrated that GLSO has a wide range of pharmacological properties, including anti-tumor, anti-aging, neuroprotection, immunomodulation, hepatoprotection and modulation of metabolic diseases. This review summarizes the research progress of GLSO over the past two decades in terms of its bioactive components, extraction and processing techniques, pharmacological effects and safety evaluation. This provides a solid foundation for further research and application of GLSO.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 375-391"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000042/pdfft?md5=bffb6cf10a5e0c6d1b55b33bbfaae425&pid=1-s2.0-S1674638424000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139634417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2024.01.005
Lanying Zhang , Xinrui Wang , Jingze Zhang , Dailin Liu , Gang Bai
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
{"title":"Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review","authors":"Lanying Zhang , Xinrui Wang , Jingze Zhang , Dailin Liu , Gang Bai","doi":"10.1016/j.chmed.2024.01.005","DOIUrl":"10.1016/j.chmed.2024.01.005","url":null,"abstract":"<div><p><em>Platycodonis Radix</em> (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in <em>Platycodon grandiflorum</em> (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to <em>P. grandiflorum.</em> This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of <em>P. grandiflorum</em>.</p></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 327-343"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674638424000406/pdfft?md5=81b1a4c46c1b7409e6f2332dc91f8e8b&pid=1-s2.0-S1674638424000406-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.chmed.2024.04.001
Junjie Li , Ming Dong , Qing Yao , Xu Dong , Yuanyuan Chen , Jincai Wen , Yingjie Xu , Zhixin Wu , Xiaomei Zhao , Ye Xiu , Xiaoyan Zhan , Zhaofang Bai , Xiaohe Xiao
<div><h3>Objective</h3><p>Acute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of <em>Lonicerae Japonicae Flos</em> (LJF) and <em>Forsythiae Fructus</em> (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair <em>Lonicerae Japonicae Flos</em>-<em>Forsythiae Fructus</em> (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved.</p></div><div><h3>Methods</h3><p>A total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1β, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of Caspase-1 and IL-1β proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1β and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-β, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR.</p></div><div><h3>Results</h3><p>LF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75% as well as MPO activity by 88%. The efficacy of LF in reducing inflammatory factors IL-1β, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated Caspase-1 and IL-1β, as well as the releas
{"title":"Amplifying protection against acute lung injury: Targeting both inflammasome and cGAS-STING pathway by Lonicerae Japonicae Flos-Forsythiae Fructus drug pair","authors":"Junjie Li , Ming Dong , Qing Yao , Xu Dong , Yuanyuan Chen , Jincai Wen , Yingjie Xu , Zhixin Wu , Xiaomei Zhao , Ye Xiu , Xiaoyan Zhan , Zhaofang Bai , Xiaohe Xiao","doi":"10.1016/j.chmed.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.chmed.2024.04.001","url":null,"abstract":"<div><h3>Objective</h3><p>Acute lung injury (ALI) is characterized by inflammation and currently lacks an efficacious pharmacological intervention. The medicine combination of <em>Lonicerae Japonicae Flos</em> (LJF) and <em>Forsythiae Fructus</em> (FF) demonstrates combined properties in its anti-infective, anti-inflammatory, and therapeutic effects, particularly in alleviating respiratory symptoms. In previous studies, Chinese medicine has shown promising efficacy in lipopolysaccharides (LPS)-induced ALI. However, there have been no reports of LJF and FF pairing for lung injury. The aim of this study is to compare the efficacy of herb pair <em>Lonicerae Japonicae Flos</em>-<em>Forsythiae Fructus</em> (LF) with LJF or FF alone in the treatment of ALI, and to explore whether LJF and FF have a combined effect in the treatment of lung injury, along with the underlying mechanism involved.</p></div><div><h3>Methods</h3><p>A total of 36 mice were divided into six groups (control, model, LJF, FF, LF, dexamethasone) based on the treatments they received after undergoing sham-operation/LPS tracheal instillation. H&E staining and pulmonary edema indexes were used to evaluate lung injury severity. Alveolar exudate cells (AECs) were counted based on cell count in bronchoalveolar lavage fluid (BALF), and neutrophil percentage in BALF was measured using flow cytometry. Myeloperoxidase (MPO) activity in BALF was measured using enzyme-linked immunosorbent assay (ELISA), while the production of IL-1β, TNF-α, and IL-6 in the lung and secretion level of them in BALF were detected by quantitative polymerase chain reaction (qPCR) and ELISA. The effect of LJF, FF, and LF on the expression of Caspase-1 and IL-1β proteins in bone marrow derived macrophages (BMDMs) supernatant was assessed using Western blot method under various inflammasome activation conditions. In addition, the concentration of IL-1β and changes in lactatedehydrogenase (LDH) release levels in BMDMs supernatant after LJF, FF, and LF administration, respectively, were measured using ELISA. Furthermore, the effects of LJF, FF and LF on STING and IRF3 phosphorylation in BMDMs were detected by Western blot, and the mRNA changes of IFN-β, TNF-α, IL-6 and CXCL10 in BMDMs were detected by qPCR.</p></div><div><h3>Results</h3><p>LF significantly attenuated the damage to alveolar structures, pulmonary hemorrhage, and infiltration of inflammatory cells induced by LPS. This was evidenced by a decrease in lung index score and wet/dry weight ratio. Treatment with LF significantly reduced the total number of neutrophil infiltration by 75% as well as MPO activity by 88%. The efficacy of LF in reducing inflammatory factors IL-1β, TNF-α, and IL-6 in the lungs surpasses that of LJF or FF, approaching the effectiveness of dexamethasone. In BMDMs, the co-administration of 0.2 mg/mL of LJF and FF demonstrated superior inhibitory effects on the expression of nigericin-stimulated Caspase-1 and IL-1β, as well as the releas","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 3","pages":"Pages 422-434"},"PeriodicalIF":4.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167463842400039X/pdfft?md5=991836f0d90df0541e74f54a21582387&pid=1-s2.0-S167463842400039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}